Criteria of goodness of fit test in the selection of non-linear models for the description of biological performances

Main Article Content

Verena Torres
I. Barbosa
R. Meyer

Abstract

A study was undertaken to analyze the goodness of fit of non-linear models, for describing the live weight performance during growth of
crossbred Bufalypsos animals under grazing conditions through the utilization of fourteen statistical criteria. The non-linear models in
the logistic, Gompertz, von Bertalanffy and Brody parameters were adjusted to the data corresponding to 43 weighings carried out during
two lactations (1064). The best criteria to select non-linear models are: coefficient of determination R2, mean square of the prediction error
(MSPE), standard error of estimation, standard error of each parameter, analysis of residuals, mean absolute error (MAE) and percentage
of mean absolute error (PMAE). Estimations of parameters, as the analysis of residuals, are inefficient when working with the average of
observations. In particular, for buffalo females the logistic was the best fitting model.
Key words: non-linear models, goodness of fit test, statistical criteria

Article Details

How to Cite
Torres, V., Barbosa, I., & Meyer, R. (2012). Criteria of goodness of fit test in the selection of non-linear models for the description of biological performances. Cuban Journal of Agricultural Science, 46(4). Retrieved from https://cjascience.com/index.php/CJAS/article/view/144
Section
Biomathematics
Author Biographies

Verena Torres

Instituto de Ciencia Animal, Apartado Postal 24, San Jos? de las Lajas, Mayabeque, Cuba

I. Barbosa

Universidad Federal de Minas de Gerais, Av. Ant?nio Carlos, 6627, Pampulha-Belo Horizonte

R. Meyer

Universidad del Litoral, Bv. Pellegrini 2750 (3000),
Santa Fe, Argentina

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>