Statistical procedures most used in the analysis of measures repeated in time in the agricultural sector
Contenido principal del artículo
Resumen
In the agricultural research, situations are presented where it is difficult to use the classical linear models of analysis of variance, because the assumptions of independence, equality of variances and linearity are not fulfilled by making measures repeated in time. This paper had as object to review the statistical procedures used to analyze the designs of measures repeated in time, and determine which analytical
strategies are more appropriate for each purpose. In this study, three types of traditionally used analyses are described: univariate variance (ANOVA), multivariate variance (MANOVA), and the recent one, the approach of mixed models. At present, it has been agreed that the latter is the most adequate and versatile, because it provides the possibility of examining data with structures of dependence, unbalance, and lack of normality. Besides, it provides a solution to the limitation of the multivariate analysis of variance in respect to the number of individuals and variables. Also, the model of random effects is described, another member of the wide spectrum of the mixed models that is used in numerous studies in the agricultural field. This approach is strengthened by the use of selection criteria of models, due to the estimation of parameters is based on methods of maximum likelihood or restricted maximum likelihood. The Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) are described, permitting the optimum selection of competing mixed models.
Key words: repeated measures, univariate analysis, multivariate analysis, mixed models, information criteria.
strategies are more appropriate for each purpose. In this study, three types of traditionally used analyses are described: univariate variance (ANOVA), multivariate variance (MANOVA), and the recent one, the approach of mixed models. At present, it has been agreed that the latter is the most adequate and versatile, because it provides the possibility of examining data with structures of dependence, unbalance, and lack of normality. Besides, it provides a solution to the limitation of the multivariate analysis of variance in respect to the number of individuals and variables. Also, the model of random effects is described, another member of the wide spectrum of the mixed models that is used in numerous studies in the agricultural field. This approach is strengthened by the use of selection criteria of models, due to the estimation of parameters is based on methods of maximum likelihood or restricted maximum likelihood. The Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) are described, permitting the optimum selection of competing mixed models.
Key words: repeated measures, univariate analysis, multivariate analysis, mixed models, information criteria.
Detalles del artículo
Cómo citar
G?mez, S., Torres, V., Garc?a, Y., & Navarro, J. A. (2013). Statistical procedures most used in the analysis of measures repeated in time in the agricultural sector. Cuban Journal of Agricultural Science, 46(1). Recuperado a partir de https://cjascience.com/index.php/CJAS/article/view/74
Sección
Artículo de revisión
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).