Productive performance of Clarias gariepinus young fish fed with spiny lobster by-products. Technical note

Main Article Content

J. E. Llanes
A. Ramírez


The productive performance of Clarias gariepinus, fed with by-products from the pulp extraction process of the lobster cephalothorax (Panulirus argus), was evaluated. An amount of 240 young fish of 10.16 ± 0.07 g initial mean weight were used, placed according to a completely randomized design in four treatments with three repetitions. The treatments were: control (100 % fish by-products), TI (75 % fish by-products and 25 % lobster by-products), TII (50 % fish by-products and 50 % lobster by-products) and TIII (100 % lobster by-products). Animals were fed for 45 days and feed was provided at 15 % of the biomass. The increase in lobster by-products in the rations decreased the amount of feed supplied per animal (137.15, 120.38, 109.72 and 86.53 g). Similarly, growth indicators (74.51, 52.91, 43.01 and 20.51 g) and feed conversion (2.41, 3.18, 3.78 and 9.81) were unfavorable when increasing the levels of these by-products, due to lower feed intake and, therefore, of proteins. Survival was 100 % for all treatments. The negative results were related to the high concentrations of chitin in natural form and calcium, present in these by-products. It is concluded that fresh lobster by-products were not feasible for feeding Clarias gariepinus. Its transformation into products with high added value, such as chitin, chitosans and protein concentrates, is recommended for subsequent evaluation as growth enhancers in this species.

Keywords: feed, catfish, crustaceans, nutrition

Article Details

How to Cite
Llanes, J. E., & Ramírez, A. (2023). Productive performance of Clarias gariepinus young fish fed with spiny lobster by-products. Technical note. Cuban Journal of Agricultural Science, 57. Retrieved from
Animal Science


AOAC. 2016. Official methods of analysis of AOAC International. 20th ed., Rockville, MD: AOAC International, ISBN: 978-0-935584-87-5, Available: <>, [Consulted: September 22, 2016].

Borić, M., Vicente, F. A., Jurković, D. L., Novak, U. & Likozar, B. 2020. "Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process". Carbohydrate Polymers, 246: 1–8, ISSN: 1879-1344.

D'Abramo LR. 2021. "Sustainable aquafeed and aquaculture production systems as impacted by challenges of global food security and climate change". Journal of the World Aquaculture Society, 52 (6): 1162-1167, ISSN: 1749-7345.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M. & Robledo, C. W. 2012. Infostat versión 2012. Grupo Infostat. Universidad Nacional de Córdoba, Argentina. Available: [Consulted: October 9, 2019]

Duncan, D.B. 1955. "Multiple Range and Multiple F Tests". Biometrics, 11(1): 1-42, ISSN: 0006-341X.

Elserafy, S., Abdel-Hameid, N. & Abdel-Salam, H. 2021. "Effect of shrimp waste extracted chitin on growth and some biochemical parameters of the Nile tilapia". Egyptian Journal of Aquatic Biology and Fisheries, 25(1): 313 – 329, ISSN: 2536-9814.

Gutowska, M., Drazen, J. & Robinson, B. 2004. "Digestive chitinolytic activity in marine fishes of Monterey Bay, California". Comparative Biochemistry and Physiology, Part A.139: 351–358, ISSN: 1531-4332.

Karlsen, O., Amlund, H., Berg, A. & Olsen, R. 2017. "The effect of dietetic chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut". Aquaculture Research, 48: 123-133, ISSN: 1365-2109.

Lall, S.P. & Kaushik, S.J. 2021. "Nutrition and Metabolism of Minerals in Fish". Animals, 11: 2711, ISSN: 2076-2615.

Llanes, J., Toledo, J. & Lazo de la Vega, J. 2000. "Utilización del desecho de pescado en la alimentación del bagre africano Clarias gariepinus". AcuaCUBA, 2(2): 26-31. ISSN: 1608-0467.

Levene, H. 1960. Robust tests for the equality of variance In: Olkin, I., Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford University Press, pp. 278–292, ISBN: 978-0-8047-0596-7.

Lu, C.H. & Ku, C.C. 2013. "Effects shrimp waste meal on growth performance and chitinas activity in juvenile cobia (Rachycentron canadum) ". Aquaculture, 44(8): 1190-1195, ISSN: 0044-8486.

Mergelsberg, S.T., Ulrich, R.N., Xiao, S. & Dove, P.M. 2019. "Composition Systematics in the Exoskeleton of the American Lobster, Homarusamericanus and Implications for Malacostraca". Frontiers in Earth Science, 7: 69, ISSN: 2296-6463.

Perea, C., Garcés, Y., Morales, Y., Jiménez, M., Hoyos, J.L. & Vivas, N. 2022. "Digestibility of enzymatic hydrolyzates from animal origin viscera in Piaractusbrachypomus, Cuvier 1818". Biotecnología en el Sector Agropecuario y Agroindustrial, 20(1): 54-67, ISSN: 1909-9959.

Porn –Ngam, N., Satoh, S., Takeuchi, T. & Watanabe, T. 1993. "Effect of the ratio of phosphorus to calcium on zinc availability to rainbow trout in high phosphorus diet". Nippon Suisan Gakkaishi, 59(12): 2065-2070, ISSN: 1349-998X.

Shapiro, S.S. & Wilk, M.B. 1965. "An Analysis of Variance Test for Normality (Complete Samples)". Biometrika, 52(3/4): 591–611, ISSN: 0006-3444.

Soetemans, L., Uyttebroek, M. & Bastiaens, L. 2020. "Characteristics of chitin extracted from black soldier fly in different life stages". International Journal of Biological Macromolecules, 165: 3206-3214, ISSN: 1879-0003.

Toledo, J., Llanes, J.E. & Romero, C. 2015. "Nutrición y alimentación de peces de aguas cálidas". AcuaCUBA, 17 (1): 5-22, ISSN: 1608-0467.

Ramírez, M.A., Peniche, C., Rodríguez, T. & Llanes, J.E. 2022. Caracterización fisicoquímica y microbiológica del concentrado proteico de langosta, como aditivo en la alimentación animal. Taller Alimentos, Aditivos y Bioinsumos. Memorias Convención Producción Animal y Agrodesarrollo. Del 10 al 14 de octubre 2022. Centro de Convenciones Plaza América. Varadero, Matanzas, Cuba. ISBN: 978-959-7171-86-7.

Velazco, J. S. & Gutiérrez, M. 2019. "Aspectos nutricionales de peces ornamentales de agua dulce". Revista Politécnica, 15(30): 82-93, ISSN: 2256-5353.

Most read articles by the same author(s)