Growth model in crossbred dairy calves on grazing with protein-energy-mineral supplementation
Main Article Content
Abstract
The research was conducted from March to May 2020 to develop functions to estimate growth and increase in live weight and average daily gain in dairy cattle in pre-fattening stage, in rotational grazing, with grasses association and protein-energy-mineral supplementation. Information was taken from the botanical composition in percentage, fresh and dry matter in a hectare divided into four equal plots, the chemical composition of the grasses association and the cattle stocking rates capacity of the system, live weights and weight gains in the animals. From this information, functions were developed to estimate growth and increase in live weight and average daily gain in crossbred dairy calves until their future productive performance. The grazing area consisted of 51.51 % plant biomass of ratana grass (Ischaemum indicum) and 20.74 % forage peanut (Arachis pintoi). The quality of the grasses association with the highest contributions of crude protein was in forage peanut and ratana (20.75 and 23.44 %, respectively). The average gross energy contributions were 1023.9 kJ/kgDM, with the best values for forage peanut (1107.24 kJ/kgDM). The total grass yield was 3488.50 kg/ha. The prediction of future productive performance in fattening was influenced by weight increases in the first three months of age of the calves, regardless of birth weight. These changes in the growth curve are due to the diet with energy-protein-mineral supplementation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
AOAC. 2023. Official Methods of Analysis. [En línea]. 978-0-935584-87-5. In food e agriculture, we set the standard. 22aed. Vol. 2. ISBN 978-0-19-764909-1.
Benítez Jiménez, D.G., Torres Cárdenas, V., Vargas Burgos, J.C., Soria R., S., Navarrete, H. & Ríos Núñez, S. 2018. Organization of livestock farms in the Ecuadorian Amazon. Case study "Luis Ceballos". Cuban Journal of Agricultural Science, 52(1): 7-18, ISSN: 2079-3480. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2079-34802018000100007.
Bourdon, R. & Brinks, J. 1987. Simulated efficiency of range beef production. I. Growth and milk production. Journal of Animal Science, 65(4): 943-955, ISSN: 1525-3163. https://doi.org/10.2527/JAS1987.654943X.
Brody, S. 1945. Bioenergetics and growth. Capítulo 15. Hafner. New York.
Corral Zambrano, C.A., Zambrano Solórzano, L.J., Pincay Vargas, D.M. & Calo Gómez, S.G. 2021. Impactos ambientales generados por la ganadería en la provincia de Santo Domingo de Tsáchilas: impactos ambientales generados por la ganadería. UNESUM - Ciencias. Revista Científica Multidisciplinaria, 5(2): 69-78, ISSN: 2600-6030. https://doi.org/10.47230/unesum-ciencias.v4.n3.2020.255.
FAO. 2023. Evolución Global en la Producción de Carne y Cultivo. Available at: https://porcinews.com/fao-evolucion-global-en-la-produccion-de-carne-y-cultivo/.
Gompertz, B. 1825. On the nature of the function expressive of thr law of human mortality and on a new mode of determining of the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115: 513-585, ISSN: 0264-3820. https://doi.org/10.1098/rstl.1825.0026.
Honig, A.C., Inhuber, V., Spiekers, H., Windisch, W., Götz, K.U., Schuster, M. & Ettle, T. 2022. Body composition and composition of gain of growing beef bulls fed rations with varying energy concentrations. Meat Science, 184: 108685, ISSN: 1873-4138. https://doi.org/10.1016/j.meatsci.2021.108685.
INEC. 2023. Instituto Nacional de Investigación Agropecuaria. Available at: https://www.ecuadorencifras.gob.ec/documentos/webinec/Estadisticas_agropecuarias/espac/espac_2022/Bolet%C3%ADn_tecnico_ESPAC_2022.pdf.
Kertz, A. 2022. Principles of growth and body composition of cattle. Feedstuffs. Available at: https://www.feedstuffs.com/livestock-and-poultry-market-news/principles-of-growth-and-body-composition-of-cattle.
Nobre, P.R.C., Rosa, A.D.N., da Silva, L.O.C. & Evangelista, S.R.M. 1987. Curvas de crescimento de gado Nelore ajustadas para diferentes frequencias de pesagens. Pesquisa Agropecuária Brasileira, 22(9/10): 1027-1037, ISSN: 1678-3921.
Olson, K. 2010. Búsqueda de alternativas para mejorar la producción bovina de carne de Magallanes. Informe Técnico. Centro Regional de Investigación Kampenaike. INIA. Punta Arenas. Chile. Available at: https://bibliotecadigital.fia.cl/bitstreams/5a43e554-3da3-4081-bf96-946dd6488444/download.
Picard, B. & Gagaoua, M. 2020. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. Journal of Agricultural and Food Chemistry, 68(22): 6021-6039, ISSN: 1520-5118. https://doi.org/10.1021/acs.jafc.0c02086.
Posada, S. L., Santiago, C. & Rosero, R. 2016. Mezclas minerales múltiples para la alimentación de bovinos Aplicación y formulación. Fondo Editorial Biogénesis, p. 46, ISBN: 978-958-8947-25-9. Available at: http://editorialbiogenesis.udea.edu.co/.
Quintero Bastidas, D.E., Bejarano Garavito, D.H., Ospina Hernández, S.D., Vargas Vivas, L.F. & Ramírez Toro, E.J. 2023. Parámetros y tendencias genéticas para peso al nacimiento y peso al destete en ganado Hartón del Valle en Colombia. Chilean Journal of Agricultural & Animal Sciences, 39(2): 177-187, ISSN: 0719-3890. https://dx.doi.org/10.29393/chjaa39-15ptde50015.
Razanova, O.P., Farionik, T.V. & Skoromna, O.I. 2023. The Influence of the Type of Feeding on Meat Productivity of Young Cattle and Meat Quality. Publishing House “Baltija Publishing”.https://scholar.google.es/citations?view_op=view_citation&hl=es&user=5yv7j4UAAAAJ&cstart=20&pagesize=80&citation_for_view=5yv7j4UAAAAJ:_Ybze24A_UAC.
Redjadj, C., Duparc, A., Lavorel, S., Grigulis, K., Bonenfant, C., Maillard, D., Saïd, S. & Loison, A. 2012. Estimating herbaceous plant biomass in mountain grasslands: a comparative study using three different methods. Alpine Botany, 122: 57-63, ISSN: 1664-221X. https://doi.org/10.1007/s00035-012-0100-5.
Rostagno, H.S., Teixeira, L.F., Donzele, L.J., Gomes, P.C., Oliverira, Rita., Lopes, D.C., Ferreira, A.S., Toledo, S.L. & Euclides, R.F. 2017. Tablas Brasileñas para aves y cerdos. Composición de Alimentos y Requerimientos Nutricionales. 3era Edición. Universidad Federal de Viçosa - Departamento de Zootecnia, Brasil, 167 pp. Available at: https://eliasnutri.files.wordpress.com/2018/09/tablas-brasilec3b1as-aves-y-cerdos-cuarta-edicion-2017-11.pdf .
Senra, A. & Venereo, A. 1986. Métodos de muestreo. En: Los pastos en Cuba. Producción. Ed. Instituto de Ciencia Animal. La Habana, Cuba. Tomo1: 649p.
Solórzano, J., Barboza, D., Vásquez, P. & Paniagua, J. 2022. Optimización del costo de alimentación para ganado de engorde en Guanacaste, Costa Rica. Revista e-Agronegocios, 8(1): 25-44, ISSN: 2215-3462. https://doi.org/10.18845/ea.v8i1.5654.
Song, H., Huang, Y., Ding, L., Duan, Z. & Zhang, J. 2023. Arachis species: High‐quality forage crops-nutritional properties and breeding strategies to expand their utilization and feeding value. Grassland Research, 2(3): 212-219, ISSN: 2770-1743. https://doi.org/10.1002/glr2.12059.
Von Bertalanffy, L. 1957. Leyes cuantitativas en el metabolismo y el crecimiento. Revisión trimestral de biología. 3. 218.
Wegner, J., Albrecht, E., Fiedler, I., Teuscher, F., Papstein, H. J. & Ender, K. 2000. Growth- and breed-related changes of muscle fiber characteristics in cattle. Journal of Animal Science, 78(6): 1485-1496, ISSN: 1525-3163. https://doi.org/10.2527/2000.7861485x.
Zhang J., Zhang L., Liu X. & Qiao Q. 2019. Research on sustainable development in an alpine pastoral area based on equilibrium analysis between the grassland yield, livestock carrying capacity, and animal husbandry population. Sustainability, 11: 4659, ISSN: 2071-1050. https://doi.org/10.3390/su11174659.