HomeAuthorAbstractReferences
 
 
 
Review Article
 
Description of the main aspects influencing Bombyx mori L. (Lepidoptera: Bombycidae) rearing
 

iDR. Torres McCook*✉:

Beatriz Caballero Fernández

Adileidys Ruiz Barcenas

 

Entidad de Ciencia, Tecnología e Innovación Sierra Maestra

 

Abstract

Bombyx mori L. is one of the most important species for silk production internationally. Being a domesticated species, there are certain factors to be considered during its breeding. This paper discusses the influence of certain factors on silkworm rearing. Reference is made to B. mori breeds and their peculiarities regarding their productive characteristics. In addition, the effects of certain environmental factors are explained, as well as their interaction with food and diseases that affect silkworm. Regarding the latter, the main strategies used for fighting them are mentioned. The interaction of larvae, environment, food and diseases influence mainly on B. mori rearing. The success of this agribusiness is determined by the strict control over these factors.

Keywords: 
silkworm; breeds; environment; pathologies.
 
 
 
INTRODUCTION

Sericulture is the group of cultural and economic activities related to silk. It can be defined as the combination of the cultivation of a perennial plant and the rearing of an insect (Cifuentes and Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.). This agribusiness has three fundamental components for its success: forestry, with the cultivation of mulberry, livestock, with silkworm rearing, and industrial, with the transformation of the thread in the textile, cosmetic and medical industries (Meng et al. 2017Meng, X., Zhu, F. & Chen, K. 2017. "Silkworm: A Promising Model Organism in Life Science"". Journal of Insect Science, 17(5): 1-6, ISSN: 1536-2442, DOI: https://doi.org/10.1093/jisesa/iex064.).

There are several insects that produce silk or natural fibers. Bombyx mori L. is one of the most important species used for silk production in the world. Its rearing dates back more than five millennia and China is identified as its center of origin (Neog et al. 2015Neog, K., Dutta, P., Changmai, A., Goswami, D. & Choudhury, B. 2015. "Comparative Study on the Rearing Performance of Muga Silkworm under Indoor and Outdoor Rearing Conditions". International Journal of Agricultural Science and Food Technology, 1(2): 020-024, ISSN: 2455-815X, DOI: https://doi.org/10.17352/2455-815X.000006.). Some factors involved in the process of sericulture are cultivation and processing of mulberry, climatic and environmental conditions, as well as the cleanliness and hygiene of breeding areas.

Based on the above, the objective of this paper was to describe the main methodological aspects of Bombyx mori breeding.

2. CHARACTERIZATION OF BOMBYX MORI

B. mori is an insect of Bombycidae family, Lepidoptera order and Insecta class. It is a domesticated insect, fully adapted to commercial breeding, which arises after many years of evolution and artificial selection. This species is not present in nature in a free state, as it has lost the ability to fly and survive under extreme environmental conditions.

2.1. Lifecycle

B. mori is a monophagous species, with complete metamorphosis, eating only mulberry leaves during its larval stage. The quality of leaves (Ravikumar et al. 2019Ravikumar, A., Hadimani, D.K. & Ramakrishna, N.A.J. 2019. "Geometric studies on growth and yield parameters of mulberry and its impacts on performance of silkworm hybrid Bombyx mori L". International Journal of Chemical Studies, 7(3): 3387-3389, ISSN: 2321-4902.) and the use of different mulberry varieties during worm feeding influence on larval growth and development (Adolkar et al. 2007Adolkar, V.V., Raina, S.K. & Kimbu, D.M. 2007. "Evaluation of various mulberry Morus spp. (Moraceae) cultivars for the rearing of the bivoltine hybrid race Shaanshi BV-333 of the silkworm Bombyx mori (Lepidoptera: Bombycidae) ". International Journal of Tropical Insect Science, 27(1): 6-14, ISSN: 1742-7592, DOI: https://doi.org/10.1017/S174275840774537X. and Gangwar 2010Gangwar, S.K. 2010. "Impact of varietal feeding of eight Mulberry varieties on Bombyx mori L". Agriculture and Biology Journal of North America, 1(3): 350-354, ISSN: 2151-7525.), as well as on the quality of the obtained cocoons (Prieto-Abreu 2015Prieto-Abreu, M. 2015. Evaluación de tres variedades de Morus alba en la crianza y producción del polihíbrido Chul Thai-6 de Bombyx mori. MSc.Thesis. Estación Experimental de Pastos y Forrajes "Indio Hatuey", Universidad de Matanzas, Matanzas, Cuba.).

This insect, in its adult stage, has no other mission than to perpetuate the species. Females lay 400 to 500 round eggs, although they can also be oval, flat, or ellipsoid. Its size varies from 1 to 1.3 mm long and 0.9 to 2 mm wide, depending on the breed.

During embryonic development, eggs undergo color changes, from yellow to dark and gray. Eggs laid by unfertilized females do not change color. Their hatching depends on climatic variables, such as temperature, relative humidity (Reddy 2001Reddy, P.L. 2001. Implications of the high temperature and low humidity on the silkworm (Bombyx mori L.physiology and its economics of rearing. PhD Thesis. Department of Sericulture, Sri Krishnadevaraya University, Anantapur, India.) and light intensity (Kogure 1933Kogure, M. 1933. "The influence of light and temperature on certain characters of the silkworm, Bombyx mori". Journal of the Department of Agriculture, Kyushu Imperial University, 4(1): 1-93, ISSN: 2433-488X.). Their shell is formed by a chitinous matter, with microscopic channels through which air enters. In addition, it has a tiny pore, known as micropyle, which is the place through which the larva emerges. The embryo completes its development in a period of 10 to 12 days before hatching (figure 1).

 
!"#$%&'()*+%+ ,-. /%0102+0 3 "*+*+ 4 5 55 555 56 6 65 655 7 8 9: ;<0+ =9:> =9:> =9:> 7=:> = 8 7: ;<0+ 7 8 9: ;<0+ 9 8 ?: ;<0+ @ 8 A: ;<0+ = 8 7: ;<0+ BC 8 B?: ;<0+ BC 8 B=: ;<0+
Figure 1.  Lifecycle of Bombyx mori silkworm (Modified from Klimenko 1990Klimenko, V.V. 1990. The Silkworm Bombyx mori. In: Animal Species for Developmental Studies. Volume 1: Invertebrates. 1st Ed. Dettlaff, T.A. & Vassetzky, S.G. (eds.). Ed. Springer. Boston, Massachusetts, U.S.A., pp. 231-252, ISBN: 978-1-4613-0503-3, DOI: https://doi.org/10.1007/978-1-4613-0503-3.). I-V: larval instar; VI: cocoon formation; VII: pupa stage. Arabic numbers represent the duration of instar and corresponding intermediate molting, in days and hours, respectively. HCl: acid treatment to eggs.
 

Newly hatched larvae are 3 mm long and covered with tiny black or dark brown hairs that give them the appearance of a hairy caterpillar. During their growth they change color, due to the development of the skin cuticle. Larvae undergo dormancy and exuviation process four times, from hatching to cocooning. Those who are between the first and third age or instar, are called young worms. The first instar normally lasts three to four days, the second around two or three, the third from three to four, the fourth from four to five and the fifth from eight to nine days. In total, larval stage lasts from 21 to 25 days (Chauhan and Tayal 2017Chauhan, T.P.S. & Tayal, M.K. 2017. Mulberry Sericulture. In: Industrial Entomology. 1st Ed. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 197-263, ISBN: 978-981-10-3303-2, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

The worms in the fifth instar ingest more than 88% of mulberry, and it reaches its maximum weight one or two days before starting to spin the cocoon. In addition, they rapidly develop the silk gland, which occupies up to 40% of their weight. When they finish their development and stop eating, larval integument appears transparent. At this stage, they are called mature worms, and begin to form the cocoon for two or three days (Cifuentes and Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.).

At the end of cocooning, this worm becomes a pupa. Generally, the female chrysalis is larger than the male. Later, from 10 to 15 days, and depending on the variety, chrysalises transform into a moth.

2.2. Classification of B. mori breeds

There are numerous breeds and varieties of B. mori that are distinguished by secondary characters. These characters include color, shape and size of cocoons, silk yield and quality, as well as differences in coloration patterns in worm skin. There are different characterization criteria for B. mori breeds, which include geographical origin, voltinism and moltinism.

2.2.1. Characteristics of breeds according to geographical origin

Prolonged geographic isolation in regions with different climatic conditions has produced a wide variety of B. mori breeds. According to the geographical origin, the silkworm is classified into Japanese, Chinese, European and tropical breeds.

Japanese breeds have three larval markings: ocular, crescent, and stellar. Their larvae are generally strong and resistant under unfavorable conditions, but their larval period is long. They form cocoons with a peanut-shaped waist, usually white, although yellow and green are also present. It has a high tendency to produce double cocoons and short, thick threads.

Chinese breeds have an active diet, as well as rapid and uniform growth. Most of these breeds do not have larval markings, and are not sensitive to high temperature and humidity values. Their cocoons are elliptical or spherical, and their color is generally white, although golden yellow and pink are also present. The cocoon filament is thin and long, with good winding ability.

European breeds have large and heavy eggs, and worms with long bodies and light larval markings. Larval stage is very long, especially in the fifth instar, and they consume a large quantity of mulberry during this period. Cocoons are large and elliptical, with slight constrictions. They produce few double cocoons, most of them white in color, heavy shell and long filaments with good winding. They are difficult breeds to rear, due to their high sensitivity to unfavorable climate conditions and several diseases.

Tropical breeds originated in India and Southeast Asia. Their eggs are small and lightweight. Their larvae are tolerant to high temperatures and humidity. They have the smallest size among all breeds and produce small elliptical cocoons with green, yellow or white colors. The shell of cocoons is loose and light, with much lax mass of loose silk fiber, and thin filament. They produce few double cocoons, but the percentage of raw silk is very low (Cifuentes and Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.).

In Cuba, Chinese breeds and Thai poly-hybrids are the ones with the best performance. They have high hatching percentages and reduce the duration of larval stage, which makes it possible to carry out several rearing per year. They also allow better management of mulberry, by reducing intake days by larvae and the incidence of diseases, which generally increase in the last rearing ages (Pérez-Hernández 2017Pérez-Hernández, M. del C. 2017. Sericultura: Bases científicas para su desarrollo sostenible en Cuba. PhD Thesis. Instituto Nacional de Ciencias Agrícolas (INCA), Mayabeque, Cuba.).

2.2.2. Characteristics of breeds according to voltinism

Voltinism is the genetic character that determines the number of generations in a year, under natural conditions. B. mori can be divided into three types of voltinism: univoltine, bivoltine, and polyvoltine. Univoltine silkworm breeds are capable of completing only one breeding generation under natural conditions in one year. Bivoltine silkworms are able of having two generations, and the polyvoltine ones can have three or more generations (Chauhan and Tayal 2017Chauhan, T.P.S. & Tayal, M.K. 2017. Mulberry Sericulture. In: Industrial Entomology. 1st Ed. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 197-263, ISBN: 978-981-10-3303-2, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

Voltinism depends on environmental factors, such as temperature, incubation photoperiod, and genes differentiated at different loci. It is closely related to geographical origin of breeds, since each region has its own environmental peculiarities. Generally, univoltine and bivoltine silkworms are dominant over polyvoltine. This characteristic is determined by the mother and segregation takes place in the third generation (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.).

Univoltine breeds are characterized by eating large amounts of mulberry, high productive yields with good quality silk, and by low resistance to stress and diseases. Polyvoltine breeds consume less mulberry, have low productive yields and are highly resistant. Bivoltine silkworms have intermediate characteristics to those mentioned above.

Diapause is an important mechanism in the lifecycle of various insects, since it allows the biological cycle to be synchronized with respect to seasons. This ensures food availability in the active stages of the animal. This phenomenon is hormonally regulated. During the embryonic stage, temperature and light affect the control of the secretory activity of the subpharyngeal ganglion. At high temperatures and long periods of light, secretion of the diapause hormone is promoted, while it is inhibited at low temperatures and short periods of light (Kobayashi 1990Kobayashi, J. 1990. "Effect of the Photoperiod on the Induction of Egg Diapause of Tropical Races of the Domestic Silkworm, Bombyx mori, and the Wild Silkworm, B. mandarina". Japan Agricultural Research Quarterly, 23(3): 202-205, ISSN: 2185-8896.). If the ovaries that develop during chrysalis phase are affected by the diapause hormone, the female will produce diapausing eggs. Otherwise, it will lead to eggs without it. Diapause can be finished by acid treatment or egg hibernation (Figure 1) (Tzenov 2019Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.).

2.2.3. Characteristics of breeds according to moltinism

Moltinism is the result of the interaction between various genetic constitutions and environmental conditions. This characteristic is related to the number of molts of larvae during their lifecycle. Depending on the number of molts, B. mori breeds can be classified as trimolters (M3), tetramolters (+M) and pentamolters (M5). Dominance relationships of M-alleles that control moltinism are M3> +M > M5. Some genes linked to sex are also related to the expression of this trait. The juvenile hormone of the winged body and the ecdysone of the prothoracic gland control the manifestation of these characters.

M3 breeds have a short larval stage and robust larvae. Larval body and cocoons are small and the cocoon filament is thin. Larval stage length, and larva and cocoon size of +M breeds are intermediate between M3 and M5. The M5 were induced by a natural mutation of the +M. They have a long-lasting larval phase, the size of larva and cocoon is large, with a very thick cocoon filament. These breeds are not very resistant to unfavorable conditions and are very susceptible to diseases (Cifuentes and Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.).

3. GENERAL REARING ASPECTS
3.1. Environmental conditions

Being a domesticated breed, B. mori is reared under captivity conditions, in facilities prepared for this activity. Growth and physiological indicators of this insect are affected by environmental conditions. The most important abiotic factors to control during worm rearing are temperature, relative humidity, ventilation, and lighting.

3.1.1. Temperature

Among the environmental factors that must be considered during larval rearing, temperature is probably the most important, as it is a poikilothermic animal, unable to regulate body temperature through internal mechanisms (Reddy 2001Reddy, P.L. 2001. Implications of the high temperature and low humidity on the silkworm (Bombyx mori L.physiology and its economics of rearing. PhD Thesis. Department of Sericulture, Sri Krishnadevaraya University, Anantapur, India.). Generally, early ages are more resistant to high temperatures, which increases survival and improves quality of produced cocoons. As temperatures rise, organic functions increase and, conversely, at low temperatures they decrease. The optimum temperature range for rearing larvae with high productivity levels varies between 23ºC and 28ºC (Parrey 2018Parrey, I.R. 2018. "Impact of Temperature on Crop and Higher Silk Production: Silkworm (Bombyx mori L.)". Agricultural Research and Technology, 15(3): 77-78, ISSN: 2471-6774, DOI: https://doi.org/10.19080/ARTOAJ.2018.15.555954. and Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). Table 1 shows the effects of some temperature values, other than the optimum, in B. mori breeding.

 
Table 1.  Effect of temperature on Bombyx mori rearing
TemperatureConsequencesAuthors
38 ºCDecrease of cocoon formation time Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
36 ºCDecrease of cocoon weight Kumar et al. (2003)Kumar, N.S., Basavaraja, H.K., Reddy, N.M. & Dandin, S.B. 2003. "Effect of high temperature and high humidity on quantitative traits of parents, foundation crosses, single and double hybrids of bivoltine silkworm, Bombyx mori L". International Journal of Industrial Entomology, 6(2): 197-202, ISSN: 2586-4785. Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Decrease of larval stage duration Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Decrease of cocoon quality and yield Chandrakanth et al. (2015)Chandrakanth, N., Moorthy, S.M., Ponnuvel, K.M. & Sivaprasad, V. 2015. "Reeling performances of F2 and backcross populations under high temperature condition". Journal of Entomology and Zoology Studies, 3(6): 219-222, ISSN: 2320-7078, DOI: http://dx.doi.org/10.1080/19420862.2015.1078054.
Between 35 ºC and 36 ºCDecrease of ingested and digested food Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683. Rahmathulla and Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
35 ºCDecrease of weight of larvae and silk gland Rahmathulla and Suresh (2013)Rahmathulla, V.K. & Suresh, H.M. 2013. "Influence of temperature and humidity on growth and development of silk gland of a bivoltine silkworm hybrid". Iranian Journal of Entomology, 3: 24-29, ISSN: 0259-9996.
Between 29 ºC and 30 ºCDecrease of pupae formation rate Hussain et al. (2011)Hussain, M., Naeem, M., Khan, S.A., Bhatti, M.F. & Munawar, M. 2011. "Studies on the influence of temperature and humidity on biological traits of silkworm (Bombyx mori L.: Bombycidae)". African Journal of Biotechnology, 10(57): 12368-12375, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB11.1805.
Decrease of pupa stage duration Tzenov (2019)Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.
Decrease of pupae weight
22 ºCIncrease of cocoon formation time Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
20 ºCIncrease of the amount of food digested by the silkworm Decrease of weight of cocoon and silk gland Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Les tan 20 ºCDecrease of physiological activities, specially at early ages Rahmathulla (2012)Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.
18 ºCDecrease of ingested and digested food Rahmathulla and Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
 

3.1.2. Relative Humidity

Temperature and humidity act synergistically on larval growth and development and on cocoon quality (Reddy et al. 2002Reddy, P.L., Naik, S.S. & Reddy, N.S. 2002. "Implications of Temperature and Humidity on Pupation Patterns in the Silkworm, Bombyx mori L". International Journal of Industrial Entomology, 5(1): 67-71, ISSN: 2586-4785.). At early ages, larvae endure higher relative humidity values than adult worms, and vigorously grow under these conditions. Table 2 shows the effects of some humidity values on B. mori breeding, regardless of temperature.

 
Table 2.  Effect of relative humidity on Bombyx mori rearing
Relative humidityConsequencesAuthors
98 %Increase of cocoon formation time Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
95 %Decrease of ingested food Rahmathulla and Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
55 %Decrease of pupa formation rate Increase of larvae mortality Hussain et al. (2011)Hussain, M., Naeem, M., Khan, S.A., Bhatti, M.F. & Munawar, M. 2011. "Studies on the influence of temperature and humidity on biological traits of silkworm (Bombyx mori L.: Bombycidae)". African Journal of Biotechnology, 10(57): 12368-12375, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB11.1805.
Between 40 and 50 %Decrease of ingested and digested food Rahmathulla and Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
40 %Decrease of cocoon formation time Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
Decrease of cocoon and shell weight Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
 

3.1.3. Ventilation

Larvae have high oxygen requirements, especially when they are in their fourth and fifth age. Gases are produced during rearing, which modify air composition in the facilities. CO, NH3 and SO2 are some of the released gases in the facilities during rearing, due to the fermentation of animal and vegetable wastes, as well as the activity of humans (Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). Concentrations of 1% of CO2, 0.02% of SO2 and 0.1% of NH3 in the air are adequate limits for B. mori rearing (Singh et al. 2009Singh, T., Bhat, M.M. & Khan, M.A. 2009. "Insect Adaptations to Changing Environments-Temperature and Humidity". International Journal of Industrial Entomology, 19(1): 155-164, ISSN: 2586-4785.). Young larvae are more susceptible to toxic gases, so artificial air circulation is sometimes useful (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.). Table 4 presents the effects of ventilation on B. mori rearing.

 
Table 3.  Effect of ventilation on Bombyx mori rearing
StimulusTreatmentConsequencesAuthors
Variations of gas concentrations[CO2]>1%Delays larva growth Grekov et al. (2005)Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.
[CO2]=10%Produces vomits in larvae
[CO2]>10%Produces death of larvae
[NH3]: between 0.5% and 1%Produces death of larvae
Air speed variationsBetween 0.1 m/s and 0.5 m/s (in the fifth instar)Decrease of larval mortality Increase of ingested and digested food Increase of cocoon weight and their formation speed
1 m/s (in the fifth instar) Rahmathulla (2012)Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.
1.5 m/s Cifuentes y Sohn (1998)Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.
 

3.1.4. Lighting

Larvae are photosensitive and tend to move towards dim light. They do not tolerate high light intensities or complete darkness. Young worms have positive phototropism and adults show negative phototropism. For this reason, larvae should not be directly exposed to light (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.).

Larvae optimally develop at light intensities between 15 lux to 20 lux. Young worms, subjected to periods of 16 hours of darkness and eight hours of light, have better survival. The same occurs for adult worms, subjected to periods of 16 hours of light and eight hours of darkness (Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). Table 4 shows the effects of lighting on B. mori rearing. The optimal environmental conditions for silkworm rearing are presented in table 5.

 
Table 4.  Effect of lighting on Bombyx mori rearing
Stimulus TreatmentConsequencesAuthors
Photoperiod variations LLIncreases the weight of cocoons, shell and pupae Janarthanan et al. (1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
Increases the amount of M5 Singh et al. (2009)Singh, T., Bhat, M.M. & Khan, M.A. 2009. "Insect Adaptations to Changing Environments-Temperature and Humidity". International Journal of Industrial Entomology, 19(1): 155-164, ISSN: 2586-4785.
OOIncreases the amount of M3 Morohoshi and Takahashi (1969)Morohoshi, S. & Takahashi, M. 1969. "Effect of Temperature and Light Durning Incubation on Molting and Diapause in Bombyx mori". Proceedings of the Japan Academy, 45(4): 318-322, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.45.318.
Decreases the weight of cocoons and shell Decreases the weight of female pupae Janarthanan et al. (1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
12L12ODecreases the weight of cocoon shell of male individuals Janarthanan et al. (1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
Light intensity variations 0.1 lux (0.002)Induces diapause in few individuals Shimizu (1982)Shimizu, I. 1982. "Photoperiodic induction in silkworm, Bombyx mori, reared on artificial diet: evidence for extraretinal photoreception". Journal of Insect Physiology, 28(10): 841-846, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(82)90096-8.
5 lux (0.095)Prevents diapause induction
Increase of light intensity Increases duration of larval, pupa and adult stages Decreases the weight of cocoon and pupae Decreases the number of eggs Suji and Bai (2011)Suji, T.S. & Bai, M.R. 2011. "Studies on the effect of light on growth and reproduction of silkworm Bombyx mori L". Journal of Basic & Applied Biology, 5(1&2): 369-373, ISSN: 0973-8207.
Decrease of light intensity Decreases duration of larval, pupa and adult stages Increases the weight of cocoons, pupae and shell Increases the number of eggs

Notes: LL: light for 24 h, OO: darkness for 24 h, 12L12O: 12 h of light and 12 h of darkness, M3: trimolters, M5: pentamolters

 

 
Table 5.  Optimal environmental conditions for Bombyx mori rearing at different stages of its lifecycle (modified from Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234. and Tzenov 2019Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.)
Environmental factor I InstarII InstarIII InstarIV InstarV InstarCocoon formation
Temperature28 ºC27 ºC26 ºC25 ºC24 ºC25 ºC
HumidityBetween 85 and 90 %85 %Between 75 and 80 %Between 70 and 75 %Between 65 and 70 %70 %
Lighting 8L16O16L8O

  • Light intensity from 15 lux (0.285)

  • to 20 lux (0.38)

Ventilation[CO2] =1%, [SO2] =0.02%, [NH3] =0.1%, vaire=1 m/s

8L16O: eight hours of light and 16 hours of darkness

16L8O: 16 hours of light and eight hours of darkness

vaire: air speed

 

3.2. Nutritional requirements

Each age has specifications for its diet, so it requires different types of mulberry leaf. Leaves located in the upper part of branches are recommended for feeding young larvae, as they are more tender and have high contents of water, protein and carbohydrates. The amount of food required by larvae increases during growth.

It is very common to underfeed larvae, which results in a longer duration of the larval cycle, problems in spinning and low weight and lower quality cocoons. On the other hand, excess feeding results in the accumulation of plant material in the brood beds, which ferment and produce toxic gases.

The artificial diet is used in countries where mulberry is not grown throughout the year. This type of diet includes formulations with nutrients such as: amino acids (Meeramaideen et al. 2017Meeramaideen, M., Rajasekar, P., Sumathi, K. & Prabu, P.G. 2017. "Studies on the morphometric and econometric parameters analysis of silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) fed with amino acid (Lysine) treated MR2 mulberry leaves". International Journal of Modern Research and Reviews, 5(1): 1468-1473, ISSN: 2347-8314.), sterols (Ito et al. 1964Ito, T., Kawashima, K., Nakahara, M., Nakanishi, K. & Terahara, A. 1964. "Effects of sterols on feeding and nutrition of the silkworm, Bombyx mori L". Journal of Insect Physiology., 10(2): 225-238, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(64)90005-8.), fatty acids, vitamins (Etebari and Matindoost 2005Etebari, K. & Matindoost, L. 2005. "Application of Multi-vitamins as Supplementary Nutrients on Biological and Economical Characteristics of Silkworm Bombyx mori L". Journal of Asia-Pacific Entomology, 8(1): 107-112, ISSN: 1226-8615, DOI: https://doi.org/10.1016/S1226-8615(08)60078-3., Kanafi et al. 2007Kanafi, R.R., Ebadi, R., Mirhosseini, S.Z., Seidavi, A.R., Zolfaghari, M. & Etebari, K. 2007. "A review on nutritive effect of mulberry leaves enrichment with vitamins on economic traits and biological parameters of silkworm Bombyx mori L". Invertebrate Survival Journal, 4(2): 86-91, ISSN: 1824-307X. and Kumara and Kumar 2016Kumara, R.R. & Kumar, M.N.A. 2016. "Folic acid as a nutrient supplement with mulberry leaf and its impact on the economic traits of silkworm (Bombyx mori L.)". International Journal of Advanced Research, 4(12): 1159-1165, ISSN: 2320-5407, DOI: https://doi.org/10.21474/IJAR01/2506.) and minerals (Horie 1995Horie, Y. 1995. "Recent Advances of Nutritional Physiology and Artificial Diet of the Silkworm, Bombyx mori, in Japan". Journal of Sericultural and Entomological Science, 37(2): 235-243, ISSN: 2234-8174. and Ito 1967Ito, T. 1967. "Nutritional Requirements of the Silkworm, Bombyx mori L". Proceedings of the Japan Academy, 43(1): 57-61, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.43.57.).

3.3. Diseases and pests

B. mori has a very weak immune system to fight pathogens, which is associated with its domestication (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.). Common diseases in B. mori are classified as infectious and non-infectious. The infectious ones are produced by pathogenic microorganisms and protozoa. These infections appear in larvae, pupae, and adults. Non-infectious diseases are produced mainly by arthropods, toxic substances and physiological disorders (Guo-Ping and Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633.).

3.3.1. Fungi

Among the most common fungal diseases affecting larvae are muscardine (Nirupama 2014Nirupama, R. 2014. "Fungal disease of white muscardine in silkworm, Bombyx mori. Munis" Entomology & Zoology Journal, 9(2): 870-874, ISSN: 1306-3022. ) and aspergillosis (Kawakami 1982Kawakami, K. 1982. "Causal Pathogens of Aspergillus Disease of Silkworm and Its Control". Japan Agricultural Research Quarterly, 15(3): 185-190, ISSN: 2185-8896.). Infected larvae lose their appetite, become inactive, and develop oil spots or black marks without clear border on their body surface. They die due to the secretion of aflatoxins by the fungus. After death, larvae become flaccid and gradually become harder as the fungus begins to grow in the larva. If it is muscardine, the body of the larva will appear white, while it will appear green in aspergillosis. The latter occurs, generally, in early ages, and causes the death of the larvae without obvious morphological symptoms (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.2. Bacteria

Seven bacteria pathogenic to B. mori have been identified, of which five cause considerable losses in cocoon production. These bacteria are Streptococcus bombycis, Staphylococcus sp., Serratia marcescens Bizio, Micrococcus sp., Pseudomonas sp., Bacillus sp., Bacillus thuringiensis (Bacillus sotto Ishiwata) (Tao et al. 2011Tao, H.P., Shen, Z.Y., Zhu, F., Xu, X.F., Tang, X.D. & Xu, L. 2011. "Isolation and Identification of a Pathogen of Silkworm Bombyx mori". Current Microbiology, 62: 876-883, ISSN: 1432-0991, DOI: https://doi.org/10.1007/s00284-010-9796-x. and Ayoade et al. 2014Ayoade, F., Oyejide, N.E. & Fayemi, S.O. 2014. "Isolation, identification, antibiogram and characterization of bacterial pathogens of the silkworm, Bombyx mori in South-West Nigeria". Journal of Biological Sciences, 14(6): 425-430, ISSN: 1812-5719, DOI: https://doi.org/10.3923/jbs.2014.425.430.). The predisposing conditions for the larvae to become infected with these bacteria are high temperature and humidity, and low-quality mulberry. These diseases are called flacherie, as the body of the dead larva is weak and the shell opens easily. The larvae infected by these bacteria become lethargic, lose appetite and their growth is retarded. They may present symptoms of vomiting, diarrhea and production of chain-type feces. Also, the cephalothoracic region becomes translucent. There are several studies on the incidence of affectations produced by some of these virus-associated bacteria (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.3. Viruses

Diseases caused by viruses usually appear in young with poor diet or low-quality food. These diseases include nuclear polyhedrosis and cytoplasmic polyhedrosis (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.), and those caused by densovirus (BmDV) (Guo-Ping and Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633. and Sharma et al. 2020Sharma, A., Sharma, P., Thakur, J., Murali, S. & Bali, K. 2020. "Viral diseases of Mulberry Silkworm, Bombyx mori L. A review". Journal of Pharmacognosy and Phytochemistry, 9(2): 415-423, ISSN: 2278-4136.).

Nuclear polyhedrosis has an incubation period of five to seven days. This is the disease that most affects sericulture (Gani et al. 2017Gani, M., Chouhan, S., Babulal-Gupta, R.K., Khan, G., Kumar, N.B., Pawan, S., Ghosh, M.K. 2017. "Bombyx mori nucleopolyhedrovirus (BmBPV): Its impact on silkworm rearing and management strategies". Journal of Biological Control, 31(4): 189-193, ISSN: , DOI: https://doi.org/10.18311/jbc/2017/16269.). High temperature and relative humidity favor the multiplication of this pathogen. This disease affects more frequently in later ages, which could be related to higher pathogen load and poor hygienic conditions during rearing. At the early stage of disease, larvae do not show symptoms of infection. Diseased larvae begin develop swollen intersegmental region and the integument becomes fragile. The latter breaks easily and spills a white fluid with high pathogen load. Pollution agents are the remains of dead larvae (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

In 2016, the incidence of nuclear polyhedrosis in larvae reared in Cuba was reported for the first time. This study has a positive impact on the management of this viral infection during B. mori rearing, to avoid its transmission and great economic losses in Cuba (Martínez-Zubiaur et al. 2016Martínez-Zubiaur, Y., Prieto-Abreu, M., Pérez-Hernández, M. del C., Sihler, W., Falcão, R., Ribeiro, B.M. & de Souza, M.L. 2016. "First record of a Bombyx mori Nucleopolyhedrosis (BmNPV) isolated from Cuba". International Journal of Current Research, 8(08): 35766-35770, ISSN: 0975-833X.).

Cytoplasmic polyhedrosis is orally transmitted, but the greatest infection occurs in brood beds. Young larvae are the most susceptible, especially if they are reared at extreme temperatures (high or low). Infected larvae stop feeding and their development is delayed. When opening the body of the larva, the midgut is white. Also, excretions become soft and whitish (Sharma et al. 2020Sharma, A., Sharma, P., Thakur, J., Murali, S. & Bali, K. 2020. "Viral diseases of Mulberry Silkworm, Bombyx mori L. A review". Journal of Pharmacognosy and Phytochemistry, 9(2): 415-423, ISSN: 2278-4136.).

BmDVs are classified into type I and type II, according to their genetic complexion. Larvae are orally infected with these viruses. This virus attacks the columnar cells of the epithelium of the digestive tract of larvae. These cells undergo nuclear hypertrophy as the virus multiplies. Anorexia and lethargy followed by flaccidity and inhibition of metamorphosis are the most common symptoms (Chao et al. 1985Chao, Y.C., Young III, S.Y., Kim, K. S. & Scott, H.A. 1985. "A Newly Isolated Densonucleosis Virus from Pseudoplusia includens (Lepidoptera: Noctuidae) ". Journal of Invertebrate Pathology, 46(): 70-82, ISSN: 0022-2011, DOI: https://doi.org/10.1016/0022-2011(85)90131-4.). Those larvae associated with BmDV begin to show a whitish color, followed by progressive paralysis. Death occurs between 2 and 20 days, depending on the BmDV strain that caused the infection, age of larvae, and viral load. In addition, larvae show diarrhea and turn dark brown when they die (Gupta et al. 2015Gupta, T., Kadono-Okuda, K., Ito, K., Trivedy, K. & Ponnuvel, K.M.M. 2015. "Densovirus infection in silkworm Bombyx mori and genes associated with disease resistance". Invertebrate Survival Journal, 12(1): 118-128, ISSN: 1824-307X.).

3.3.4. Protozoa

Nosema bombycis Nageli produces the most dangerous disease in sericulture, which is known as pebrine. It is a disease that is transovarianly or orally transmitted.

Infected larvae show no visible symptoms until the disease is very advanced. Once infected, they delay their growth, consume little food, the rearing loses uniformity and some larvae do not complete their molt. Black spots may appear on the body of larvae, but this does not serve as an indicator, as it does not always occur. The infected chrysalis turns dark and start to swell. However, if the infection is mild, it is not visually detected at this development stage. Infected moths have deformed wings, as well as poor egg production with a high rate of infertility. The presence of the disease cannot be determined only from external symptoms alone. Laboratory studies are required to identify the presence of this pathogen.

For diagnosing pebrine, in addition to observing the previously described symptoms, it is advisable to open the wall of larvae body and examine the silk gland. The presence of white and milky abscesses is an indicator of this disease. The definitive diagnosis of pebrine can be stated when pebrine spores are detected under the microscope, in eggs, first instar larvae, and hemolymph (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.5. Pests

Some flies (Cifuentes and Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.) and wasps are among the main pests that attack B. mori larvae and lay their eggs. When hatching, larvae of these insects feed on the parasitized worm until they provoke their death. Other insects have diseases in common with B. mori, so their entry into the rearing facilities should be avoided. There are also some coleopterans that feed on the pupa inside cocoons and make holes in them (Tayal and Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.). Other animals that should not enter the breeding facilities are toads, frogs, lizards and ants. In the case of mammals, such as dogs and cats, they can carry diseases to which the worm is susceptible (Pescio et al. 2008Pescio, F., Zunini, H., Basso, C.P., de Sesar, M.D., Frank, R.G., Pelicano, A.E. & Vieites, C.M. 2008. Sericultura. Manual para la producción. 1st Ed. Ed. Instituto Nacional de Tecnología Industrial INTI, Buenos Aires, Argentina, p.183.).

3.3.6. Poisoning

Poisoning is produced when the worm is in contact with certain substances, due to its high sensitivity to chemicals. It appears due to mulberry tree contamination, direct application in the breeding facilities or environmental contamination (Guo-Ping and Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633.). Insecticides cause rapid death of larvae, with symptoms of tremors, vomiting and wrinkled bodies. The worm quickly moves to both sides until it ends in a U-shape. Larvae may not die, but it will form a poor-quality cocoon. When they are affected by herbicides or fungicides, symptoms are mild. Larvae can even survive, but their growth is delayed, they do not feed and their development is poor. This produces poor quality cocoons, and even pupa death within them (Rodríguez-Ortega et al. 2012Rodríguez-Ortega, A., Vargas-Monter, J., Ventura-Maza, A., Martínez-Menchaca, A., Rodríguez-Martínez, J., Ehsan, M. & Lara-Viveros, F.M. 2012. Manual de Sericultura en Hidalgo. Principios Básicos. 1st Ed. Ed. Universidad Politécnica de Francisco Ignacio Madero, El Mexe, Francisco I. Madero, Hidalgo, México, p. 100, ISBN: 978-607-9260-01-9.).

3.3.7. Disease Control

There are no curative measures for rearing these worms, always working with the prevention of diseases (Bebitha et al. 2016Bebitha, B., Mohanraj, P., Manimegalai, S. & Mahalingam, C.A. 2016. "Silkworm disease diagnosis through molecular approach and their management". International Journal of Plant Protection, 9(1): 343-352, ISSN: 0976-6855, DOI: https://doi.org/10.15740/HAS/IJPP/9.1/343-352.). There are two ways to control infectious diseases of B. morilarvae. The first consists of maintaining a pathogen-free environment, before and during each rearing. The second is to prevent the entry of pathogens into the facilities (Watanabe 2002Watanabe, H. 2002. "Genetic resistance of the silkworm, Bombyx mori to viral diseases". Current Science, 83(4): 439-446, ISSN: 0011-3891.). It is almost impossible to create completely pathogen-free environments in rearing areas. However, the use of preventive measures such as those mentioned above, reduces its quantity to tolerable levels (Tayal and Chauchan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

CONCLUSIONS

B. mori rearing is mainly influenced by the interaction of four elements: larvae, environment, food and diseases. B. mori breeds differ in terms of characteristics of interest for sericulture industry development. Voltinism, moltinism and geographical origin, as well as the shape and color of cocoons, are some of these characteristics. Small variations in environmental conditions affect rearing yield, cocoon quality and B. mori lifecycle. The continuous change of these conditions during seasons makes it necessary to strictly control them in the breeding facilities. Inadequate feeding of larvae affects their growth and the production of cocoons and eggs.

Diseases need certain environmental conditions to thrive. The factors of interest in the host are related to their level of resistance to diseases and their nutritional status. Prevention is the most effective strategy to combat the diseases that affect B. mori.

 
 
 

 

REFERENCES
Adolkar, V.V., Raina, S.K. & Kimbu, D.M. 2007. "Evaluation of various mulberry Morus spp. (Moraceae) cultivars for the rearing of the bivoltine hybrid race Shaanshi BV-333 of the silkworm Bombyx mori (Lepidoptera: Bombycidae) ". International Journal of Tropical Insect Science, 27(1): 6-14, ISSN: 1742-7592, DOI: https://doi.org/10.1017/S174275840774537X.
Ayoade, F., Oyejide, N.E. & Fayemi, S.O. 2014. "Isolation, identification, antibiogram and characterization of bacterial pathogens of the silkworm, Bombyx mori in South-West Nigeria". Journal of Biological Sciences, 14(6): 425-430, ISSN: 1812-5719, DOI: https://doi.org/10.3923/jbs.2014.425.430.
Bebitha, B., Mohanraj, P., Manimegalai, S. & Mahalingam, C.A. 2016. "Silkworm disease diagnosis through molecular approach and their management". International Journal of Plant Protection, 9(1): 343-352, ISSN: 0976-6855, DOI: https://doi.org/10.15740/HAS/IJPP/9.1/343-352.
Chandrakanth, N., Moorthy, S.M., Ponnuvel, K.M. & Sivaprasad, V. 2015. "Reeling performances of F2 and backcross populations under high temperature condition". Journal of Entomology and Zoology Studies, 3(6): 219-222, ISSN: 2320-7078, DOI: http://dx.doi.org/10.1080/19420862.2015.1078054.
Chao, Y.C., Young III, S.Y., Kim, K. S. & Scott, H.A. 1985. "A Newly Isolated Densonucleosis Virus from Pseudoplusia includens (Lepidoptera: Noctuidae) ". Journal of Invertebrate Pathology, 46(): 70-82, ISSN: 0022-2011, DOI: https://doi.org/10.1016/0022-2011(85)90131-4.
Chauhan, T.P.S. & Tayal, M.K. 2017. Mulberry Sericulture. In: Industrial Entomology. 1st Ed. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 197-263, ISBN: 978-981-10-3303-2, DOI: https://doi.org/10.1007/978-981-10-3304-9.
Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.
Etebari, K. & Matindoost, L. 2005. "Application of Multi-vitamins as Supplementary Nutrients on Biological and Economical Characteristics of Silkworm Bombyx mori L". Journal of Asia-Pacific Entomology, 8(1): 107-112, ISSN: 1226-8615, DOI: https://doi.org/10.1016/S1226-8615(08)60078-3.
Gangwar, S.K. 2010. "Impact of varietal feeding of eight Mulberry varieties on Bombyx mori L". Agriculture and Biology Journal of North America, 1(3): 350-354, ISSN: 2151-7525.
Gani, M., Chouhan, S., Babulal-Gupta, R.K., Khan, G., Kumar, N.B., Pawan, S., Ghosh, M.K. 2017. "Bombyx mori nucleopolyhedrovirus (BmBPV): Its impact on silkworm rearing and management strategies". Journal of Biological Control, 31(4): 189-193, ISSN: , DOI: https://doi.org/10.18311/jbc/2017/16269.
Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.
Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633.
Gupta, T., Kadono-Okuda, K., Ito, K., Trivedy, K. & Ponnuvel, K.M.M. 2015. "Densovirus infection in silkworm Bombyx mori and genes associated with disease resistance". Invertebrate Survival Journal, 12(1): 118-128, ISSN: 1824-307X.
Horie, Y. 1995. "Recent Advances of Nutritional Physiology and Artificial Diet of the Silkworm, Bombyx mori, in Japan". Journal of Sericultural and Entomological Science, 37(2): 235-243, ISSN: 2234-8174.
Hussain, M., Naeem, M., Khan, S.A., Bhatti, M.F. & Munawar, M. 2011. "Studies on the influence of temperature and humidity on biological traits of silkworm (Bombyx mori L.: Bombycidae)". African Journal of Biotechnology, 10(57): 12368-12375, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB11.1805.
Ito, T. 1967. "Nutritional Requirements of the Silkworm, Bombyx mori L". Proceedings of the Japan Academy, 43(1): 57-61, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.43.57.
Ito, T., Kawashima, K., Nakahara, M., Nakanishi, K. & Terahara, A. 1964. "Effects of sterols on feeding and nutrition of the silkworm, Bombyx mori L". Journal of Insect Physiology., 10(2): 225-238, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(64)90005-8.
Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
Kanafi, R.R., Ebadi, R., Mirhosseini, S.Z., Seidavi, A.R., Zolfaghari, M. & Etebari, K. 2007. "A review on nutritive effect of mulberry leaves enrichment with vitamins on economic traits and biological parameters of silkworm Bombyx mori L". Invertebrate Survival Journal, 4(2): 86-91, ISSN: 1824-307X.
Kawakami, K. 1982. "Causal Pathogens of Aspergillus Disease of Silkworm and Its Control". Japan Agricultural Research Quarterly, 15(3): 185-190, ISSN: 2185-8896.
Klimenko, V.V. 1990. The Silkworm Bombyx mori. In: Animal Species for Developmental Studies. Volume 1: Invertebrates. 1st Ed. Dettlaff, T.A. & Vassetzky, S.G. (eds.). Ed. Springer. Boston, Massachusetts, U.S.A., pp. 231-252, ISBN: 978-1-4613-0503-3, DOI: https://doi.org/10.1007/978-1-4613-0503-3.
Kobayashi, J. 1990. "Effect of the Photoperiod on the Induction of Egg Diapause of Tropical Races of the Domestic Silkworm, Bombyx mori, and the Wild Silkworm, B. mandarina". Japan Agricultural Research Quarterly, 23(3): 202-205, ISSN: 2185-8896.
Kogure, M. 1933. "The influence of light and temperature on certain characters of the silkworm, Bombyx mori". Journal of the Department of Agriculture, Kyushu Imperial University, 4(1): 1-93, ISSN: 2433-488X.
Kumar, N.S., Basavaraja, H.K., Reddy, N.M. & Dandin, S.B. 2003. "Effect of high temperature and high humidity on quantitative traits of parents, foundation crosses, single and double hybrids of bivoltine silkworm, Bombyx mori L". International Journal of Industrial Entomology, 6(2): 197-202, ISSN: 2586-4785.
Kumara, R.R. & Kumar, M.N.A. 2016. "Folic acid as a nutrient supplement with mulberry leaf and its impact on the economic traits of silkworm (Bombyx mori L.)". International Journal of Advanced Research, 4(12): 1159-1165, ISSN: 2320-5407, DOI: https://doi.org/10.21474/IJAR01/2506.
Martínez-Zubiaur, Y., Prieto-Abreu, M., Pérez-Hernández, M. del C., Sihler, W., Falcão, R., Ribeiro, B.M. & de Souza, M.L. 2016. "First record of a Bombyx mori Nucleopolyhedrosis (BmNPV) isolated from Cuba". International Journal of Current Research, 8(08): 35766-35770, ISSN: 0975-833X.
Meeramaideen, M., Rajasekar, P., Sumathi, K. & Prabu, P.G. 2017. "Studies on the morphometric and econometric parameters analysis of silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) fed with amino acid (Lysine) treated MR2 mulberry leaves". International Journal of Modern Research and Reviews, 5(1): 1468-1473, ISSN: 2347-8314.
Meng, X., Zhu, F. & Chen, K. 2017. "Silkworm: A Promising Model Organism in Life Science"". Journal of Insect Science, 17(5): 1-6, ISSN: 1536-2442, DOI: https://doi.org/10.1093/jisesa/iex064.
Morohoshi, S. & Takahashi, M. 1969. "Effect of Temperature and Light Durning Incubation on Molting and Diapause in Bombyx mori". Proceedings of the Japan Academy, 45(4): 318-322, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.45.318.
Neog, K., Dutta, P., Changmai, A., Goswami, D. & Choudhury, B. 2015. "Comparative Study on the Rearing Performance of Muga Silkworm under Indoor and Outdoor Rearing Conditions". International Journal of Agricultural Science and Food Technology, 1(2): 020-024, ISSN: 2455-815X, DOI: https://doi.org/10.17352/2455-815X.000006.
Nirupama, R. 2014. "Fungal disease of white muscardine in silkworm, Bombyx mori. Munis" Entomology & Zoology Journal, 9(2): 870-874, ISSN: 1306-3022.
Parrey, I.R. 2018. "Impact of Temperature on Crop and Higher Silk Production: Silkworm (Bombyx mori L.)". Agricultural Research and Technology, 15(3): 77-78, ISSN: 2471-6774, DOI: https://doi.org/10.19080/ARTOAJ.2018.15.555954.
Pérez-Hernández, M. del C. 2017. Sericultura: Bases científicas para su desarrollo sostenible en Cuba. PhD Thesis. Instituto Nacional de Ciencias Agrícolas (INCA), Mayabeque, Cuba.
Pescio, F., Zunini, H., Basso, C.P., de Sesar, M.D., Frank, R.G., Pelicano, A.E. & Vieites, C.M. 2008. Sericultura. Manual para la producción. 1st Ed. Ed. Instituto Nacional de Tecnología Industrial INTI, Buenos Aires, Argentina, p.183.
Prieto-Abreu, M. 2015. Evaluación de tres variedades de Morus alba en la crianza y producción del polihíbrido Chul Thai-6 de Bombyx mori. MSc.Thesis. Estación Experimental de Pastos y Forrajes "Indio Hatuey", Universidad de Matanzas, Matanzas, Cuba.
Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.
Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
Rahmathulla, V.K. & Suresh, H.M. 2013. "Influence of temperature and humidity on growth and development of silk gland of a bivoltine silkworm hybrid". Iranian Journal of Entomology, 3: 24-29, ISSN: 0259-9996.
Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
Ravikumar, A., Hadimani, D.K. & Ramakrishna, N.A.J. 2019. "Geometric studies on growth and yield parameters of mulberry and its impacts on performance of silkworm hybrid Bombyx mori L". International Journal of Chemical Studies, 7(3): 3387-3389, ISSN: 2321-4902.
Reddy, P.L. 2001. Implications of the high temperature and low humidity on the silkworm (Bombyx mori L.physiology and its economics of rearing. PhD Thesis. Department of Sericulture, Sri Krishnadevaraya University, Anantapur, India.
Reddy, P.L., Naik, S.S. & Reddy, N.S. 2002. "Implications of Temperature and Humidity on Pupation Patterns in the Silkworm, Bombyx mori L". International Journal of Industrial Entomology, 5(1): 67-71, ISSN: 2586-4785.
Rodríguez-Ortega, A., Vargas-Monter, J., Ventura-Maza, A., Martínez-Menchaca, A., Rodríguez-Martínez, J., Ehsan, M. & Lara-Viveros, F.M. 2012. Manual de Sericultura en Hidalgo. Principios Básicos. 1st Ed. Ed. Universidad Politécnica de Francisco Ignacio Madero, El Mexe, Francisco I. Madero, Hidalgo, México, p. 100, ISBN: 978-607-9260-01-9.
Sharma, A., Sharma, P., Thakur, J., Murali, S. & Bali, K. 2020. "Viral diseases of Mulberry Silkworm, Bombyx mori L. A review". Journal of Pharmacognosy and Phytochemistry, 9(2): 415-423, ISSN: 2278-4136.
Shimizu, I. 1982. "Photoperiodic induction in silkworm, Bombyx mori, reared on artificial diet: evidence for extraretinal photoreception". Journal of Insect Physiology, 28(10): 841-846, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(82)90096-8.
Singh, T., Bhat, M.M. & Khan, M.A. 2009. "Insect Adaptations to Changing Environments-Temperature and Humidity". International Journal of Industrial Entomology, 19(1): 155-164, ISSN: 2586-4785.
Suji, T.S. & Bai, M.R. 2011. "Studies on the effect of light on growth and reproduction of silkworm Bombyx mori L". Journal of Basic & Applied Biology, 5(1&2): 369-373, ISSN: 0973-8207.
Tao, H.P., Shen, Z.Y., Zhu, F., Xu, X.F., Tang, X.D. & Xu, L. 2011. "Isolation and Identification of a Pathogen of Silkworm Bombyx mori". Current Microbiology, 62: 876-883, ISSN: 1432-0991, DOI: https://doi.org/10.1007/s00284-010-9796-x.
Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.
Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.
Watanabe, H. 2002. "Genetic resistance of the silkworm, Bombyx mori to viral diseases". Current Science, 83(4): 439-446, ISSN: 0011-3891.
 
 

Received: 02/09/2020

Accepted: 28/12/2020

 
 

Conflict of interest: The authors declare that there are no conflicts of interests among them

Author´s contribution. R. Torres McCook: manuscript writing, revision and data analysis. Beatriz Caballero Fernández: manuscript writing, revision and data analysis. Adileidys Ruiz Barcenas: manuscript writing, revision and data analysis.

 

This is an open-access article distributed under the terms of the Creative Commons Attribution License


 
 
Artículo de Revisión
 
Descripción de los principales aspectos que influyen en la crianza de Bombyx mori L. (Lepidoptera: Bombycidae)
 

iDR. Torres McCook*✉:

Beatriz Caballero Fernández

Adileidys Ruiz Barcenas

 

Entidad de Ciencia, Tecnología e Innovación Sierra Maestra

 

Resumen

Bombyx mori L. es una de las especies más importantes para la producción de seda a nivel internacional. Al ser una especie domesticada, existen ciertos factores a tener en cuenta durante su crianza. Este artículo de revisión bibliográfica discute sobre la influencia que poseen ciertos factores sobre la crianza del gusano de seda. Se hace referencia a las razas de B. mori y a las peculiaridades que poseen, en cuanto a sus características productivas. Además, se discute sobre los efectos que poseen ciertos factores ambientales; así como su interacción con la alimentación y las enfermedades que afectan al gusano de seda. Sobre estas últimas, se mencionan las principales estrategias que se utilizan para combatirlas. En crianza del gusano de seda, B. mori, influye, principalmente, la interacción de cuatro elementos: las larvas, el ambiente, la alimentación y las enfermedades. El éxito de esta agroindustria está determinado por el control estricto que se tenga sobre estos factores.

Palabras clave: 
gusano de seda; razas; ambiente; patologías.
 
 
 
INTRODUCCIÓN

La sericultura es el conjunto de actividades culturales y económicas relacionados con la seda. Se puede definir como la combinación del cultivo de una planta perenne y la crianza de un insecto (Cifuentes y Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.). Esta agroindustria posee tres componentes fundamentales para su éxito: forestal, con el cultivo de la morera; pecuario, con la crianza del gusano de seda; e industrial, con la transformación del hilo en la industria textil, cosmetológica y médica (Meng et al. 2017Meng, X., Zhu, F. & Chen, K. 2017. "Silkworm: A Promising Model Organism in Life Science"". Journal of Insect Science, 17(5): 1-6, ISSN: 1536-2442, DOI: https://doi.org/10.1093/jisesa/iex064.).

Existen varios insectos productores de sedas o fibras naturales. Bombyx mori L. se caracteriza por ser una de las especies más importantes usadas para la producción de seda en el mundo. Su crianza data de más de cinco milenios y se identifica a China como su centro de origen (Neog et al. 2015Neog, K., Dutta, P., Changmai, A., Goswami, D. & Choudhury, B. 2015. "Comparative Study on the Rearing Performance of Muga Silkworm under Indoor and Outdoor Rearing Conditions". International Journal of Agricultural Science and Food Technology, 1(2): 020-024, ISSN: 2455-815X, DOI: https://doi.org/10.17352/2455-815X.000006.). Algunos factores implicados en el proceso de la actividad serícola son el cultivo y procesamiento de la morera, las condiciones climáticas y ambientales; así como la limpieza e higiene de los locales de crianza.

A partir de lo antes planteado, el objetivo de esta revisión es describir los principales aspectos metodológicos de la crianza de Bombyx mori.

2. CARACTERIZACIÓN DEL GUSANO DE SEDA BOMBYX MORI

El gusano de seda B. mori es un insecto de la familia Bombycidae, orden Lepidoptera, clase Insecta. Es un insecto domesticado, adaptado completamente a la cría comercial, que surge después de muchos años de evolución y selección artificial. Esta especie no se encuentra presente en la naturaleza en estado libre, pues ha perdido la capacidad de volar y de sobrevivir en condiciones ambientales extremas.

2.1. Ciclo de vida

B. mori es una especie de metamorfosis completa y monófaga, que come solo hojas de morera durante su etapa larval. La calidad de las hojas (Ravikumar et al. 2019Ravikumar, A., Hadimani, D.K. & Ramakrishna, N.A.J. 2019. "Geometric studies on growth and yield parameters of mulberry and its impacts on performance of silkworm hybrid Bombyx mori L". International Journal of Chemical Studies, 7(3): 3387-3389, ISSN: 2321-4902.) y el empleo de diferentes variedades de morera durante la alimentación del gusano, influyen en el desarrollo y crecimiento larval (Adolkar et al. 2007Adolkar, V.V., Raina, S.K. & Kimbu, D.M. 2007. "Evaluation of various mulberry Morus spp. (Moraceae) cultivars for the rearing of the bivoltine hybrid race Shaanshi BV-333 of the silkworm Bombyx mori (Lepidoptera: Bombycidae) ". International Journal of Tropical Insect Science, 27(1): 6-14, ISSN: 1742-7592, DOI: https://doi.org/10.1017/S174275840774537X. y Gangwar 2010Gangwar, S.K. 2010. "Impact of varietal feeding of eight Mulberry varieties on Bombyx mori L". Agriculture and Biology Journal of North America, 1(3): 350-354, ISSN: 2151-7525.); así como en la calidad de los capullos obtenidos (Prieto-Abreu 2015Prieto-Abreu, M. 2015. Evaluación de tres variedades de Morus alba en la crianza y producción del polihíbrido Chul Thai-6 de Bombyx mori. MSc.Thesis. Estación Experimental de Pastos y Forrajes "Indio Hatuey", Universidad de Matanzas, Matanzas, Cuba.).

El insecto en su estado adulto no posee otra misión que la de perpetuar la especie. Las hembras ponen de 400 a 500 huevos de forma redondeada, aunque pueden ser ovalados, aplanados o elipsoidales. Su tamaño varía de 1 a 1,3 mm de longitud y de 0,9 a 2mm de ancho, en dependencia de la raza.

Durante el desarrollo embrionario, la puesta experimenta cambios de coloración, desde amarilla hasta oscura y gris. Los huevos puestos por hembras no fecundadas no cambian de color. Su apertura depende de variables climáticas, como la temperatura, la humedad relativa (Reddy 2001Reddy, P.L. 2001. Implications of the high temperature and low humidity on the silkworm (Bombyx mori L.physiology and its economics of rearing. PhD Thesis. Department of Sericulture, Sri Krishnadevaraya University, Anantapur, India.) y la intensidad de luz (Kogure 1933Kogure, M. 1933. "The influence of light and temperature on certain characters of the silkworm, Bombyx mori". Journal of the Department of Agriculture, Kyushu Imperial University, 4(1): 1-93, ISSN: 2433-488X.). La cáscara del huevo está formada por una materia quitinosa, con canales microscópicos por los que entra el aire. Además, presenta un orificio, llamado micrópilo, que constituye el lugar por donde nacerá la larva. El embrión completa su desarrollo en un período de 10 a 12 días antes de la eclosión (figura 1).

 
!"#$%&'()*+%+ ,-. /%0102+0 3 "*+*+ 4 5 55 555 56 6 65 655 7 8 9: ;<0+ =9:> =9:> =9:> 7=:> = 8 7: ;<0+ 7 8 9: ;<0+ 9 8 ?: ;<0+ @ 8 A: ;<0+ = 8 7: ;<0+ BC 8 B?: ;<0+ BC 8 B=: ;<0+
Figura 1.  Ciclo de vida del gusano de seda Bombyx mori (Modificado de Klimenko 1990Klimenko, V.V. 1990. The Silkworm Bombyx mori. In: Animal Species for Developmental Studies. Volume 1: Invertebrates. 1st Ed. Dettlaff, T.A. & Vassetzky, S.G. (eds.). Ed. Springer. Boston, Massachusetts, U.S.A., pp. 231-252, ISBN: 978-1-4613-0503-3, DOI: https://doi.org/10.1007/978-1-4613-0503-3.). I-V: Instares larvales; VI: Formación de los capullos; VII: Fase de crisálida. Los números arábicos representan la duración del instar y la muda intermedia correspondiente, en días y horas, respectivamente; HCl: Tratamiento ácido a los huevos.
 

Las larvas recién nacidas poseen 3 mm de longitud y muchas setas que les dan aspecto de oruga peluda con color negro o café oscuro. Durante su crecimiento cambian de color, debido al desarrollo de la cutícula de la piel. Las larvas experimentan el proceso de dormancia y exuviación en cuatro ocasiones, desde la eclosión hasta el encapullado. A las que se encuentran entre la primera y la tercera edad o instar, se les llama gusanos jóvenes. El primer instar normalmente dura de tres a cuatro días; el segundo alrededor de dos a tres; el tercero de tres a cuatro, el cuarto de cuatro a cinco y el quinto de ocho a nueve días. En total, la fase larval dura de 21 a 25 días (Chauhan y Tayal 2017Chauhan, T.P.S. & Tayal, M.K. 2017. Mulberry Sericulture. In: Industrial Entomology. 1st Ed. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 197-263, ISBN: 978-981-10-3303-2, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

Los gusanos en el quinto instar ingieren más del 88 % de la morera, y alcanza su peso máximo uno o dos días antes de empezar a hilar el capullo. Además, desarrollan rápidamente la glándula de la seda, que llega a ocupar hasta 40 % de su peso. Cuando concluyen su desarrollo y dejan de comer, el integumento larval se ve transparente. En esta etapa, se les denomina gusanos maduros, y empiezan a formar el capullo durante dos o tres días (Cifuentes y Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.)⁠.

Al concluir el encapullado, el gusano se transforma en pupa. Generalmente, la crisálida hembra es más grande que el macho. Después, de 10 a 15 días, y en dependencia de la variedad, la crisálida se transforma en polilla.

2.2. Clasificación de las razas de B. mori

Existen numerosas razas y variedades de B. mori que se distinguen por caracteres secundarios. Entre estos caracteres se destacan el color, la forma y el tamaño de los capullos; el rendimiento en seda y la calidad de la misma; así como las diferencias en los patrones de coloración en la piel de los gusanos. Existen diferentes criterios de caracterización de las razas de B.mori, que incluyen el origen geográfico, voltinismo y moltinismo.

2.2.1. Características de las razas según el origen geográfico

El aislamiento geográfico prolongado en regiones con condiciones climáticas diferentes ha producido gran variedad de razas de B. mori. Según el origen geográfico, el gusano de seda es clasificado en razas japonesas, chinas, europeas y tropicales.

Las razas japonesas presentan tres marcas larvales: ocular, creciente y estelar. Sus larvas son generalmente fuertes y resistentes a condiciones desfavorables, pero su período larval es largo. Forman capullos con cintura en forma de cacahuate, usualmente blancos, aunque también se presentan los colores amarillo y verde. Posee alta tendencia a producir capullos dobles e hilos cortos y gruesos.

Las razas chinas tienen una alimentación activa; así como crecimiento rápido y uniforme. La mayoría de estas razas no poseen marcas larvales, y no son sensibles a valores altos de temperatura y humedad. La forma del capullo es elíptica o esférica, y su color es generalmente blanco, aunque también se presentan los colores amarillo dorado y rosado. El filamento del capullo es delgado y largo, con buena devanabilidad.

Las razas europeas poseen huevos grandes y pesados y gusanos de cuerpo alargado y marcas larvales tenues. El período larval es muy largo, especialmente en el quinto instar, y durante el mismo consumen gran cantidad de morera. Los capullos son grandes y elípticos, con leves constricciones. Producen pocos capullos dobles, la mayoría de color blanco, corteza pesada y filamento largo con buena devanabilidad. Son razas difíciles de criar, debido a su alta sensibilidad a condiciones climáticas desfavorables y a varias enfermedades.

Las razas tropicales se originaron en la India y en el Sudeste Asiático. Los huevos de estas razas son pequeños y livianos. Las larvas son tolerantes a altas temperaturas y humedad. Poseen el menor tamaño entre las razas y producen capullos pequeños en forma elíptica con colores verde, amarillo o blanco. La corteza de los capullos es suelta y liviana, con mucha masa laxa de fibra de seda suelta (borra), y filamento delgado. Producen pocos capullos dobles, pero el porcentaje de seda cruda es muy bajo (Cifuentes y Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.).

En Cuba, las razas chinas y los poli-híbridos tailandeses son las que muestran un mejor comportamiento. Las mismas poseen elevados porcentajes de eclosión y disminuyen la duración del estado larval, lo que posibilita la realización de varias crianzas al año. También permiten un mejor manejo de la morera, al disminuir los días de consumo por las larvas y la incidencia de enfermedades, que generalmente se incrementan en las últimas edades de la crianza (Pérez-Hernández 2017Pérez-Hernández, M. del C. 2017. Sericultura: Bases científicas para su desarrollo sostenible en Cuba. PhD Thesis. Instituto Nacional de Ciencias Agrícolas (INCA), Mayabeque, Cuba.).

2.2.2. Características de las razas según el voltinismo

El voltinismo es el carácter genético que determina el número de generaciones en un año, en condiciones naturales. B. mori presenta tres tipos de voltinismo: univoltino, bivoltino y multivoltino. Son univoltinas las razas del gusano de seda que en un año solo son capaces de finalizar una generación de crianza en condiciones naturales; bivoltinas si son capaces de finalizar dos generaciones; y multivoltinas si finalizan tres o más generaciones (Chauhan y Tayal 2017Chauhan, T.P.S. & Tayal, M.K. 2017. Mulberry Sericulture. In: Industrial Entomology. 1st Ed. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 197-263, ISBN: 978-981-10-3303-2, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

El voltinismo depende de factores ambientales, como la temperatura, el fotoperíodo de incubación y los genes diferenciados en distintos loci. Está estrechamente relacionado con el origen geográfico de las razas, ya que cada región posee sus peculiaridades ambientales. Generalmente, univoltino y bivoltino son dominantes sobre multivoltino. Esta característica la determina la madre y la segregación se realiza en la tercera generación (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.).

Las razas univoltinas se caracterizan por comer grandes cantidades de morera, altos rendimientos productivos con seda de buena calidad, y por poca resistencia al estrés y enfermedades. Las razas multivoltinas consumen menos morera, poseen bajos rendimientos productivos y presentan gran resistencia. Las bivoltinas poseen características intermedias a las mencionadas anteriormente.

La diapausa es un mecanismo importante en el ciclo de vida de varios insectos, ya que permite sincronizar el ciclo biológico con respecto a las estaciones del clima. Esto asegura la disponibilidad de alimento en los estados activos del animal. Este fenómeno se regula hormonalmente. Durante la etapa embrionaria, la temperatura y la luz afectan el control de la actividad secretora del ganglio subfaríngeo. A altas temperaturas y largos períodos de luz, se promueve la secreción de la hormona de la diapausa; mientras que a bajas temperaturas y cortos períodos de luz se inhibe (Kobayashi 1990Kobayashi, J. 1990. "Effect of the Photoperiod on the Induction of Egg Diapause of Tropical Races of the Domestic Silkworm, Bombyx mori, and the Wild Silkworm, B. mandarina". Japan Agricultural Research Quarterly, 23(3): 202-205, ISSN: 2185-8896.). Si los ovarios que se desarrollan durante la fase de crisálida se afectan por la hormona de la diapausa, la hembra dará lugar a huevos con diapausa. En caso contrario, dará lugar a huevos sin ella. La diapausa se puede finalizar mediante el tratamiento ácido o de hibernación de los huevos (figura 1) (Tzenov 2019Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.).

2.2.3. Características de las razas según el moltinismo

El moltinismo es el resultado de la interacción entre varias constituciones genéticas y las condiciones ambientales. Esta característica está relacionada con la cantidad de mudas que realizan las larvas en su ciclo de vida. Según el número de mudas, las razas de B. mori se pueden clasificar en trimudantes (M3), tetramudantes (+M) y pentamudantes (M5). Las relaciones de dominancia de los M-alelos que controlan el moltinismo son M3>+M>M5. Algunos genes ligados al sexo también se relacionan con la expresión de este carácter. La hormona juvenil del cuerpo alado y la ecdisona de la glándula protorácica controlan la manifestación de estos caracteres.

Las razas M3 poseen una fase larval corta y larvas robustas. El cuerpo larval y los capullos son pequeños y el filamento del capullo es delgado. En las razas +M, la duración de la fase larval, el tamaño de la larva y del capullo son intermedios entre M3 y M5. Los M5 fueron inducidos por una mutación natural de los +M. Poseen una fase larval de larga duración, el tamaño de la larva y el capullo es grande, con un filamento del capullo muy grueso. Estas razas son poco resistentes a condiciones desfavorables y muy susceptibles a enfermedades (Cifuentes y Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.).

3. ASPECTOS GENERALES DE LA CRIANZA
3.1. Condiciones ambientales

Al ser una raza domesticada, B. mori se cría en condiciones de cautiverio, en locales preparados para esta actividad. El crecimiento y los parámetros fisiológicos de este insecto se afectan por las condiciones ambientales. Los factores abióticos más importantes a controlar durante la crianza del gusano son la temperatura, humedad relativa, ventilación e iluminación.

3.1.1. Temperatura

Entre los factores ambientales que se deben considerar durante la crianza de las larvas, la temperatura es probablemente el más importante, al ser un animal poiquilotérmico, incapaz de regular la temperatura corporal mediante mecanismos internos (Reddy 2001Reddy, P.L. 2001. Implications of the high temperature and low humidity on the silkworm (Bombyx mori L.physiology and its economics of rearing. PhD Thesis. Department of Sericulture, Sri Krishnadevaraya University, Anantapur, India.). Generalmente, las primeras edades son más resistentes a las altas temperaturas, lo cual aumenta la supervivencia y mejora la calidad de los capullos producidos. A medida que suben las temperaturas, aumentan las funciones orgánicas y, por el contrario, a bajas temperaturas disminuyen. El rango de temperatura óptima para la crianza de las larvas con altos niveles de productividad varía entre 23ºC y 28ºC (Parrey 2018Parrey, I.R. 2018. "Impact of Temperature on Crop and Higher Silk Production: Silkworm (Bombyx mori L.)". Agricultural Research and Technology, 15(3): 77-78, ISSN: 2471-6774, DOI: https://doi.org/10.19080/ARTOAJ.2018.15.555954. y Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). En la tabla 1 se muestran los efectos que traen algunos valores de temperatura, ajenos a la óptima, en la crianza de B. mori.

 
Tabla 1.  Efecto de la temperatura en la crianza de Bombyx mori
TemperaturaConsecuenciasAutores
38 ºCDisminución del tiempo de formación de capullos Rarnachandra et al.(2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
36 ºCDisminución del peso de los capullos Kumar et al. (2003)Kumar, N.S., Basavaraja, H.K., Reddy, N.M. & Dandin, S.B. 2003. "Effect of high temperature and high humidity on quantitative traits of parents, foundation crosses, single and double hybrids of bivoltine silkworm, Bombyx mori L". International Journal of Industrial Entomology, 6(2): 197-202, ISSN: 2586-4785.; Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Disminución de la duración del ciclo larval Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Disminución del rendimiento y calidad de los capullos Chandrakanth et al.(2015)Chandrakanth, N., Moorthy, S.M., Ponnuvel, K.M. & Sivaprasad, V. 2015. "Reeling performances of F2 and backcross populations under high temperature condition". Journal of Entomology and Zoology Studies, 3(6): 219-222, ISSN: 2320-7078, DOI: http://dx.doi.org/10.1080/19420862.2015.1078054.
Entre 35 ºC y 36 ºCDisminución de la cantidad de alimento ingerido y digerido Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683. Rahmathulla y Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
35 ºCDisminución del peso de las larvas y de la glándula de la seda Rahmathulla y Suresh (2013)Rahmathulla, V.K. & Suresh, H.M. 2013. "Influence of temperature and humidity on growth and development of silk gland of a bivoltine silkworm hybrid". Iranian Journal of Entomology, 3: 24-29, ISSN: 0259-9996.
Entre 29 ºC y 30 ºCDisminución de la tasa de formación de las pupas Hussain et al. (2011)Hussain, M., Naeem, M., Khan, S.A., Bhatti, M.F. & Munawar, M. 2011. "Studies on the influence of temperature and humidity on biological traits of silkworm (Bombyx mori L.: Bombycidae)". African Journal of Biotechnology, 10(57): 12368-12375, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB11.1805.
Disminución de la duración de la fase de pupa Tzenov (2019)Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.
Disminución del peso de las pupas
22 ºCAumento del tiempo de formación de los capullos Rarnachandra et al.(2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
20 ºCAumento de la cantidad de alimento digerido por el gusano Disminución del peso del capullo y la glándula de la seda Rahmathulla et al. (2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
Menos de 20 ºCDisminución de las actividades fisiológicas, especialmente en las primeras edades Rahmathulla (2012)Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.
18 ºCDisminución de la cantidad de alimento ingerido y digerido Rahmathulla y Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
 

3.1.2. Humedad relativa

La temperatura y la humedad actúan de manera sinérgica en el crecimiento y desarrollo de las larvas y la calidad de los capullos (Reddy et al. 2002Reddy, P.L., Naik, S.S. & Reddy, N.S. 2002. "Implications of Temperature and Humidity on Pupation Patterns in the Silkworm, Bombyx mori L". International Journal of Industrial Entomology, 5(1): 67-71, ISSN: 2586-4785.). En las primeras edades, las larvas soportan mayores valores de humedad relativa que los gusanos adultos, y crecen de forma vigorosa en dichas condiciones. En la tabla 2 se muestran los efectos de algunos valores de humedad en la crianza de B. mori, independientemente de la temperatura.

 
Tabla 2.  Efecto de la humedad relativa en la crianza de Bombyx mori
Humedad relativaConsecuenciasAutores
98 %Aumento del tiempo de formación del capullo Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
95 %Disminución de la cantidad de alimento ingerido Rahmathulla y Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
55 %Disminución de la tasa de formación de pupas Aumento de la mortalidad larval Hussain et al. (2011)Hussain, M., Naeem, M., Khan, S.A., Bhatti, M.F. & Munawar, M. 2011. "Studies on the influence of temperature and humidity on biological traits of silkworm (Bombyx mori L.: Bombycidae)". African Journal of Biotechnology, 10(57): 12368-12375, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB11.1805.
Entre 40 y 50 %Disminución de la cantidad de alimento ingerido y digerido Rahmathulla y Suresh (2012)Rahmathulla, V.K. & Suresh, H.M. 2012. "Seasonal variation in food consumption, assimilation, and conversion efficiency of Indian bivoltine hybrid silkworm, Bombyx mori". Journal of Insect Science, 12(82): 1-14, ISSN: 1536-2442, DOI: https://doi.org/10.1673/031.012.8201.
40 %Disminución del tiempo de formación de los capullos Rarnachandra et al. (2001)Rarmachandra, Y.L., Bali, G. & Rai, S.P. 2001. "Effect of temperature and relative humidity on spinning behaviour of silkworm (Bombyx mori L.) ". Indian Journal of Experimental Biology, 38: 87-89, ISSN: 0975-1009.
Disminución del peso de los capullos y de la corteza Rahmathulla et al.(2004)Rahmathulla, V.K., Mathur, V.B. & Devi, R.G.G. 2004. "Growth and Dietary Efficiency of Mulberry Silkworm (Bombyx mori L.) Under Various Nutritional and Environmental Stress Conditions". Philippine Journal of Science, 133(1): 39-43, ISSN: 0031-7683.
 

3.1.3. Ventilación

Las larvas poseen elevados requerimientos de oxígeno, especialmente cuando se encuentran en la cuarta y quinta edad. Durante la crianza se originan gases que modifican la composición del aire de los locales. Algunos de los que se liberan en los locales durante la crianza son CO, NH3 y SO2, debido a la fermentación de los residuos animales y vegetales; así como por la propia actividad del hombre (Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). Concentraciones de 1% de CO2, 0,02 % de SO2 y 0,1 % de NH3 en el aire, son límites adecuados para la crianza de B. mori (Singh et al. 2009Singh, T., Bhat, M.M. & Khan, M.A. 2009. "Insect Adaptations to Changing Environments-Temperature and Humidity". International Journal of Industrial Entomology, 19(1): 155-164, ISSN: 2586-4785.). Las larvas jóvenes son más susceptibles a gases tóxicos, por lo que en ocasiones la circulación artificial de aire es útil (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.). La tabla 3 presenta los efectos de la ventilación en la crianza de B. mori.

 
Tabla 3.  Efecto de la ventilación en la crianza de Bombyx mori
EstímuloTratamientoConsecuenciasAutores
Variaciones en las concentraciones de los gases[CO2]>1%Retarda el crecimiento de las larvas Grekov et al. (2005)Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.
[CO2]=10%Produce vómitos en las larvas
[CO2]>10%Produce la muerte de las larvas
[NH3]: entre 0,5% y 1%Produce la muerte de las larvas
Variaciones en la velocidad del aireEntre 0,1 m/s y 0,5 m/s (en el quinto instar)Reducción de la mortalidad larval Aumento del alimento ingerido y digerido Aumento del peso de los capullos y su velocidad de formación
1 m/s (en el quinto instar) Rahmathulla (2012)Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.
1,5 m/s Cifuentes y Sohn (1998)Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.
 

3.1.4. Iluminación

Las larvas son fotosensibles y se tienden a mover hacia la luz tenue. No toleran altas intensidades de luz ni completa oscuridad. Los gusanos jóvenes presentan fototropismo positivo y los adultos, fototropismo negativo. Por esta razón es que las larvas no se deben exponer directamente a la luz (Grekov et al. 2005Grekov, D., Kipriotis, E. & Tzenov, P. 2005. Sericulture Training Manual. 1st Ed. Ed. National Agricultural Research Foundation. Agricultural Research Station of Komotini, Komotini, Greece, p. 320.).

Las larvas se desarrollan óptimamente a intensidades de iluminación de 15 lux a 20 lux. Los gusanos jóvenes, sometidos a períodos de 16 horas de oscuridad y ocho horas de iluminación, poseen mayor supervivencia. Lo mismo ocurre para los gusanos adultos, sometidos a períodos de 16 horas de luz y ocho horas de oscuridad (Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234.). En la tabla 4 se muestran los efectos de la iluminación en la crianza de B. mori. Las condiciones ambientales óptimas para la crianza del gusano de seda se presentan en la tabla 5.

 
Tabla 4.  Efecto de la iluminación en la crianza de Bombyx mori
EstímuloTratamientoConsecuenciasAutores
Variaciones del fotoperíodoLLAumenta el peso de los capullos, la corteza y las pupas Janarthanan et al. (1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
Aumenta la cantidad de M5 Singh et al. (2009)Singh, T., Bhat, M.M. & Khan, M.A. 2009. "Insect Adaptations to Changing Environments-Temperature and Humidity". International Journal of Industrial Entomology, 19(1): 155-164, ISSN: 2586-4785.
OOAumenta la cantidad de M3 Morohoshi y Takahashi (1969)Morohoshi, S. & Takahashi, M. 1969. "Effect of Temperature and Light Durning Incubation on Molting and Diapause in Bombyx mori". Proceedings of the Japan Academy, 45(4): 318-322, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.45.318.
Disminuye el peso de los capullos y de la corteza Disminuye el peso de las pupas hembras Janarthanan et al.(1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
12L12ODisminuye el peso de la corteza de los capullos de individuos machos Janarthanan et al. (1994)Janarthanan, S., Sathiamoorthi, M., Rathinam, K.M.S. & Krishnan, M. 1994. "Photoperiod effect on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L". International Journal of Tropical Insect Science., 15(2): 129-137, ISSN: 1742-7584, DOI: https://doi.org/10.1017/S1742758400015356.
Variaciones en la intensidad de la luz0,1 lux (0.002 μmol∙ m 2 ∙ s −1 )Induce la diapausa en pocos individuos Shimizu (1982)Shimizu, I. 1982. "Photoperiodic induction in silkworm, Bombyx mori, reared on artificial diet: evidence for extraretinal photoreception". Journal of Insect Physiology, 28(10): 841-846, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(82)90096-8.
5 lux (0.095 𝜇𝑚𝑜𝑙∙ 𝑚 2 ∙ 𝑠 −1 )Evita la inducción de la diapausa
Aumento de la intensidad de la luzAumenta la duración de las fases de larva, pupa y adulto Disminuye el peso del capullo y las pupas Disminuye el número de huevos puestos Suji y Bai (2011)Suji, T.S. & Bai, M.R. 2011. "Studies on the effect of light on growth and reproduction of silkworm Bombyx mori L". Journal of Basic & Applied Biology, 5(1&2): 369-373, ISSN: 0973-8207.
Disminución de la intensidad de la luzDisminuye la duración de las fases de larva, pupa y adulto Aumenta el peso de los capullos, las pupas y la corteza Aumenta el número de huevos puestos

Notas: LL: Luz durante 24 h, OO: Oscuridad durante 24 h, 12L12O: 12 h de luz y 12 h de oscuridad, M3: Trimudantes, M5: Pentamudantes

 

 
Tabla 5.  Condiciones ambientales óptimas para la crianza de Bombyx mori en diferentes etapas de su ciclo de vida (modificado de Rahmathulla 2012Rahmathulla, V.K. 2012. "Management of Climatic Factors for Successful Silkworm (Bombyx mori L.) Crop and Higher Silk Production: A Review". Psyche, 2012, Article ID 121234, pp.1-12, ISSN: 1687-7438, DOI: https://doi.org/10.1155/2012/121234. y Tzenov 2019Tzenov, P. 2019. Lectures: Silkworm Egg Production Technology. Agricultural Academy, Scientific Center on Sericulture, Vratsa, Bulgary.)
Factor ambientalI InstarII InstarIII InstarIV InstarV InstarFormación de los capullos
Temperatura28 ºC27 ºC26 ºC25 ºC24 ºC25 ºC
HumedadEntre 85 y 90 %85 %Entre 75 y 80 %Entre 70 y 75 %Entre 65 y 70 %70 %
Iluminación8L16O16L8O

  • Intensidad de la luz de 15 lux (0.285 𝜇𝑚𝑜𝑙∙ 𝑚 2 ∙ 𝑠 −1 )

  • a 20 lux (0.38 𝜇𝑚𝑜𝑙∙ 𝑚 2 ∙ 𝑠 −1 )

Ventilación[CO2]=1%, [SO2]=0,02%, [NH3]=0,1%, vaire=1 m/s

8L16O: ocho horas de luz y 16 horas de oscuridad

16L8O: 16 horas de luz y ocho horas de oscuridad

vaire: Velocidad del aire

 

3.2. Requerimientos nutricionales

Cada edad posee particularidades en su alimentación, por lo que precisa de diferentes tipos de hoja de morera. Las hojas localizadas en la parte superior de las ramas se recomiendan para alimentar a las larvas jóvenes, pues son más tiernas y presentan altos contenidos de agua, proteínas y carbohidratos. La cantidad de alimento requerida por las larvas aumenta durante el crecimiento.

Es muy frecuente subalimentar a las larvas, lo que trae como consecuencia mayor duración del ciclo larval, problemas en el hilado y capullos de bajo peso y de menor calidad. Por otra parte, el exceso de alimentación resulta en la acumulación de material vegetal en las camas de crías, que se fermentan y producen gases tóxicos.

En países donde la morera no se cultiva durante todo el año se utiliza la dieta artificial. Este tipo de alimentación incluye formulaciones con nutrientes como: aminoácidos (Meeramaideen et al. 2017Meeramaideen, M., Rajasekar, P., Sumathi, K. & Prabu, P.G. 2017. "Studies on the morphometric and econometric parameters analysis of silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) fed with amino acid (Lysine) treated MR2 mulberry leaves". International Journal of Modern Research and Reviews, 5(1): 1468-1473, ISSN: 2347-8314.), esteroles (Ito et al. 1964Ito, T., Kawashima, K., Nakahara, M., Nakanishi, K. & Terahara, A. 1964. "Effects of sterols on feeding and nutrition of the silkworm, Bombyx mori L". Journal of Insect Physiology., 10(2): 225-238, ISSN: 0022-1910, DOI: https://doi.org/10.1016/0022-1910(64)90005-8.), ácidos grasos, vitaminas (Etebari y Matindoost 2005Etebari, K. & Matindoost, L. 2005. "Application of Multi-vitamins as Supplementary Nutrients on Biological and Economical Characteristics of Silkworm Bombyx mori L". Journal of Asia-Pacific Entomology, 8(1): 107-112, ISSN: 1226-8615, DOI: https://doi.org/10.1016/S1226-8615(08)60078-3., Kanafi et al. 2007Kanafi, R.R., Ebadi, R., Mirhosseini, S.Z., Seidavi, A.R., Zolfaghari, M. & Etebari, K. 2007. "A review on nutritive effect of mulberry leaves enrichment with vitamins on economic traits and biological parameters of silkworm Bombyx mori L". Invertebrate Survival Journal, 4(2): 86-91, ISSN: 1824-307X. y Kumara y Kumar 2016Kumara, R.R. & Kumar, M.N.A. 2016. "Folic acid as a nutrient supplement with mulberry leaf and its impact on the economic traits of silkworm (Bombyx mori L.)". International Journal of Advanced Research, 4(12): 1159-1165, ISSN: 2320-5407, DOI: https://doi.org/10.21474/IJAR01/2506.) y minerales (Horie 1995Horie, Y. 1995. "Recent Advances of Nutritional Physiology and Artificial Diet of the Silkworm, Bombyx mori, in Japan". Journal of Sericultural and Entomological Science, 37(2): 235-243, ISSN: 2234-8174. e Ito 1967Ito, T. 1967. "Nutritional Requirements of the Silkworm, Bombyx mori L". Proceedings of the Japan Academy, 43(1): 57-61, ISSN: 0021-4280, DOI: https://doi.org/10.2183/pjab1945.43.57.).

3.3. Enfermedades y plagas

B. mori posee un sistema inmunitario muy débil para combatir agentes patógenos, lo que está asociado a su domesticación (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.). Las enfermedades frecuentes en B. mori se clasifican en infecciosas y no infecciosas. Las infecciosas se producen por microorganismos patógenos y protozoos. Estas infecciones pueden manifestarse en las larvas, las pupas y el adulto. Las enfermedades no infecciosas se producen, principalmente, por artrópodos, sustancias tóxicas y desórdenes fisiológicos (Guo-Ping y Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633.).

3.3.1. Hongos

Entre las enfermedades fúngicas más comunes que afectan a las larvas se encuentran la muscardina (Nirupama 2014Nirupama, R. 2014. "Fungal disease of white muscardine in silkworm, Bombyx mori. Munis" Entomology & Zoology Journal, 9(2): 870-874, ISSN: 1306-3022. ) y la aspergilosis (Kawakami 1982Kawakami, K. 1982. "Causal Pathogens of Aspergillus Disease of Silkworm and Its Control". Japan Agricultural Research Quarterly, 15(3): 185-190, ISSN: 2185-8896.). Las larvas infectadas pierden el apetito, se vuelven inactivas, y desarrollan manchas de aceite o marcas negras sin bordes claros en la superficie del cuerpo. Mueren debido a la secreción de aflatoxinas del hongo. Luego de la muerte, las larvas se vuelven flácidas y endurecen gradualmente porque el hongo empieza a crecer en la larva. Si es muscardina, el cuerpo de la larva se verá blanco, mientras que en la aspergilosis se verá verde. Esta última ocurre, generalmente, en las primeras edades, y provoca la muerte de las larvas sin síntomas morfológicos evidentes (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.2. Bacterias

Se han identificado siete bacterias patógenas a B. mori, de las cuales cinco producen pérdidas considerables en la producción de capullos. Estas bacterias son Streptococcus bombycis, BStaphylococcus sp., Serratia marcescens Bizio, BMicrococcus sp., Pseudomonas sp., Bacillus sp., Bacillus thuringiensis (Bacillus sotto Ishiwata) (Tao et al. 2011Tao, H.P., Shen, Z.Y., Zhu, F., Xu, X.F., Tang, X.D. & Xu, L. 2011. "Isolation and Identification of a Pathogen of Silkworm Bombyx mori". Current Microbiology, 62: 876-883, ISSN: 1432-0991, DOI: https://doi.org/10.1007/s00284-010-9796-x. y Ayoade et al. 2014Ayoade, F., Oyejide, N.E. & Fayemi, S.O. 2014. "Isolation, identification, antibiogram and characterization of bacterial pathogens of the silkworm, Bombyx mori in South-West Nigeria". Journal of Biological Sciences, 14(6): 425-430, ISSN: 1812-5719, DOI: https://doi.org/10.3923/jbs.2014.425.430.). Las condiciones predisponentes para que las larvas se infecten con estas bacterias son las altas temperatura y humedad, y morera de baja calidad. A estas enfermedades se les llama flacherie, pues el cuerpo de la larva muerta es débil y la piel se abre fácilmente. Las larvas infectadas por estas bacterias se vuelven letárgicas, pierden apetito y se retarda su crecimiento. Pueden presentar síntomas de vómitos, diarreas y producción de heces fecales en forma de cadenas. Además, la región cefalotorácica se vuelve traslúcida. Existen diversos trabajos acerca de la incidencia de afectaciones producidas por algunas de estas bacterias asociadas a virus (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.3. Virus

Las enfermedades causadas por virus suelen aparecer en crías con alimentación deficiente o alimento de mala calidad. Entre estas enfermedades se encuentran la poliedrosis nuclear y la poliedrosis citoplasmática (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.) y las provocadas por densovirus (BmDV) (Guo-Ping y Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633. y Sharma et al. 2020Sharma, A., Sharma, P., Thakur, J., Murali, S. & Bali, K. 2020. "Viral diseases of Mulberry Silkworm, Bombyx mori L. A review". Journal of Pharmacognosy and Phytochemistry, 9(2): 415-423, ISSN: 2278-4136.).

La poliedrosis nuclear posee un período de incubación de cinco a siete días. Esta es la enfermedad que más afecta a la sericultura (Gani et al. 2017Gani, M., Chouhan, S., Babulal-Gupta, R.K., Khan, G., Kumar, N.B., Pawan, S., Ghosh, M.K. 2017. "Bombyx mori nucleopolyhedrovirus (BmBPV): Its impact on silkworm rearing and management strategies". Journal of Biological Control, 31(4): 189-193, ISSN: , DOI: https://doi.org/10.18311/jbc/2017/16269.). La temperatura y la humedad relativa elevadas favorecen la multiplicación de este patógeno. Esta enfermedad incide con mayor frecuencia en las últimas edades, lo que podría estar relacionado con mayor carga viral y malas condiciones higiénicas durante la crianza. En las primeras fases de la enfermedad, las larvas no presentan síntomas de infección. Se comienzan a reconocer larvas enfermas cuando su región intersegmental se hincha y el integumento se vuelve frágil. Este último se rompe fácilmente y derrama un fluido blanco con gran carga viral. Los agentes de contaminación son los restos de larvas muertas (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

En el 2016, se informó por primera vez la incidencia de poliedrosis nuclear en larvas criadas en Cuba. Dicho estudio posee un impacto positivo en el manejo de esta infección viral durante la crianza de B. mori, para evitar su transmisión y grandes pérdidas económicas en Cuba (Martínez-Zubiaur et al. 2016Martínez-Zubiaur, Y., Prieto-Abreu, M., Pérez-Hernández, M. del C., Sihler, W., Falcão, R., Ribeiro, B.M. & de Souza, M.L. 2016. "First record of a Bombyx mori Nucleopolyhedrosis (BmNPV) isolated from Cuba". International Journal of Current Research, 8(08): 35766-35770, ISSN: 0975-833X.).

La poliedrosis citoplasmática se transmite por vía oral, pero la mayor infección se produce en las camas de cría. Las larvas jóvenes son las más susceptibles, sobre todo si se crían a temperaturas extremas (altas o bajas). Las larvas infectadas se dejan de alimentar y se retrasa su desarrollo. Al abrir el cuerpo de la larva, el intestino medio se observa blanco. Además, los excrementos se vuelven blandos y blanquecinos (Sharma et al. 2020Sharma, A., Sharma, P., Thakur, J., Murali, S. & Bali, K. 2020. "Viral diseases of Mulberry Silkworm, Bombyx mori L. A review". Journal of Pharmacognosy and Phytochemistry, 9(2): 415-423, ISSN: 2278-4136.).

Los BmDV se clasifican en tipo I y tipo II, según su constitución genética. Las larvas se infectan de estos virus por vía oral. Este virus ataca las células columnares del epitelio del tracto digestivo de las larvas. Dichas células experimentan una hipertrofia nuclear mientras el virus se multiplica. La anorexia y el letargo seguido de flacidez y la inhibición de la metamorfosis son de los síntomas más comunes (Chao et al. 1985Chao, Y.C., Young III, S.Y., Kim, K. S. & Scott, H.A. 1985. "A Newly Isolated Densonucleosis Virus from Pseudoplusia includens (Lepidoptera: Noctuidae) ". Journal of Invertebrate Pathology, 46(): 70-82, ISSN: 0022-2011, DOI: https://doi.org/10.1016/0022-2011(85)90131-4.). Los asociados con BmDV inician con la adopción de un color blanquecino por parte de las larvas, seguido de la parálisis progresiva. La muerte ocurre de dos a veinte días, en dependencia de la cepa de BmDV que produjo la infección, edad de la larva y carga viral. Además, las larvas manifiestan diarrea y se tornan de color pardo oscuro cuando mueren (Gupta et al. 2015Gupta, T., Kadono-Okuda, K., Ito, K., Trivedy, K. & Ponnuvel, K.M.M. 2015. "Densovirus infection in silkworm Bombyx mori and genes associated with disease resistance". Invertebrate Survival Journal, 12(1): 118-128, ISSN: 1824-307X.).

3.3.4. Protozoos

Nosema bombycis Nageli produce la enfermedad más peligrosa de la sericultura, la cual se conoce como pebrina. Es una enfermedad que se transmite de forma transovárica o por vía oral.

Las larvas infectadas no muestran síntomas visibles hasta que la enfermedad está muy avanzada. Una vez infectadas, retrasan su crecimiento, consumen poco alimento, la crianza pierde uniformidad y algunas larvas no completan la muda. Pueden aparecer manchas oscuras en el cuerpo de las larvas, pero esto no sirve como indicador, pues no ocurre siempre. Las crisálidas infectadas se tornan oscuras y se hinchan. No obstante, si la infección es leve, en esta fase del desarrollo no se detecta visualmente. Las polillas infectadas poseen alas deformes; así como escasa producción de huevos con alto índice de infertilidad. No se puede determinar la presencia de la enfermedad solo con síntomas externos. Es necesario realizar estudios de laboratorio que identifiquen la presencia del patógeno.

Para el diagnóstico de la pebrina, además de observar los síntomas anteriormente descritos, es recomendable abrir la pared del cuerpo de la larva y examinar la glándula de la seda. La presencia de abscesos blancos y lechosos es indicador de esta enfermedad. El diagnóstico definitivo de pebrina se puede dar cuando se detectan esporas de pebrina bajo el microscopio, en huevos, larvas en primer instar y hemolinfa (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

3.3.5. Plagas

Entre las principales plagas se encuentran algunas moscas (Cifuentes y Sohn 1998Cifuentes, C.A. & Sohn, K.W. 1998. Manual Técnico de Sericultura: Cultivo de la morera y cría del gusano de seda en el trópico. Pereira, Convenio SENA-CDTS, p. 438, ISBN: 958-96557-0-X.) y avispas que atacan a las larvas de B. mori y depositan sus huevos. Al eclosionar, las larvas de estos insectos se alimentan del gusano parasitado hasta provocar su muerte. Otros insectos poseen enfermedades en común con B. mori, por lo que se debe evitar su ingreso a los locales de crianza. También existen algunos coleópteros que se alimentan de las crisálidas dentro de los capullos y hacen agujeros en ellos (Tayal y Chauhan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.). Otros animales que no deben entrar a los locales de crianza son los sapos, ranas, lagartijas y hormigas. En el caso de mamíferos, como los perros y gatos, pueden transportar enfermedades a las que el gusano sea susceptible (Pescio et al. 2008Pescio, F., Zunini, H., Basso, C.P., de Sesar, M.D., Frank, R.G., Pelicano, A.E. & Vieites, C.M. 2008. Sericultura. Manual para la producción. 1st Ed. Ed. Instituto Nacional de Tecnología Industrial INTI, Buenos Aires, Argentina, p.183.).

3.3.6. Intoxicaciones

Las intoxicaciones se producen por el contacto del gusano con ciertas sustancias, debido a su alta sensibilidad a productos químicos. Pueden aparecer por contaminación de la morera, aplicación directa en los locales de crianza o contaminación ambiental (Guo-Ping y Xi-Jie 2011Guo-Ping, K. & Xi-Jie, G. 2011. "Overview of silkworm pathology in China". African Journal of Biotechnology, 10(79): 18046-18056, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.2633.). Los insecticidas producen la muerte rápida de las larvas, con síntomas de temblores, vómitos y cuerpos arrugados. El gusano se mueve rápidamente hacia ambos lados hasta terminar en forma de U. Puede que no mueran las larvas, pero el capullo formado será de mala calidad. Cuando la afección es por herbicidas o fungicidas, los síntomas son leves. Las larvas pueden sobrevivir incluso, pero se retrasa su crecimiento, no se alimentan y su desarrollo es pobre. Esto produce capullos de mala calidad, e incluso la muerte de las crisálidas dentro de los mismos (Rodríguez-Ortega et al. 2012Rodríguez-Ortega, A., Vargas-Monter, J., Ventura-Maza, A., Martínez-Menchaca, A., Rodríguez-Martínez, J., Ehsan, M. & Lara-Viveros, F.M. 2012. Manual de Sericultura en Hidalgo. Principios Básicos. 1st Ed. Ed. Universidad Politécnica de Francisco Ignacio Madero, El Mexe, Francisco I. Madero, Hidalgo, México, p. 100, ISBN: 978-607-9260-01-9.).

3.3.7. Control de enfermedades

En la crianza del gusano no existen medidas curativas, siempre se trabaja con la prevención de enfermedades (Bebitha et al. 2016Bebitha, B., Mohanraj, P., Manimegalai, S. & Mahalingam, C.A. 2016. "Silkworm disease diagnosis through molecular approach and their management". International Journal of Plant Protection, 9(1): 343-352, ISSN: 0976-6855, DOI: https://doi.org/10.15740/HAS/IJPP/9.1/343-352.). Existen dos formas de controlar las enfermedades infecciosas de la larva de B. mori. La primera consiste en mantener un ambiente libre de patógenos, antes y durante cada crianza y la segunda, en prevenir la entrada de patógenos a los locales (Watanabe 2002Watanabe, H. 2002. "Genetic resistance of the silkworm, Bombyx mori to viral diseases". Current Science, 83(4): 439-446, ISSN: 0011-3891.). Resulta casi imposible crear ambientes completamente libres de patógenos en los cuartos de crianza. No obstante, el uso de las medidas preventivas como las mencionadas anteriormente, reduce su cantidad a niveles tolerables (Tayal y Chauchan 2017Tayal, M.K. & Chauhan, T.P.S. 2017. Silkworm Diseases and Pests. In: Industrial Entomology. Ed. Omkar. Department of Zoology, University of Lucknow, Lucknow, India, pp. 265-289, ISBN: 978-981-10-3304-9, DOI: https://doi.org/10.1007/978-981-10-3304-9.).

CONCLUSIONES

La crianza del gusano B. mori está influenciada, principalmente, por la interacción de cuatro elementos: larvas, ambiente, alimentación y enfermedades. Las razas de B. mori difieren en cuanto a características de interés para el desarrollo de la industria serícola. Entre ellas se encuentran el voltinismo, moltinismo y origen geográfico, así como la forma y el color de los capullos. Pequeñas variaciones en las condiciones ambientales afectan el rendimiento de la crianza, la calidad de los capullos y el ciclo de vida de B. mori. El continuo cambio de estas condiciones durante las estaciones hace necesario el control estricto de las mismas en los locales de crianza. La inadecuada alimentación de las larvas afecta su crecimiento y la producción de capullos y huevos.

Las enfermedades necesitan de ciertas condiciones ambientales para prosperar. Los factores de interés en el huésped se relacionan con su nivel de resistencia a enfermedades y su estado nutricional. La prevención es la estrategia más efectiva para el combate de las enfermedades que afectan a B. mori.