Models of random regressions for the estimation of genetic parameters and studies of lactation curves of the Holstein in Cuba
Contenido principal del artículo
Resumen
In order to estimate genetic parameters, the functions of covariance, and the curves of lactation in milk yields at the control day, 2861
individual records of the weighting at the first lactation from 357 cows of the Holstein breed were analyzed. The animals were from an enterprise of Havana province, Cuba, and the records were from the period 1999-2008. Ten different Models of Random Regressions (MRR)
were compared with the application of the orthogonal polynomials of Legendre. Among the fixed effects, it was included the combined
effect herd-weighting year-weighting month and the fixed curve of order 4. As random, the additive genetic effect and that of the permanent
environment were considered. The calving age was evaluated as covariable. Thirty-one classes of lactation days (with interval of 10 d) were considered for a total of 310 d. The model of Ali and Schaeffer was the one that characterized the best the lactation curve with included effects (with slight peak at 35 d, with 10.66kg/d). The best variance structure was that of order 5. The most adequate model of random regression was that considering the polynomial of Legendre of degree 3 for the additive genetic effect, and of degree 6 for the permanent environment. The highest values of heritability (0.12-0.26) were attained between 20 and 145 d. The genetic correlations ranged from 0.52 to 1, and were stronger at the beginning and middle of the lactation. It is concluded that the MRR are an efficient way of estimating parameters and genetic variations. In this study, the use of heterogeneous residual variances was more adequate to model the milk yield at the control day.
Key words: random regressions, control day, polynomials of Legendre, Holstein.
individual records of the weighting at the first lactation from 357 cows of the Holstein breed were analyzed. The animals were from an enterprise of Havana province, Cuba, and the records were from the period 1999-2008. Ten different Models of Random Regressions (MRR)
were compared with the application of the orthogonal polynomials of Legendre. Among the fixed effects, it was included the combined
effect herd-weighting year-weighting month and the fixed curve of order 4. As random, the additive genetic effect and that of the permanent
environment were considered. The calving age was evaluated as covariable. Thirty-one classes of lactation days (with interval of 10 d) were considered for a total of 310 d. The model of Ali and Schaeffer was the one that characterized the best the lactation curve with included effects (with slight peak at 35 d, with 10.66kg/d). The best variance structure was that of order 5. The most adequate model of random regression was that considering the polynomial of Legendre of degree 3 for the additive genetic effect, and of degree 6 for the permanent environment. The highest values of heritability (0.12-0.26) were attained between 20 and 145 d. The genetic correlations ranged from 0.52 to 1, and were stronger at the beginning and middle of the lactation. It is concluded that the MRR are an efficient way of estimating parameters and genetic variations. In this study, the use of heterogeneous residual variances was more adequate to model the milk yield at the control day.
Key words: random regressions, control day, polynomials of Legendre, Holstein.
Detalles del artículo
Cómo citar
Luc?a, F., Tonhati, H., Albuquerque, L. G., Aspilcueta-Borquis, R. R., & Men?ndez Buxadera, A. (2011). Models of random regressions for the estimation of genetic parameters and studies of lactation curves of the Holstein in Cuba. Cuban Journal of Agricultural Science, 45(1). Recuperado a partir de https://cjascience.com/index.php/CJAS/article/view/178
Sección
Ciencia Animal
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).