Glycerol in the diet of ruminant animals: advantages of its use
Main Article Content
Abstract
This study delves into some topics related to the use of glycerol in ruminant feeding. The main ways to obtain glycerol are discussed and its properties are characterized. Its energetic value is highlighted due to the importance of its inclusion in diets for animals. Some studies are analyzed in which the use of glycerol in dairy and beef cattle was evaluated, as well as its effect on intake and productive indicators. In addition, general aspects related to metabolism are emphasized and the limitations related to its use are exposed. It is concluded that glycerol, which is obtained as a by-product in the manufacture of biofuels, can be included as an energy concentrate in diets intended for ruminants, as long as its methanol level is considered.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Those authors that have publications with this journal accept the following terms:
1. They will retain their copyright and guarantee the journal the right of first publication of their work, which will be simultaneously subject to the License Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work whenever its author is indicated and its first publication this journal. Under this license the author will be free of:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
2. The authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional telematics file or publish it in a monographic volume) whenever the initial publication is indicated in this journal.
3. The authors are allowed and recommended disseminating their work through the Internet (e.g. in institutional telematics archives or on their website) before and during the submission process, which can produce interesting exchanges and increase the citations of the published work. (See the Effect of open access).
References
Abdul Raman, A.A., Tan, H.W. & Buthiyappan, A. 2019. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Frontiers in Chemistry, 7: 774, ISSN: 2296-2646. https://doi.org/10.3389/fchem.2019.00774.
Arias-Islas, E., Morales-Barrera, J., Prado-Rebolledo, O., & García-Casillas, A. 2020. Metabolism in ruminants and its association with blood biochemical analytes. Abanico Veterinario, 10(1), ISSN: 2007-428X.
Badia-Fabregat, M., Rago, L., Baeza, J.A. & Guisasola, A. 2019. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. International Journal of Hydrogen Energy, 44: 17204–17213, ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2019.03.193.
Bansod, Y., Crabbe, B., Forster, L., Ghasemzadeh, K. & D'Agostino, C. 2024. Evaluating the environmental impact of crude glycerol purification derived from biodiesel production: A comparative life cycle assessment study. Journal of Cleaner Production, 437: 140485, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2023.140485
Benoit, M. & Mottet, A. 2023. Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agricultural Systems, 205: 103585, ISSN: 0308-521X. https://doi.org/10.1016/j.agsy.2022.103585
Bergner, H., Kijora, Claudia., Ceresnakova, Zusana. & Szakacs, J. 1995. In vitro investigation on the glycerol transformation Rumen Microbes. Archiv für Tierernaehrung, 48(3): 245-256, ISSN: 1477-2817. https://doi.org/10.1080/17450399509381845.
Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this.
Bonis, R., Sotolongo, J.A., Galindo, J., García López, R. & Ortiz, A. 2022. Utilización del glicerol como aditivo en la dieta de vacas lecheras Siboney. VII Congreso Internacional de Producción Animal. AGROPAT 2022.
Cabrera-Cruz, M.A. 2019. Metabolismo del glicerol en rumiantes. AgroProductividad, 12(4): 81-85, ISSN: 2594-0252. https://doi.org/10.32854/agrop.v0i0.306.
Cal-Pereyra, L., González-Montaña, J.R., Benech, A., Acosta-Dibarrat, J., Martín, M.J., Perini, S., Abreu, M.C., Da Silva, S. & Rodríguez, P. 2015. Evaluation of three therapeutic alternatives for the early treatment of ovine pregnancy toxaemia. Irish Veterinary Journal, 68: 25, ISSN: 2046-0481. https://doi.org/10.1186/s13620-015-0053-2.
Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.
Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.
Celente, G.S., Medianeira Rizzetti, T., Sui, Y., Schneider, R.C.S. 2022. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass and Bioenergy, 167: 106647. https://doi.org/10.1016/j.biombioe.2022.106647.
Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.
Chol, Ch.G., Dhabhai, R., Dalai, A. & Reaney, K.M. 2018. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Processing Technology, 178: 78-87, ISSN: 0378-3820. https://doi.org/10.1016/j.fuproc.2018.05.023
Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426.
Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.
Dahmer, P.L., Harrison, O.L., & Jones, C.K. 2022. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Translational Animal Science, 6(4): txac145, ISSN: 2573-2102. https://doi.org/10.1093/tas/txac145.
D'Aurea, A.P., Ezequiel, J.M.B., D'Aurea, E.M.O., Santos, V.C., Fávaro, V.R., Homem Júnior, A.C., Almeida, M.T.C. & Perez, H.L. 2017. Glicerina bruta associada à ureia na terminação de bovinos: consumo, desempenho e características da carne. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 69(1): 165-172, ISSN: 1678-4162. https://doi.org/10.1590/1678-4162-8895.
De Souza, A., Ribeiro, J., Lopes, M., Moletta, J.L., Los, S. & Breno, V. 2014. Glycerol inclusion levels in corn and sunflower silages. Ciência e Agrotecnologia, 38(5): 497-505, ISSN: 1981-1829. https://doi.org/10.1590/S1413-70542014000500009.
Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032.
Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201.
Elam, N.A., Eng, K.S., Bechtel, B., Harris, J.M. & Crocker, R. 2008. Glycerol from biodiesel production: considerations for feedlot diets. Proceedings of the Southwest Nutrition Conference. 21 February 2008. Tempe, AZ, USA. 2-6 p.
Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002.
Hejna, A., Kosmela, P., Formela, K., Piszczyk, Ł. & Haponiuk, J.T. 2016. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66: 449–475, ISSN: 2377-8342. http://dx.doi.org/10.1016/j.rser.2016.08.020.
Hess, B.W., Lake, S.L. & Gunter, S.A. 2008. Using glycerin as a supplement for forage-fed ruminants. In: Symposium Ruminant Nutrition Glycerin as Feed for Ruminants (19th). Available at: http://www.adsa.asas.org/meetings/2008/abstracts/0392.pdf [Consulted: January 10, 2022].
Huerta-Jiménez, M., Ortega-Cerrilla, M.E., Herrera-Haro, J.G., Kawas-Garza, J.R., Díaz-Cruz, A., Nava, C., Hernández-Sánchez, D., Ortega-Jiménez, E. & Alarcón-Rojo, A.D. 2018. Relationship between glycerol administration to livestock 24 h before sacrifice and indicators of physiological and oxidative stress. Journal of Animal Behavior and Biometeorology, 6: 116-123, ISSN: 2318-1265. https://doi.org/10.31893/2318-1265jabb.v6n4p116-123
Iriñiz, J., Elias, A., Michelena, J.B., Galindo, J. & Chilibroste, P. 2011. Uso de activadores ruminales con glicerol en el comportamiento productivo de novillos Hereford alimentados con paja de arroz. Alpa. Montevideo, Uruguay.
Jeon, Y.G., Kim, Y.Y., Lee, G., & Kim, J.B. 2023. Physiological and pathological roles of lipogenesis. Nature Metabolism, 5(5): 735-759, ISSN: 2522-5812. https://doi.org/10.1038/s42255-023-00786-y.
Johnson, R.B. 1957. The effect of glycerol on carbohydrate metabolism: The rate of absorption and conversion to glucose and glycogen. Journal of Biological Chemistry, 200(1): 1-8. https://doi.org/10.1016/S0021-9258(18)64723-4.
Kowalska-Kuś, J., Held, A. & Nowińska, K. 2020. A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journal, 401: 126143, ISSN: 1873-3212. https://doi.org/10.1016/j.cej.2020.126143.
Krehbiel, C.R. 2008. Ruminal and physiological metabolism of glycerin. Journal of Animal Science, 86(E-suppl. 2): 392, ISSN: 1525-3163. https://www.adsa.org/Portals/0/SiteContent/Docs/Meetings/PastMeetings/Annual/2008/0392.PDF.
Kumar Singh, Sh., Chauhan, A. & Sarkar, B. 2024. Resilience of sustainability for a smart production system to produce biodiesel from waste animal fat. Journal of Cleaner Production, 452: 142047, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2024.142047.
Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966
Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379.
Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010.
Lei, M.A.C., & Simões, J. 2021. Invited review: ketosis diagnosis and monitoring in high-producing dairy cows. Dairy, 2(2): 303-325, ISSN: 2624-862X. https://doi.org/10.3390/dairy2020025.
Li, L., Wang, H., Zhang, N., Zhang, T., & Ma, Y. 2022. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. Journal of Animal Science, 100(3): skac046. https://doi.org/10.1093/jas/skac046.
Liu, T., Tang, J., & Feng, F. 2020. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Applied Microbiology and Biotechnology, 104(23): 1-13, ISSN: 1432-0614. https://doi.org/10.1007/s00253-020-10919-y.
Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000.
Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987.
Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.
Mammi, L.M.E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. 2021. The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7): 1988, ISSN: 2076-2615. https://doi.org/10.3390/ani11071988
Martínez-Miró, S., Madrid, J., López, M.J., Orengo, J., Sánchez, C.J. & Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181, ISSN: 2076-2615. https://doi.org/10.3390/ani11082181.
McWilliams, C. 2023. Effect of glycerol supplementation in early lactation on metabolic health, milking activity, and production of dairy cows housed in automated milking system herds (Doctoral dissertation, University of Guelph).
Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630.
Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629.
Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p.
Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272.
Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661.
Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4.
Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022].
Sellers, R.S. 2008. Glycerin as a feed ingredient, official definition(s) and approvals. Journal of Dairy Science, 91(1): 392, ISSN: 1525-3198. https://doi.org/10.2903/j.efsa.2022.7353.
Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121.
Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.
Sotgiu, F.D., Porcu, C., Pasciu, V., Dattena, M. & Gallus, M. 2021. Towards a sustainable reproduction management of dairy sheep: glycerol-based formulations as alternative to eCG in milked ewes mated at the end of anoestrus period. Animals, 11(4): 922, ISSN: 2076-2615. https://doi.org/10.3390/ani11040922.
Tang, H., Luo, C., Lu, H., Wu, K., Liu, Y., Zhu, Y., Wang, B. & Liang, B. 2024. Readily available, biocompatible sodium citrate catalyst for efficient glycerol carbonate production through transesterification of glycerol and ethylene carbonate. Chemical Engineering Journal, 481: 148552, ISSN: 1385-8947. https://doi.org/10.1016/j.cej.2024.148552
Tavernari, F.C., Vieira de Souza, A.R.S., Feddern, V., dos Santos Lopes, L., de Sousa Teixeira, C.J., Muller, J.A., Surek, D., Paiano, D., Goulart Petrolli, T. & Manente Boiago, M. 2022. Metabolizable energy value of crude glycerin and effects on broiler performance and carcass yield. Livestock Science, 263: 105017, ISSN: 1878-0490. https://doi.org/10.1016/j.livsci.2022.105017.
Thompson, J.C. & He, B.B. 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2): 261–265, ISSN: 1943-7838. https://doi.org/10.13031/2013.20272.
Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i.
Trentini Volpato, C.P., Heck, M.C., Gigliolli, A.A.S., Yoshioto-Higaki, M., Godoy, M.A.F. de, Magnoni, D.M. Vicentini, V.E.P. 2022. Utilization of glycerol as substrate in the production of biosurfactant. Research, Society and Development, 11(6): e474111638391, ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i16.38391.
Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006.
Van Cleef, E.H.C.B., Sancanari, J.B.D., Silva, Z.F., D’Aurea, A.P., Favaro, V.R., van Cleef, F.O.S., Homem Júnior, A.C. &. Ezequiel. J.M.B. 2016. High concentrations of crude glycerin on ruminal parameters, microbial yield, and in vitro greenhouse gases production in dairy cows. Canadian Journal of Animal Science, 96(4): 461-465, ISSN: 1918-1825. https://doi.org/10.1139/cjas-2015-0170.
Wan Azelee, N.I., Mazila Ramli, A.N., Manas, N.H.A., Salamun, N., Man, R.Ch. & El Enshasy, H. 2019. Glycerol In Food, Cosmetics And Pharmaceutical Industries: Basics And New Applications. International Journal of Scientific & Technology Research, 8(12): 553-558, ISSN: 2277-8616.
Wang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010.
Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009.
Wang, K., Nan, X.M., Zhao, Y.G., Tong, J.J., Jiang, L.S., & Xiong, B.H. 2021. Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure. Journal of Dairy Science, 104(3): 2924-2934, ISSN: 1525-3198. https://doi.org/10.3168/jds.2020-18974.
Wu, S., Li, X., Geand, Zh. & Luo, Y. 2023. Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application. Polymers, 15(6): 1538, ISSN: 2073-4360. https://doi.org/10.3390/polym15061538.
Zhang, C., Shao, Q., Liu, M., Wang, X., Loor, J.J., Jiang, Q., Cuan, Sh., Li, X., Wang, J., Li, Y., He, L., Huang, Y., Liu, G. & Lei, L. 2023. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver disease. Journal of Dairy Science, 106(5): 2878-2891, ISSN: 1525-3198. https://doi.org/10.3168/jds.2022-22636.