Stability and preservation of the probiotic additive with Lactobacillus pentosus LB-31 for animal production
Main Article Content
Abstract
The stability time and storage conditions of the probiotic additive with Lactobacillus pentosus LB-31 for animal production were determined. Completely random designs with six repetitions were used to monitor microbial viability for a month (0, 7, 14, 21 and 30 days) when the additive was stored under ambient conditions (24 ±2 ºC) and for six months (0, 30, 60, 90, 120 and 180 days) when stored under refrigeration (4±2 ºC). Cell concentration, pH and purity of the culture were also determined. The results showed that the lactic acid bacteria maintained its viability during the first 14 days of storage at room temperature. After this time, the microbial concentration decreased from 7.64 to 7.02 log cfu/mL (p=0.0028) and remained at 91 % viability until 30 days. Under refrigeration conditions, LB-31 was stably up to 60 days of storage with a concentration of 3.74x107 cfu/mL, and subsequently decreased to 106 cfu/mL (p<0.0001) with a viability of 78 % at the end of the study. Under both conditions, the pH decreased and the colonies maintain their morphological and cultural characteristics. It is concluded that the probiotic additive with Lactobacillus pentosus LB-31 without preservatives is stable for 14 days at room temperature (24±2 ºC), and for 60 days under refrigerated conditions (4±2 ºC).
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
Aragón, S., Ruiz, R.Y., Hernández, H. & Quintanilla, M.X. 2018. Optimization of the production and stress resistance of the probiotic Lactobacillus fermentum K73 in a submerged bioreactor using a whey-based culture medium. Journal of Food, 16(1): 1064-1070, ISSN: 1947-6345. https://doi.org/10.1080/19476337.2018.1527785.
Ayala, L., García, Y., Savón, L.L., Boucourt, R., Castro, M. & Herrera, M. 2014. Evaluación de la actividad probiótica del Lactobacillus pentosus en indicadores de salud y productivos de cerditos destetados. Revista Computadorizada de Producción Porcina, 21(3): 130-133, ISSN: 1026-9053. http://www.iip.co.cu/RCPP/213/213_artLAyala.pdf.
Brizuela, M.A. 2003. Selección de cepas de bacterias ácido lácticas para la obtención de un preparado con propiedades probióticas y su evaluación en cerdos. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. La Habana, Cuba.
De Man, J.C., Rogosa, M & Sharpe, M.E. 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology. 23(1): 130-135, ISSN: 1365-2672. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x.
Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. & Robledo C.W. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available in: http://www.infostat.com.ar.
dos Santos Filhoa, A.L., Veloso Freitasa, H., Rodrigues, S., Gonçalves Abreua, V.K., de Oliveira Lemosa, T., Faria Gomesc, W., Naraind, N. & Fernandes Pereira, A.L. 2019. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Science and Technology, 99: 371-378, ISSN: 0023-6438. http://dx.doi.org/10.1016/j.lwt.2018.10.007.
Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.
Endo, A. & Gueimonde, M. 2016. Isolation, identification and characterization of potential new probiotics. In: Advances in Probiotic Technology. Foerst, P. & Santivarangkna, C. Taylor & Francis Group, LLC, p. 45. ISBN: 978-1-4987-3458-5.
FAO (Food and Agriculture Organization of the United Nations). 2016. Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. Rome, ISSN: 0254-6019. http://www.fao.org/3/a-i5933e.pdf.
FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canada. (Consulted: October 25). http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
Farnworth, E.R. & Champagne, C.P. 2016. Production of Probiotic Cultures and Their Incorporation into Foods. In: Probiotics, Prebiotics, and Synbiotics. PART II: Probiotics in Food, Chapter 20. Elsevier Inc, ISBN: 978-0-12-802189-7. http://dx.doi.org/10.1016/B978-0-12-802189-7.00020-4.
Fenster, K., Freeburg, B., Hollard, C., Wong, C., Laursen, R.R. & Ouwehand, A.C. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms, 83: 1-17, ISSN: 2076-2607. http://dx.doi.org/10.3390/microorganisms7030083.
Fernandes Lemos Junior, W.J., Fioravante Guerra, A., Tarrah, A., da Silva Duarte, V., Giacomini, A., Helena Luchese, R. & Corich, V. 2019. Safety and Stability of Two Potentially Probiotic Lactobacillus Strains After in vitro Gastrointestinal Transit. Probiotics and Antimicrobial Proteins, # Springer Science+Business Media, LLC, part of Springer Nature, ISSN: 1867-1314. https://doi.org/10.1007/s12602-019-09565-2.
Freire, A.L., Ramos, C.L. & Schwan, R.F. 2017. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Research International, 100: 698-707, ISSN: 0963-9969. http://dx.doi.org/10.1016/j.foodres.2017.07.070.
García, M., Vidal Fonteles, T., Tibério de Jesus, A.L. & Rodrigues, S. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139: 261-266, ISSN: 0308-8146. http://dx.doi.org/10.1016/j.foodchem.2013.01.059.
García, Y. & Pérez, T. 2015. Obtención de microorganismos con actividad probiótica para animales monogástricos. Anales de la Academia de Ciencias de Cuba, 5(3): 1-19. http://www.revistaccuba.cu/index.php/revacc/article/download/225/225.
García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.
Gutiérrez, D., García, Y. & Sosa, D. 2020. El efecto de Lactobacillus pentosus LB-31 como aditivo microbiano en la alimentación de corderos. Livestock Research for Rural Development, 32(3), Artículo No. 43, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/3/yanei32043.html.
Kieps, J. & Dembczynski, R. 2022. Current Trends in the Production of Probiotic Formulations. Foods, 11: 2330, ISSN: 2304-8158. https://doi.org/10.3390/foods11152330.
Milián, G., Rondón, A.J., Rodríguez, M., Beruvides, A. & Pérez, M. L. 2022. Endospores of Bacillus subtilis with probiotic potential in animals of zootechnical interest. Cuban Journal of Agricultural Science, 56(3): 145-153, ISSN: 2079-3480. https://cjascience.com/index.php/CJAS/article/view/1052.
Molina, A. 2019. Probióticos y su mecanismo de acción en alimentación animal. Agronomía Mesoamericana, 30(2): 601-611, ISSN: 2215-3608. https://doi:10.15517/am.v30i2.34432.
Ramlucken, U, Ramchurana, S.O., Moonsamya, G., Jansen van Rensburgc, C., Thantshab, M.S. & Lallooa, R. 2021. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnology Reports, 29: e00575, ISSN: 2215-017X. https://doi.org/10.1016/j.btre.2020.e00575.
Rodríguez, R., Ontivero, Y., García, Y., Sosa, D. & Gómez, S. 2020. Empleo del tubérculo de boniato (Ipomoea batatas L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development, 32 (7), Artículo No. 117, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/7/rodri32117.html.
Rondón, A. J., Socorro, M., Beruvides, A., Milián, G., Rodríguez, M., Arteaga, F. & Vera, R. 2020. Probiotic effect of PROBIOLACTlL®, SUBTILPROBIO® and their mixture on productive and health indicators of growing pigs. Cuban Journal of Agricultural Science, 54 (3): 1-10, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/972.
Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba.
Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba.
Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E., Galindo, J., Sosa, D., Alberto, M., Roque, D., Albelo, N., Colomina, L & Moreira, O. 2017. Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480. http://www.cjascience.com/index.php/CJAS/article/view/759/780.
Sosa, D., García, Y., Dustet, J.C., García, Y., Martínez, M., Sosa, A. & García, D. 2021. Efecto del aditivo probiótico Lactobacillus pentosus LB-31 en pollos de ceba. Revista MVZ Córdoba, 26(1): e2037, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.2037.
Tavares A.G., Lacerda, C., Ribeiro, D. & Freitas, R. 2018. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Research International, 111: 187-197, ISSN: 1873-7145. https://doi.org/10.1016/j.foodres.2018.04.065.
Vinderola, G., Gueimonde, M., Gomez-Gallego, C., Delfederico, L. & Salminen, S. 2017. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 68: 83-90, ISSN: 1879-3053. http://dx.doi.org/10.1016/j.tifs.2017.08.005.