Poultry
farming is one of the most developed animal production sectors in
recent years, especially in the chicken meat production sector (Henrique et al. 2017Henrique,
C.S., Oliveira, A.F.G., Ferreira, T.S., Silva, E.S., Mello, B.F.F.R.,
Andrade, A.F., Martins, V.S.F., Paula, F.O., Garcia, E.R.M. & Bruno,
L.D.G. 2017. "Effect of stocking density on performance, carcass yield,
productivity, and bone development in broiler chickens Cobb 500". Semina: Ciências Agrárias, 38(4): 2705-2718, ISSN: 1679-0359, DOI: http://dx.doi.org/10.5433/1679-0359.2017v38n4Supl1p2705. and Nogueira et al. 2019Nogueira,
B.R.P., Reis, M.P., Carvalho, A.C., Mendoza, E.A.C., Oliveira, B.L.,
Silva, V.A. & Bertechini, A.G. 2019. "Performance, growth curves and
carcass yield of four strains of broiler chicken". Brazilian Journal of Poultry Science, 21(4): 1-8, ISSN: 1806-9061, DOI: https://doi.org/10.1590/1806-9061-2018-0866.).
To achieve success in a broiler chickens breeding system, is necessary
to provide a balanced diet, provide a favorable environment, and perform
management suitable (Pires et al. 2019Pires,
G.A., Cordeiro, M.B., Freitas, H.J., Rodrigues, S.F.C. &
Nascimento, A.M. 2019. "Desempenho zootécnico e rendimento de carcaça de
linhagens de frangos de corte criadas sob condições ambientais da
Amazônia ocidental". Enciclopédia Biosfera, 16(29): 633-645, ISSN: 2317-2606, DOI: https://doi.org/10.18677/EnciBio_2019A48.).
Balanced diet is rich in essential nutrients for maximum performance of
the animal species that you work with, in this context, the use of
cassava stands out as an ingredient rich in carbohydrates, dietary
fiber, starch, proteins, lipids and ashes (Holanda et al. 2015Holanda,
M.A.C., Holanda, M.C.R., Vigoderes, R.B., Dutra Jr., W.M. & Albino,
L.F.T. 2015. "Desempenho de frangos caipiras alimentados com farelo
integral de mandioca". Revista Brasileira de Saúde e Produção Animal, 16(1): 106-117, ISSN: 1519-9940, DOI: http://dx.doi.org/10.1590/S1519-99402015000100012.),
being able to compose diets capable of providing optimum weight gain
and contributing to reducing the production cost of broiler chickens.
Current
success in genetic improvement in birds has caused changes in the
growth curve, increasing feed efficiency and consequently its genetic
potential, causing birds to be slaughtered increasingly precocious.The
knowledge of the growth curves of a species provides very useful
information in the production and management of natural populations and
enables the viability of production by the growth rate (Lucena et al. 2017Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.).
The curve that describes a sequence of measurements of a particular
characteristic of a species or individual as a function of time, usually
weight, height, diameter, length is called growth curve (Lucena et al. 2019Lucena
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Anjos, M.L. 2019.
Adjusting weight growth curve of male quails Coturnix Japonica reared in
the semi-arid region of the state of Pernambuco". Acta Scientiarum Animal Sciences, 41: 1-8, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.42563
).In poultry farming have been proposed several models
to explain the biological growth of broiler chickens as a function of
life time reported by Sakomura et al. (2011)Sakomura,
N.K., Gous, R.M., Marcato, S.M. & Fernandes, J.B.K. 2011. "A
description of the growth of the major body componentes of 2 broiler
chicken strains". Poultry Science, 90(12): 2888-2896, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2011-01602., Rizzi et al. (2013)Rizzi, C., Contiero, B. & Cassandro, M. 2013. "Growth patterns of Italian local chicken populations". Poultry Science, 92(8): 2226-2235, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2012-02825., Al-Samarai (2015)Al-Samarai, F.R. 2015. "Growth curve of commercial broiler as predicted by different nonlinear functions". American Journal of Applied Scientific Research, 1(2): 6-9, ISSN: 2471-9730, DOI: https://doi.org/ 10.11648/j.ajasr.20150102.11., Zhao et al. (2015)Zhao,
Z., Li, S., Huang, H., Li, C., Wang, Q. & Xue, L. 2015.
"Comparative study on growth and developmental model of indigenous
chicken breeds in China". Open Journal of Animal Sciences, 5(2): 219-223, ISSN: 2161-7597, DOI: https://doi.org/10.4236/ojas.2015.52024. and Michalczuk et al. (2016)Michalczuk,
M., Damaziak, K. & Goryl, A. 2016. "Sigmoid models for the growth
curves in medium-growing meat type chickens, raised under semi-confined
conditions". Annals of Animal Science, 16(1): 65-77, ISSN: 2300-8733, DOI: https://doi.org/10.1515/aoas-2015-0061..
Although
there are reports of several studies with growth curves in broiler
chickens, no reports were found in the literature of growth curve
adjustment in broiler chickens fed the cassava diet, thus aimed to model
the growth of the weight of broilers fed different diets containing
cassava.
Materials and MethodsThe
research was in the aviary of Fazenda São João, located in the district
of Santa Rita, municipality of Serra Talhada-PE, in the micro region of
the Sertão do Pajeú, mesoregion of the Sertão de Pernambuco, under
license number 127/2019 of the ethics committee on the use of animals of
the Federal Rural University of Pernambuco.
Were used 450 male
broiler chickens of the Cobb lineage, with one day life, starting weight
of 42 grams, vaccinated on the first day still in the hatchery, against
Mareck, Newcastle, Gumboro and revaccinated at 14 days against
Newcastle and Gumboro.
The birds were housed in an aviary built in
masonry, with ceramic tiles and concrete floors, lined with bed of
inert material (rice husk) at a height of 15 cm, keypad with galvanized
wire screen and curtain to prevent drafts and control the environment
temperature.
During the first 14 days of life, a 150 watt
incandescent lamp was used with heat source for broiler chickens. Aviary
was divided in 25 experimental plots, each measuring 2 m², with a
density of 9 birds/m².
Experimental design was completely
randomized with five treatments and five replications, where each
experimental unit was composed of 18 birds.The treatments consisted of a
control diet based on corn and soybean meal, and four test diets
containing 25, 50, 75 and 100 % inclusion of integral meal of cassava
roots supplemented with endogenous enzymes, in the quantity of 500 grams
per ton of feed.
Cassava roots were acquired in the municipality
of Araripina-PE, posteriorly the roots were processed and dehydrated in
the sun for five days until they lost maximum moisture to obtain dry
meal. A sample was collected and taken to the laboratory for chemical
analysis that presented the following results:88.56% dry matter, 2.54%
crude protein, 0.62% lipids, 5.32% crude fiber, 10.84% neutral detergent
fiber (NDF), 3.96% acid detergent fiber (ADF), 84.92 % organic matter,
3.52 % ash, 0.18 % calcium and 0.09% phosphorus. The gross energy of
4,123 kcal/kg was determined in the IKA 200 calorimeter.
The
result of the chemical composition was used to formulate the
experimental diets together with the metabolizable energy of 12,502
MJ/kg (determined in a metabolism experiment carried out previously with
chicks, this experiment was carried out before formulating the
diets).The multi-enzyme complex was composed of galactosidase 35 U/g,
galactomannanase 110 U/g, xylanase 1,500 U/g, β-glucanase 1,100 U/g, and
was mixed to the premix in a Y-type mixer for mixing low level
ingredients in the diets and used in the proportion of 500 grams per ton
of feed for the test diets, for greater availability of nutrients
contained in whole cassava meal.
From the first day of life the
birds received experimental diets according to the treatments, following
the nutritional recommendations of Rostagno et al. (2017)Rostagno,
H.S., Teixeira, L.F., Hannas, M.I., Lopes, J., Kazue, N., Guilherme,
F., Saraiva, A., Texeira, M.L., Borges, P., de Oliveira, R.F., de
Toledo, S.L. & de Oliveira, C. 2017. Tablas Brasileñas para Aves y
Cerdos - Composición de Alimentos y Requerimientos Nutricionales. Ed.
Departamento de Zootecnia, Universidad Federal de Viçosa, Viçosa,
Brasil, p. 403-404, ISBN: 978-85-8179-122-7. (table1, 2, 3 and 4).
Table 1.
Chemical composition and calculated of
the experimental diets for broiler chickens from 1 to 7 days of age as a
function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 46.543 | 34.907 | 23.271 | 11.635 | 0.000 |
Soybean meal (45%) | 46.129 | 47.743 | 49.360 | 50.977 | 52.594 |
Cassava meal (kg) | 0.000 | 8.888 | 17.777 | 26.665 | 35.554 |
Dicalcium phosphate | 1.930 | 2.239 | 2.549 | 2.859 | 3.169 |
Calcitic Limestone | 0.941 | 0.705 | 0.470 | 0.235 | 0.000 |
Vegetable oil | 3.330 | 4.390 | 5.451 | 6.512 | 7.573 |
NaCl | 0.456 | 0.450 | 0.445 | 0.439 | 0.434 |
L-lysine HCl (78%) | 0.133 | 0.111 | 0.088 | 0.066 | 0.044 |
DL-methionine (99%) | 0.328 | 0.348 | 0.368 | 0.388 | 0.408 |
L-threonine (98%) | 0.010 | 0.017 | 0.025 | 0.032 | 0.040 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 25.31 | 25.31 | 25.31 | 25.31 | 25.31 |
Metabolizable energy (MJ/kg) | 12,540 | 12,540 | 12,540 | 12,540 | 12,540 |
Calcium | 1.011 | 1.011 | 1.011 | 1.011 | 1.011 |
Phosphorus available | 0.482 | 0.482 | 0.482 | 0.482 | 0.482 |
Digestible lysine | 1.364 | 1.364 | 1.364 | 1.364 | 1.364 |
Digestible methionine | 0.669 | 0.680 | 0.692 | 0.703 | 0.715 |
Digestible met+cys | 0.989 | 0.989 | 0.989 | 0.989 | 0.989 |
Digestible threonine | 0.773 | 0.773 | 0.773 | 0.773 | 0.773 |
Digestible tryptophan | 0.296 | 0.304 | 0.312 | 0.320 | 0.328 |
Sodium | 0.227 | 0.227 | 0.227 | 0.227 | 0.227 |
Fat | 5.642 | 5.781 | 5.921 | 6.060 | 6.200 |
1Premix vitamin/kg: Folic Acid 106.00 mg; Pantothenic
2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin 21mg;
Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20 mg;
niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine 360
mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3 525,000
UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se 75 mg;
Zn 12,500 mg.
Table 2.
Chemical composition and calculated of
the experimental diets for broiler chickens from 8 to 21 days of age as a
function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn | 48.080 | 36.060 | 24.040 | 12.020 | 0.000 |
Soybean meal (45%) | 43.600 | 45.235 | 46.870 | 48.505 | 50.141 |
Cassava meal | 0.000 | 9.355 | 18.710 | 28.065 | 37.420 |
Dicalcium phosphate | 1.679 | 1.699 | 1.719 | 1.739 | 1.760 |
Calcitic Limestone | 1.017 | 0.967 | 0.918 | 0.869 | 0.820 |
Vegetable oil | 4.510 | 5.547 | 6.585 | 7.622 | 8.660 |
NaCl | 0.444 | 0.438 | 0.432 | 0.426 | 0.420 |
L-lysine HCl (78%) | 0.136 | 0.113 | 0.091 | 0.069 | 0.047 |
DL-methionine (99%) | 0.327 | 0.348 | 0.369 | 0.390 | 0.412 |
L-threonine (98%) | 0.012 | 0.041 | 0.071 | 0.100 | 0.130 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 24.30 | 24.30 | 24.30 | 24.30 | 24.30 |
Metabolizable energy (MJ/kg) | 12,958 | 12,958 | 12,958 | 12,958 | 12,958 |
Calcium | 0.970 | 0.970 | 0.970 | 0.970 | 0.970 |
Phosphorus available | 0.432 | 0.432 | 0.432 | 0.432 | 0.432 |
Digestible lysine | 1.306 | 1.306 | 1.306 | 1.306 | 1.306 |
Digestible methionine | 0.657 | 0.669 | 0.681 | 0.693 | 0.705 |
Digestible met+cys | 0.966 | 0.966 | 0.966 | 0.966 | 0.966 |
Digestible threonine | 0.816 | 0.805 | 0.794 | 0.783 | 0.773 |
Digestible tryptophan | 0.282 | 0.269 | 0.257 | 0.244 | 0.232 |
Sodium | 0.221 | 0.221 | 0.221 | 0.221 | 0.221 |
Fat | 6.820 | 6.990 | 7.160 | 7.330 | 7.500 |
1Premix vitamin/kg: Folic Acid 106.00 mg; Pantothenic
2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin 21mg;
Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20 mg;
niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine 360
mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3 525,000
UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se 75 mg;
Zn 12,500 mg.
Table 3.
Chemical composition and calculated of
the experimental diets for broiler chickens from 22 to 35 days of age as
a function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 60.880 | 45.660 | 30.440 | 15.220 | 0.000 |
Soybean meal (45%) | 32.814 | 34.825 | 36.837 | 38.848 | 40.860 |
Cassava meal (kg) | 0.000 | 12.560 | 25.135 | 37.702 | 50.270 |
Dicalcium phosphate | 1.420 | 1.445 | 1.470 | 1.495 | 1.520 |
Calcitic Limestone | 0.718 | 0.655 | 0.589 | 0.524 | 0.460 |
Vegetable oil | 3.084 | 3.721 | 4.358 | 4.995 | 5.663 |
NaCl | 0.422 | 0.413 | 0.405 | 0.396 | 0.388 |
L-lysine HCl (78%) | 0.220 | 0.194 | 0.168 | 0.142 | 0.116 |
DL-methionine (99%) | 0.272 | 0.299 | 0.327 | 0.364 | 0.394 |
L-threonine (98%) | 0.000 | 0.027 | 0.055 | 0.082 | 0.110 |
Multienzyme complex | 0.00 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 20.58 | 20.58 | 20.58 | 20.58 | 20.58 |
Metabolizable energy (MJ/kg) | 13,167 | 13,167 | 13,167 | 13,167 | 13,167 |
Calcium | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 |
phosphorus available | 0.374 | 0.374 | 0.374 | 0.374 | 0.374 |
Digestible lysine | 1.124 | 1.124 | 1.124 | 1.124 | 1.124 |
Digestible methionine | 0.557 | 0.572 | 0.588 | 0.603 | 0.619 |
Digestible met+cys | 0.832 | 0.832 | 0.832 | 0.832 | 0.832 |
Digestible threonine | 0.773 | 0.773 | 0.773 | 0.773 | 0.773 |
Digestible tryptophan | 0.225 | 0.229 | 0.233 | 0.237 | 0.241 |
Sodium | 0.224 | 0.224 | 0.224 | 0.224 | 0.224 |
Fat | 5.680 | 6.285 | 6.890 | 7.495 | 8.100 |
1Premix vitamin/kg: Folic Acid 106.00 mg; Pantothenic
2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin 21mg;
Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20 mg;
niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine 360
mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3 525,000
UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se 75 mg;
Zn 12,500 mg.
Table 4.
Chemical composition and calculated of
the experimental diets for broiler chickens from 36 to 42 days of age as
a function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 62.722 | 46.976 | 31.321 | 15.675 | 0.000 |
Soybean meal (45%) | 30.217 | 32.282 | 34.348 | 36.414 | 38.500 |
Cassava meal (kg) | 0.000 | 12.973 | 25.946 | 38.919 | 51.892 |
Dicalcium phosphate | 1.089 | 1.114 | 1.139 | 1.164 | 1.190 |
Calcitic Limestone | 0.701 | 0.634 | 0.568 | 0.501 | 0.435 |
Vegetable oil | 4.218 | 4.856 | 5.494 | 6.132 | 6.770 |
NaCl | 0.407 | 0.398 | 0.390 | 0.381 | 0.373 |
L-lysine HCl (78%) | 0.226 | 0.199 | 0.173 | 0.146 | 0.120 |
DL-methionine (99%) | 0.253 | 0.281 | 0.309 | 0.337 | 0.366 |
L-threonine (98%) | 0.064 | 0.075 | 0.087 | 0.098 | 0.110 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 19.54 | 19.54 | 19.54 | 19.54 | 19.54 |
Metabolizable energy (MJ/kg) | 13,585 | 13,585 | 13,585 | 13,585 | 13,585 |
Calcium | 0.661 | 0.661 | 0.661 | 0.661 | 0.661 |
phosphorus available | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 |
Digestible lysine | 1.067 | 1.067 | 1.067 | 1.067 | 1.067 |
Digestible methionine | 0.525 | 0.541 | 0.557 | 0.573 | 0.589 |
Digestible met+cys | 0.790 | 0.790 | 0.790 | 0.790 | 0.790 |
Sodium | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 |
Digestible threonine | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 |
Fat | 6.760 | 6.922 | 7.085 | 7.247 | 7.410 |
1Premix vitamin/kg: Folic Acid 106.00 mg; Pantothenic
2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin 21mg;
Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20 mg;
niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine 360
mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3 525,000
UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se 75 mg;
Zn 12,500 mg.
To evaluate the performance of broiler chickens weight
according to age and inclusion of cassava meal, regression model
adjustments were proposed: exponential, Weibull, logistic, Gompertz,
power, hyperbolic tangent, and gamma (table 5).
Table 5.
Regression models evaluated
Regression Models | Equation |
---|
Exponential |
|
Weibull |
|
Logistic |
|
Gompertz |
|
Power |
|
Hyperbolic Tangent |
|
Gamma |
|
where,
Yiis the observed weight of the i-th broiler chickens after birth; Tiis
the i-th evaluation day; Mandiis the percentage of cassava added to the
diet of the i-th broiler chickens after birth and εiis the i-th error
associated with weight, where presents exponential parameter
distribution α to exponential model, Weibull distribution of parameters α
and γ, normal distribution of mean 0 and constant variance σ² to
logistic, Gompertz, power and hyperbolic tangente and Gamma distribution
of parameters α and β. The metrics ω, β0, β1 and β2are the parameters
associated with the model.
The following criteria evaluated the models: Coefficient of
Determination of the Model (R²), Akaike's Information Criterion (AIC)
and Sum of Square of Residuals (SSR).
Let
the values of the i-th broiler chickens weight after model adjustment and
mean broiler chickens weight, define SSR for this study by the following expression:
The coefficient of model determination is expressed by:
The Akaike information criteria (AIC), as defined by Akaike (1974)Akaike, H. 1974. "A new look at the statistical model identification". IEEE Transactions on Automatic Control, 19(6): 716-723, ISSN: 1558-2523, DOI: https://doi.org/10.1109/TAC.1974.1100705., are given by:
where, L(x\
is the maximum likelihood function, defined as the production of density function and p is the number of model parameters.
Cluster
analysis using the Ward method was used to verify which models are most
similar to their adequacy criteria. Posteriorly, residue analysis was
performed to validate the quality of the model that best adjusted to the
weight growth of the broiler chickens according to age and the
different levels of inclusion of cassava meal in their diet.Validation
of the model was performed through studentized residues, analysis of
leverage and influential points and quantile-quantile plot of
distribution normal.
Let hat matrix (H),
and,
where,
are the diagonal elements of matrix H. Assume that any observation that exceeds twice the average (
) is remote enough from the rest of the data to be considered a leverage point.
Studentized resisuals defined by:
where,
is the residue of the i-th observation of the model (difference between the observed and adjusted weight).
To detect a point of influence we use Cook’s distance, defined by:
if
, denoted influential point.
The R-project version 2.13.1 for windows software was used to perform the analyzes.
Results and DiscussionMean weight of the birds in relation to the lifetime and the different diets with cassava meal are shown in table 6.
For all evaluation periods, verified that there was not difference
(p-value> 0.05) in the broiler chickens weight in relation to the
different levels of cassava meal in diet (table 6).
Table 6.
Broiler chickens weight according to lifetime and inclusion of cassava meal in diet
lifetime (days) | Broiler chickens weight (g) in inclusion of cassava meal | p-value |
---|
0% | 25% | 50% | 75% | 100% |
---|
7 | 158.8±11.1 | 161.4±10.1 | 170.9±6.4 | 166.8±6.3 | 159.2±15.2 | 0.309 |
14 | 457.2±22.5 | 475.8±10.9 | 470.9±21.2 | 458.6±24.4 | 456.8±25.5 | 0.514 |
21 | 978.8±35.5 | 993.2±42.7 | 978.1±67.4 | 965.1±58.4 | 962.0±46.2 | 0.878 |
28 | 1,787.4±36.6 | 1,778.9±80.2 | 1,771.5±96.4 | 1,725.2±153.5 | 1,729.5±57.7 | 0.751 |
35 | 2,443.2±76.0 | 2,448.4±117.2 | 2,450.5±146.9 | 2,408.4±184.9 | 2,408.4±75.0 | 0.964 |
42 | 3,193.7±64.4 | 3,286.3±171.4 | 3,314.7±159.4 | 3,342.1±214.1 | 3,320.0±59.4 | 0.552 |
The results of this study corroborate with findings of Sousa et al. (2012)Souza,
J.P.L., Rodrigues, K.F., Albino, L.F.T., Santos-Neta, E.R., Vaz,
R.G.M.V., Parente, I.P., Silva, G.F. & Amorim, A.F. 2012. "Bagaço de
mandioca em dietas de frangos de corte". Revista Brasileira de Saúde e Produção Animal, 13(4): 1044-1053, ISSN: 1519-9940, DOI: https://doi.org/10.1590/S1519-99402012000400012.
that verified a difference in the weight gain of broiler chickens fed
up to 20% of cassava meal in the initial phase (1-21 days), while in the
final phase (22-40 days) there was not difference in the weight gain. Carrijo et al. (2010)Carrijo,
A.S., Fascina, V.B., Souza, K.M.R., Ribeiro, S.S., Allaman, I.B.,
Garcia, A.M. A. & Higa, J.A. 2010. "Níveis de farelo da raiz
integral de mandioca em dietas para fêmeas de frangos caipiras". Revista Brasileira de Saúde e Produção Animal, 11(1): 131-139, ISSN: 1519-9940., Souza et al. (2011)Souza,
K.M.R., Carrijo, A.S., Kiefer, C., Fascina, V.B., Falco, A.L.,
Manvailer, G.V. & García, A.M.L. 2011. "Farelo da raiz integral de
mandioca em dietas de frangos de corte tipo caipira". Archivos de Zootecnia, 60(231): 489-499, ISSN: 1885-4494. and Holanda et al. (2015)Holanda,
M.A.C., Holanda, M.C.R., Vigoderes, R.B., Dutra Jr., W.M. & Albino,
L.F.T. 2015. "Desempenho de frangos caipiras alimentados com farelo
integral de mandioca". Revista Brasileira de Saúde e Produção Animal, 16(1): 106-117, ISSN: 1519-9940, DOI: http://dx.doi.org/10.1590/S1519-99402015000100012., found no difference in the weight gain of free-range broiler chickens fed different levels of cassava meal.
Table 7 shows
that the models exponential, Weibull, logistic and Gompertz presented
explanatory power of less than 0.90, in addition to presenting the
largest sums of squares of the residues, indicating a poor adequacy of
these models to explain the broiler chickens weight as a function of age
and percentage of cassava meal introduced in their diet.
Table 7.
Adjusted regression models and model
adequacy criteria to growth broiler chickens weight fed with levels of
cassava meal in the diet
Regression Models | Regression Equation | R² | SSR | AIC |
---|
Exponential |
| 0.785 | 7.84 | 56.2 |
Weibull |
| 0.708 | 10.61 | 8.4 |
Logistic |
| 0.892 | 1.77 | 66.32 |
Gompertz |
| 0.888 | 4.07 | 75.19 |
Power |
| 0.997 | 0.09 | -82.34 |
Hyperbolic T. |
| 0.975 | 0.90 | 8.46 |
Gamma |
| 0.994 | 0.24 | -93.82 |
R²- model determination coefficient; SSR-sum of squares of residues; AIC- Akaike information criterion;
is the adjusted weight of model of the i-th broiler chickens
after birth; T is the lifetime; Mand is the percentage of cassava
Table 8 shows
the estimates of the parameters of the models with their respective
standard errors, test statistics and p-value, showing the significance
of each parameter.
Table 8.
Estimative, standard error, t value and p-value of parameters models
| Estimate | Std. error | t value | p-value |
---|
Exponential | | | | |
| -2.003 | 0.523 | 13.83 | <0.0001 |
| 0.0835 | 0.017 | 4.91 | <0.0001 |
| -0.00013 | 0.00005 | -5.93 | <0.0001 |
Weibull | | | | |
| -1.862 | 0.14 | -13.26 | <0.0001 |
| 0.0815 | 0.005 | 15.96 | <0.0001 |
| -0.00027 | 0.0001 | 10.26 | <0.0001 |
Logistic | | | | |
| 4.61 | 0.35 | 3.16 | <0.0001 |
| -0.18 | 0.011 | 6.31 | <0.0001 |
| -0.0016 | 0.0003 | 1.58 | <0.0001 |
Gompertz | | | | |
| 2.63 | 0.41 | 6.45 | <0.0001 |
| -0.129 | 0.013 | -9.96 | <0.0001 |
| -0.0015 | 0.0004 | -6.36 | <0.0001 |
Power | | | | |
| 0.0056 | 0.0014 | -95.788 | <0.0001 |
| 1.705 | 0.017 | 99.84 | <0.0001 |
| 0.001 | 0.0004 | 97.35 | <0.0001 |
Hyperbolic Tangent | | | | |
| 0.0008 | 0.00002 | -28.63 | <0.0001 |
| 2.03 | 0.079 | 25.51 | <0.0001 |
| 0.0046 | 0.0018 | 24.10 | <0.0001 |
Gamma | | | | |
| 0.113 | 0.0073 | 15.57 | <0.0001 |
| 0.042 | 0.0004 | 116.89 | <0.0001 |
| -0.00002 | 0.000009 | 18.53 | <0.0001 |
Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.
verified that the exponential, Weibull and Gompertz models presented
explanatory power of 0.993, 0.916 and 0.948, respectively. Rizzi et al. (2013)Rizzi, C., Contiero, B. & Cassandro, M. 2013. "Growth patterns of Italian local chicken populations". Poultry Science, 92(8): 2226-2235, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2012-02825.
observed that the Gompertz model was the most adequate to explain the
growth of broiler chickens with explanatory power greater than 99%,
these divergent results of this research, what can be explained by the
introduction of increasing levels of cassava in the diet of the broiler
chickens causing a loss of yield of these models, as these authors only
evaluated weight growth as a function of the birds lifetime.
The
hyperbolic tangent model presented explanatory power of 0.975 and sums
of residual squares of 0.90.These criteria classify these models with
good precision in estimating of the broiler chickens weight, however,
these results are inferior to those presented by the power and gamma
models, (table 7). Michalczuk et al. (2016)Michalczuk,
M., Damaziak, K. & Goryl, A. 2016. "Sigmoid models for the growth
curves in medium-growing meat type chickens, raised under semi-confined
conditions". Annals of Animal Science, 16(1): 65-77, ISSN: 2300-8733, DOI: https://doi.org/10.1515/aoas-2015-0061., Liu et al. (2015)Liu,
X.H., Li, X.L., Li, J. & Lu, C.X. 2015. "Growth curve fitting of
Bashang long-tail chicken during growth and development". Acta Agriculture Zhejiangensis, 27(5): 746-750, ISSN: 1004-1524, DOI: https://doi.org/10.3969/j.issn.1004-1524.2015.05.07., Zhao et al. (2015)Zhao,
Z., Li, S., Huang, H., Li, C., Wang, Q. & Xue, L. 2015.
"Comparative study on growth and developmental model of indigenous
chicken breeds in China". Open Journal of Animal Sciences, 5(2): 219-223, ISSN: 2161-7597, DOI: https://doi.org/10.4236/ojas.2015.52024., Selvaggi et al. (2015)Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048. and Mohammed (2015)Mohammed, F.A. 2015. "Comparison of three nonlinear functions for describing chicken growth curves". Scientia Agriculturae, 9(3): 120-123, ISSN: 2310-953X, DOI: https://doi.org/10.15192/PSCP.SA.2015.9.3.120123
presented similar results for the logistic model,
while the results for the hyperbolic tangent model corroborate with the
describes by Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4., that is, for all the researches reported, the weight behavior of the animals is similar when using these models.
Power
and gamma models showed the highest model determination coefficients,
lowest sums of squares of the residues and lowest Akaike information
criteria, (table 7).These
criteria indicate that these models are the most efficient to estimate
the broiler chickens weight as a function of lifetime and introduction
of cassava meal. Similar results were reported by Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.
where they verified that the power model was the most adequate to
explain the broiler chickens weight with precision of 0.997 followed by
the gamma model with an explanatory power of 0.989.
Due to the
different selection goals applied by geneticists in the last decades,
growth parameters of broiler genotypes can differ in several
characteristics, including those that affect the potential growth
curves, with weight and maturation rates (Sakomura et al. 2011Sakomura,
N.K., Gous, R.M., Marcato, S.M. & Fernandes, J.B.K. 2011. "A
description of the growth of the major body componentes of 2 broiler
chicken strains". Poultry Science, 90(12): 2888-2896, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2011-01602.).
The
differences between the functions in the growth rate directly reflect
on the behavior in the data adjustment. Nonlinear functions have been
used extensively to represent changes in broiler chickens weight as a
function of age, so that the genetic potential of animals can be valued (Kuhi et al. 2019Kuhi,
H.D., López, S., France, J., Mohit, A., Shabanpour, A., Zadeh, N.G.H.
& Falahi, S. 2019. "A sinusoidal equation as an alternative to
classical growth functions to describe growth profiles in turkeys". Acta Scientiarum Animal Sciences, 41: 1-7, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.45990.).
Early
estimation of weight at maturity and growth rate in relation to body
size can be important for selection purposes, given its association with
other characteristics and the economy of production (Kuhi et al. 2019Kuhi,
H.D., López, S., France, J., Mohit, A., Shabanpour, A., Zadeh, N.G.H.
& Falahi, S. 2019. "A sinusoidal equation as an alternative to
classical growth functions to describe growth profiles in turkeys". Acta Scientiarum Animal Sciences, 41: 1-7, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.45990.).
The exploration of these parameters in growth models by adjusting
curves using age with live weight can positively improve economic
returns (Salako 2014Salako, A.E. 2014. "Asymptotic nonlinear regression models for the growth of White Fulani and N'dama cattle in Nigeria". Livestock Research for Rural Development, 26(5), ISSN: 0121-3784, Available: <http://www.lrrd.org/lrrd26/5/sala26091.htm>.).
Success
in studying the growth characteristics of broiler chickens will help to
define more adequate diets to cover high nutritional requirements
during the growth phase, from hatching to age at the point of
slaughter.In addition, selecting the best function based on your ability
to describe the relationship between live weight and age is the first
step in developing a genetical improvement program (Selvaggi et al. 2015Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048.).
Growth curve parameters provide an opportunity to plan selection
strategies, modifying dietary practices or genetic makeup of the shape
of the growth curve (Selvaggi et al. 2015Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048.).
Figure 1 shows
that the power model presented better estimates of broiler chickens
weights than the Gamma model, because the power model showed only a
discrepant value from the observed weight of the chickens that occurred
on the 28th day, while the Gamma model presented two weight discrepant
occurrences (28th and 42nd day).
Figure 1.
Estimates of the broiler chickens weight in the power (a) and gamma (b) models
Through Ward cluster method using the metrics of model
adequacy criteria, verified the formation of two groups of modelswhen
using a cutting height greater 60, a group formed by the power and gamma
models (models that presented higher R² and lower SSR and AIC), and the
second formed by the others models (models that did not present
criteria similar to the gamma and power models) (figure 2).
Figure 2.
Cluster of adjusted regression models to growth broiler chickens weight fed with levels of cassava meal in the diet
Evaluating the three criteria of adequacy of the model, the
cluster analysis and the estimates of the broiler chickens weights, the
power model was proposed with most adequate to explain the growth of
broiler chickens as a function of the lifetime and the different
percentages of cassava in their diet.
After defining the power model with most appropriate, the analysis of the residues was performed (figure 3).No discrepant residues were diagnosed (figure 3a),because none is outside the limits of [-2; 2],also no residual leverage or influence was detected (figure 3b and 3c)
because no point exceeded the criteria defined by the dotted lines, the
assumption of normality of the residues was diagnosed in the
quantile-quantile graph of the normal distribution, where the residues
are within the confidence bands (figure 3d).
Figure 3.
Analysis of residues of the power model in broilers that consume cassava meal
Cassava meal in the dietary supplementation of broiler
chickens, in addition to promoting better zootechnical performance,
decreases production costs, because for diets without inclusion of the
cassava meal the production cost was higher because more corn was used
($0.27 per kg of feed for 0%; $0.26 per kg of feed for 25%; $0.24 per kg
of feed for 50%; $0.23 per kg of feed for 75%; $0.21 per kg of feed for
100%),while the cost using 100% inclusion of cassava meal was lower
because it used half quantity of corn for the control diet.
In
many practical problems, such as parameter estimation, function values
are uncertain or subject to variation. Therefore, a highly accurate
solution is not necessary. In these situations, all you want is an
improvement in the adjustement of the function, what can be observed in
the use of the power model.
Weight growth of birds fed cassava
meal can be estimated using the power regression model. The use of the
power model provides information on the best level of inclusion of
cassava meal (100%) and the best time for slaughtering birds (42 days)
maximizing the weight in 3,295 g.
IntroduciónLa
avicultura es uno de los sectores de producción animal más
desarrollados en los últimos años, especialmente en el sector de
producción de carne de pollo (Henrique et al. 2017Henrique,
C.S., Oliveira, A.F.G., Ferreira, T.S., Silva, E.S., Mello, B.F.F.R.,
Andrade, A.F., Martins, V.S.F., Paula, F.O., Garcia, E.R.M. & Bruno,
L.D.G. 2017. "Effect of stocking density on performance, carcass yield,
productivity, and bone development in broiler chickens Cobb 500". Semina: Ciências Agrárias, 38(4): 2705-2718, ISSN: 1679-0359, DOI: http://dx.doi.org/10.5433/1679-0359.2017v38n4Supl1p2705. y Nogueira et al. 2019Nogueira,
B.R.P., Reis, M.P., Carvalho, A.C., Mendoza, E.A.C., Oliveira, B.L.,
Silva, V.A. & Bertechini, A.G. 2019. "Performance, growth curves and
carcass yield of four strains of broiler chicken". Brazilian Journal of Poultry Science, 21(4): 1-8, ISSN: 1806-9061, DOI: https://doi.org/10.1590/1806-9061-2018-0866.).
Para
lograr el éxito en un sistema de cría de pollos de ceba, es necesario
brindar una dieta balanceada, un ambiente favorable y realizar un manejo
adecuado (Pires et al. 2019Pires,
G.A., Cordeiro, M.B., Freitas, H.J., Rodrigues, S.F.C. &
Nascimento, A.M. 2019. "Desempenho zootécnico e rendimento de carcaça de
linhagens de frangos de corte criadas sob condições ambientais da
Amazônia ocidental". Enciclopédia Biosfera, 16(29): 633-645, ISSN: 2317-2606, DOI: https://doi.org/10.18677/EnciBio_2019A48.).
La
dieta balanceada es rica en nutrientes esenciales para el máximo
rendimiento de las especies animales con las que se trabaja, en este
contexto se destaca el uso de la yuca como ingrediente rico en
carbohidratos, fibra dietética, almidón, proteínas, lípidos y cenizas (Holanda et al. 2015Holanda,
M.A.C., Holanda, M.C.R., Vigoderes, R.B., Dutra Jr., W.M. & Albino,
L.F.T. 2015. "Desempenho de frangos caipiras alimentados com farelo
integral de mandioca". Revista Brasileira de Saúde e Produção Animal, 16(1): 106-117, ISSN: 1519-9940, DOI: http://dx.doi.org/10.1590/S1519-99402015000100012.),
pudiendo componer dietas capaces de proporcionar óptimo aumento de peso
y contribuir a reducir el costo de producción de pollos de ceba.
El
éxito actual en el mejoramiento genético de las aves ha provocado
cambios en la curva de crecimiento, aumentando la eficiencia alimentaria
y en consecuencia su potencial genético, provocando que las aves sean
sacrificadas cada vez más precoces. El conocimiento de las curvas de
crecimiento de una especie proporciona información muy útil en la
producción y manejo de poblaciones naturales y posibilita la viabilidad
de la producción por la tasa de crecimiento (Lucena et al. 2017Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.).
La curva que describe una secuencia de medidas de una característica
particular de una especie o individuo en función del tiempo,
generalmente peso, altura, diámetro, longitud se denomina curva de
crecimiento (Lucena et al. 2019Lucena
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Anjos, M.L. 2019.
Adjusting weight growth curve of male quails Coturnix Japonica reared in
the semi-arid region of the state of Pernambuco". Acta Scientiarum Animal Sciences, 41: 1-8, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.42563
). En avicultura se han propuesto varios modelos para
explicar el crecimiento biológico de los pollos de ceba en función del
tiempo de vida con lo informado por Sakomura et al. (2011)Sakomura,
N.K., Gous, R.M., Marcato, S.M. & Fernandes, J.B.K. 2011. "A
description of the growth of the major body componentes of 2 broiler
chicken strains". Poultry Science, 90(12): 2888-2896, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2011-01602., Rizzi et.al (2013)Rizzi, C., Contiero, B. & Cassandro, M. 2013. "Growth patterns of Italian local chicken populations". Poultry Science, 92(8): 2226-2235, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2012-02825., Al-Samarai (2015Al-Samarai, F.R. 2015. "Growth curve of commercial broiler as predicted by different nonlinear functions". American Journal of Applied Scientific Research, 1(2): 6-9, ISSN: 2471-9730, DOI: https://doi.org/ 10.11648/j.ajasr.20150102.11.), Zhao et.al (2015)Zhao,
Z., Li, S., Huang, H., Li, C., Wang, Q. & Xue, L. 2015.
"Comparative study on growth and developmental model of indigenous
chicken breeds in China". Open Journal of Animal Sciences, 5(2): 219-223, ISSN: 2161-7597, DOI: https://doi.org/10.4236/ojas.2015.52024. y Michalczuk et.al (2016)Michalczuk,
M., Damaziak, K. & Goryl, A. 2016. "Sigmoid models for the growth
curves in medium-growing meat type chickens, raised under semi-confined
conditions". Annals of Animal Science, 16(1): 65-77, ISSN: 2300-8733, DOI: https://doi.org/10.1515/aoas-2015-0061..
Aunque
hay informes de varios estudios con curvas de crecimiento en pollos de
ceba, no se encontraron informes en la literatura de ajuste de la curva
de crecimiento en pollos de ceba alimentados con la dieta de yuca, por
lo que se utilizó como modelo el crecimiento del peso de los pollos de
ceba alimentados con diferentes dietas que contienen yuca.
Materiales y MétodosLa
investigación se realizó en el aviario de Fazenda São João, ubicado en
el distrito de Santa Rita, municipio de Serra Talhada-PE, en la micro
región del Sertão do Pajeú, mesorregión del Sertão de Pernambuco, bajo
licencia número 127/2019 del comité de ética sobre el uso de animales de
la Universidad Federal Rural de Pernambuco.
Se utilizaron 450
pollos de ceba machos del linaje Cobb, con un día de vida, peso inicial
de 42 gramos, vacunados el primer día aún en la incubadora, contra
Mareck, Newcastle, Gumboro y revacunados a los 14 días contra Newcastle y
Gumboro.
Las aves fueron alojadas en un aviario construido en
mampostería, con baldosas de cerámica y piso de concreto, revestido con
lecho de material inerte (cascarilla de arroz) a una altura de 15 cm,
cercado con alambre galvanizado y cortina para evitar corrientes de aire
y controlar la temperatura ambiente.
Durante los primeros 14 días
de vida se utilizó una lámpara incandescente de 150 watt con fuente de
calor para pollos de ceba. El aviario se dividió en 25 parcelas
experimentales de 2 m² cada una, con una densidad de 9 aves / m².
El
diseño experimental fue completamente al azar con cinco tratamientos y
cinco repeticiones, donde cada unidad experimental estuvo compuesta por
18 aves. Los tratamientos consistieron en una dieta control basada en
harina de maíz y soja, y cuatro dietas de prueba que contenían 25, 50,
75 y 100 % de inclusión de harina integral de raíz de yuca suplementada
con enzimas endógenas, en la cantidad de 500 gramos por tonelada de
alimento.
Las raíces de yuca se adquirieron en el municipio de
Araripina-PE, posteriormente las raíces fueron procesadas y
deshidratadas al sol por cinco días hasta que perdieron la máxima
humedad para obtener harina seca.Se tomó una muestra y se llevó al
laboratorio para análisis químico que presentó los siguientes
resultados: 88,56 % de materia seca, 2,54 % de proteína bruta, 0,62 % de
lípidos, 5,32 % de fibra bruta, 10,84 % de fibra detergente neutra
(FDN), 3,96 % fibra detergente ácido (FDA), 84,92 % de materia orgánica,
3,52 % de cenizas, 0,18 % de calcio y 0,09 % de fósforo. La energía
bruta de 4.123 kcal/kg se determinó en el calorímetro IKA 200.
El
resultado de la composición química se utilizó para formular las dietas
experimentales junto con la energía metabolizable de 12.502 MJ/kg
(determinada en un experimento de metabolismo realizado previamente con
pollos, este experimento se realizó antes de formular las dietas). El
complejo multienzimático estaba compuesto por galactosidasa 35 U/g,
galactomananasa 110 U/g, xilanasa 1,500 U/g, β-glucanasa 1,100 U/g, y se
mezcló con la premezcla en un mezclador tipo Y para mezclar bajo nivel
ingredientes en las dietas y utilizarlos en la proporción de 500 gramos
por tonelada de alimento para las dietas de prueba, para una mayor
disponibilidad de los nutrientes contenidos en la harina de yuca entera.
Desde el primer día de vida las aves recibieron dietas
experimentales según los tratamientos, siguiendo las recomendaciones
nutricionales de Rostagno et. al (2017)Rostagno,
H.S., Teixeira, L.F., Hannas, M.I., Lopes, J., Kazue, N., Guilherme,
F., Saraiva, A., Texeira, M.L., Borges, P., de Oliveira, R.F., de
Toledo, S.L. & de Oliveira, C. 2017. Tablas Brasileñas para Aves y
Cerdos - Composición de Alimentos y Requerimientos Nutricionales. Ed.
Departamento de Zootecnia, Universidad Federal de Viçosa, Viçosa,
Brasil, p. 403-404, ISBN: 978-85-8179-122-7. (tabla 1, 2, 3 y 4).
Table 1.
Chemical composition and calculated of
the experimental diets for broiler chickens from 1 to 7 days of age as a
function of the levels cassava meal.
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 46.543 | 34.907 | 23.271 | 11.635 | 0.000 |
Soybean meal (45%) | 46.129 | 47.743 | 49.360 | 50.977 | 52.594 |
Cassava meal (kg) | 0.000 | 8.888 | 17.777 | 26.665 | 35.554 |
Dicalcium phosphate | 1.930 | 2.239 | 2.549 | 2.859 | 3.169 |
Calcitic Limestone | 0.941 | 0.705 | 0.470 | 0.235 | 0.000 |
Vegetable oil | 3.330 | 4.390 | 5.451 | 6.512 | 7.573 |
NaCl | 0.456 | 0.450 | 0.445 | 0.439 | 0.434 |
L-lysine HCl (78%) | 0.133 | 0.111 | 0.088 | 0.066 | 0.044 |
DL-methionine (99%) | 0.328 | 0.348 | 0.368 | 0.388 | 0.408 |
L-threonine (98%) | 0.010 | 0.017 | 0.025 | 0.032 | 0.040 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 25.31 | 25.31 | 25.31 | 25.31 | 25.31 |
Metabolizable energy (MJ/kg) | 12,540 | 12,540 | 12,540 | 12,540 | 12,540 |
Calcium | 1.011 | 1.011 | 1.011 | 1.011 | 1.011 |
Phosphorus available | 0.482 | 0.482 | 0.482 | 0.482 | 0.482 |
Digestible lysine | 1.364 | 1.364 | 1.364 | 1.364 | 1.364 |
Digestible methionine | 0.669 | 0.680 | 0.692 | 0.703 | 0.715 |
Digestible met+cys | 0.989 | 0.989 | 0.989 | 0.989 | 0.989 |
Digestible threonine | 0.773 | 0.773 | 0.773 | 0.773 | 0.773 |
Digestible tryptophan | 0.296 | 0.304 | 0.312 | 0.320 | 0.328 |
Sodium | 0.227 | 0.227 | 0.227 | 0.227 | 0.227 |
Fat | 5.642 | 5.781 | 5.921 | 6.060 | 6.200 |
1Premix vitamin/kg: Folic Acid 106.00 mg;
Pantothenic 2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin
21mg; Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20
mg; niacin 7,840 mg; Pyridoxine 210 mg; Riboflavina 1,660 mg; Thiamine
360 mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3
525,000 UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se
75 mg; Zn 12,500 mg.
Table 2.
Chemical composition and calculated of
the experimental diets for broiler chickens from 8 to 21 days of age as a
function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn | 48.080 | 36.060 | 24.040 | 12.020 | 0.000 |
Soybean meal (45%) | 43.600 | 45.235 | 46.870 | 48.505 | 50.141 |
Cassava meal | 0.000 | 9.355 | 18.710 | 28.065 | 37.420 |
Dicalcium phosphate | 1.679 | 1.699 | 1.719 | 1.739 | 1.760 |
Calcitic Limestone | 1.017 | 0.967 | 0.918 | 0.869 | 0.820 |
Vegetable oil | 4.510 | 5.547 | 6.585 | 7.622 | 8.660 |
NaCl | 0.444 | 0.438 | 0.432 | 0.426 | 0.420 |
L-lysine HCl (78%) | 0.136 | 0.113 | 0.091 | 0.069 | 0.047 |
DL-methionine (99%) | 0.327 | 0.348 | 0.369 | 0.390 | 0.412 |
L-threonine (98%) | 0.012 | 0.041 | 0.071 | 0.100 | 0.130 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 24.30 | 24.30 | 24.30 | 24.30 | 24.30 |
Metabolizable energy (MJ/kg) | 12,958 | 12,958 | 12,958 | 12,958 | 12,958 |
Calcium | 0.970 | 0.970 | 0.970 | 0.970 | 0.970 |
Phosphorus available | 0.432 | 0.432 | 0.432 | 0.432 | 0.432 |
Digestible lysine | 1.306 | 1.306 | 1.306 | 1.306 | 1.306 |
Digestible methionine | 0.657 | 0.669 | 0.681 | 0.693 | 0.705 |
Digestible met+cys | 0.966 | 0.966 | 0.966 | 0.966 | 0.966 |
Digestible threonine | 0.816 | 0.805 | 0.794 | 0.783 | 0.773 |
Digestible tryptophan | 0.282 | 0.269 | 0.257 | 0.244 | 0.232 |
Sodium | 0.221 | 0.221 | 0.221 | 0.221 | 0.221 |
Fat | 6.820 | 6.990 | 7.160 | 7.330 | 7.500 |
1Premix vitamin/kg: Folic Acid 106.00 mg;
Pantothenic 2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin
21mg; Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20
mg; niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine
360 mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3
525,000 UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se
75 mg; Zn 12,500 mg.
Table 3.
Chemical composition and calculated of
the experimental diets for broiler chickens from 22 to 35 days of age as
a function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 60.880 | 45.660 | 30.440 | 15.220 | 0.000 |
Soybean meal (45%) | 32.814 | 34.825 | 36.837 | 38.848 | 40.860 |
Cassava meal (kg) | 0.000 | 12.560 | 25.135 | 37.702 | 50.270 |
Dicalcium phosphate | 1.420 | 1.445 | 1.470 | 1.495 | 1.520 |
Calcitic Limestone | 0.718 | 0.655 | 0.589 | 0.524 | 0.460 |
Vegetable oil | 3.084 | 3.721 | 4.358 | 4.995 | 5.663 |
NaCl | 0.422 | 0.413 | 0.405 | 0.396 | 0.388 |
L-lysine HCl (78%) | 0.220 | 0.194 | 0.168 | 0.142 | 0.116 |
DL-methionine (99%) | 0.272 | 0.299 | 0.327 | 0.364 | 0.394 |
L-threonine (98%) | 0.000 | 0.027 | 0.055 | 0.082 | 0.110 |
Multienzyme complex | 0.00 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 20.58 | 20.58 | 20.58 | 20.58 | 20.58 |
Metabolizable energy (MJ/kg) | 13,167 | 13,167 | 13,167 | 13,167 | 13,167 |
Calcium | 0.758 | 0.758 | 0.758 | 0.758 | 0.758 |
phosphorus available | 0.374 | 0.374 | 0.374 | 0.374 | 0.374 |
Digestible lysine | 1.124 | 1.124 | 1.124 | 1.124 | 1.124 |
Digestible methionine | 0.557 | 0.572 | 0.588 | 0.603 | 0.619 |
Digestible met+cys | 0.832 | 0.832 | 0.832 | 0.832 | 0.832 |
Digestible threonine | 0.773 | 0.773 | 0.773 | 0.773 | 0.773 |
Digestible tryptophan | 0.225 | 0.229 | 0.233 | 0.237 | 0.241 |
Sodium | 0.224 | 0.224 | 0.224 | 0.224 | 0.224 |
Fat | 5.680 | 6.285 | 6.890 | 7.495 | 8.100 |
1Premix vitamin/kg: Folic Acid 106.00 mg;
Pantothenic 2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin
21mg; Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20
mg; niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine
360 mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3
525,000 UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se
75 mg; Zn 12,500 mg.
Table 4.
Chemical composition and calculated of
the experimental diets for broiler chickens from 36 to 42 days of age as
a function of the levels cassava meal
Ingredients | Levels of cassava inclusion (%) |
---|
0 | 25 | 50 | 75 | 100 |
---|
Corn (kg) | 62.722 | 46.976 | 31.321 | 15.675 | 0.000 |
Soybean meal (45%) | 30.217 | 32.282 | 34.348 | 36.414 | 38.500 |
Cassava meal (kg) | 0.000 | 12.973 | 25.946 | 38.919 | 51.892 |
Dicalcium phosphate | 1.089 | 1.114 | 1.139 | 1.164 | 1.190 |
Calcitic Limestone | 0.701 | 0.634 | 0.568 | 0.501 | 0.435 |
Vegetable oil | 4.218 | 4.856 | 5.494 | 6.132 | 6.770 |
NaCl | 0.407 | 0.398 | 0.390 | 0.381 | 0.373 |
L-lysine HCl (78%) | 0.226 | 0.199 | 0.173 | 0.146 | 0.120 |
DL-methionine (99%) | 0.253 | 0.281 | 0.309 | 0.337 | 0.366 |
L-threonine (98%) | 0.064 | 0.075 | 0.087 | 0.098 | 0.110 |
Multienzyme complex | 0.000 | 0.012 | 0.025 | 0.037 | 0.050 |
Choline chloride (60%) | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Premix mineral/vitamin1 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 |
Calculated Composition (%)
|
Crude protein | 19.54 | 19.54 | 19.54 | 19.54 | 19.54 |
Metabolizable energy (MJ/kg) | 13,585 | 13,585 | 13,585 | 13,585 | 13,585 |
Calcium | 0.661 | 0.661 | 0.661 | 0.661 | 0.661 |
phosphorus available | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 |
Digestible lysine | 1.067 | 1.067 | 1.067 | 1.067 | 1.067 |
Digestible methionine | 0.525 | 0.541 | 0.557 | 0.573 | 0.589 |
Digestible met+cys | 0.790 | 0.790 | 0.790 | 0.790 | 0.790 |
Sodium | 0.201 | 0.201 | 0.201 | 0.201 | 0.201 |
Digestible threonine | 0.704 | 0.704 | 0.704 | 0.704 | 0.704 |
Fat | 6.760 | 6.922 | 7.085 | 7.247 | 7.410 |
1Premix vitamin/kg: Folic Acid 106.00 mg;
Pantothenic 2,490 mg; Antifungal 5,000 mg; Antioxidant 200 mg; Biotin
21mg; Coccidiostatic 15,000 mg; Choline 118,750 mg; Vitamin K3 525.20
mg; niacin 7,840 mg; Pyridoxine 210 mg; Riboflavine 1,660 mg; Thiamine
360 mg; Vitamin A 2,090,000 UI; Vitamin B12 123,750 mcg; Vitamin D3
525,000 UI; Vitamin E 4,175 mg. Cu 2,000 mg; I 190 mg; Mn 18,750 mg; Se
75 mg; Zn 12,500 mg.
Para evaluar el comportamiento del peso de los pollos de ceba
según la edad e inclusión de harina de yuca, se propusieron ajustes del
modelo de regresión: exponencial, Weibull, logístico, Gompertz,
potencia, tangente hiperbólica y gamma (tabla 5).
Table 5.
Regression models evaluated
Regression Models | Equation |
---|
Exponential |
|
Weibull |
|
Logistic |
|
Gompertz |
|
Power |
|
Hyperbolic Tangent |
|
Gamma |
|
where,
Yiis the observed weight of the i-th broiler chickens after birth; Tiis
the i-th evaluation day; Mandiis the percentage of cassava added to the
diet of the i-th broiler chickens after birth and εiis the i-th error
associated with weight, where presents exponential parameter
distribution α to exponential model, Weibull distribution of parameters α
and γ, normal distribution of mean 0 and constant variance σ² to
logistic, Gompertz, power and hyperbolic tangente and Gamma distribution
of parameters α and β. The metrics ω, β0, β1 and β2are the parameters
associated with the model.
Los siguientes criterios evaluaron los modelos: Coeficiente
de determinación del modelo (R²), Criterio de información de Akaike
(AIC) y Suma del cuadrado de los residuos (SSR).
Let
los valores del i-ésimo peso de los pollos de ceba después del
ajuste del modelo y Y ̅ el peso medio de los pollos de ceba, defina la
SSR para este estudio mediante la siguiente expresión:
El coeficiente de determinación del modelo se expresa por:
El criterio de información de Akaike (AIC), como lo define Akaike (1974)Akaike, H. 1974. "A new look at the statistical model identification". IEEE Transactions on Automatic Control, 19(6): 716-723, ISSN: 1558-2523, DOI: https://doi.org/10.1109/TAC.1974.1100705., está dado por:
donde, L(x\
es la función de máxima verosimilitud, definida como la producción
de la función de densidad y p es el número de parámetros del modelo.
Se
utilizó el análisis de conglomerados mediante el método de Ward para
verificar que modelos son más similares a sus criterios de
adecuación.Posteriormente, se realizó un análisis de residuos para
validar la calidad del modelo que mejor se ajustaba al crecimiento
ponderal de los pollos de ceba según la edad y los diferentes niveles de
inclusión de harina de yuca en su dieta. La validación del modelo se
realizó mediante residuos estudentizados, análisis de apalancamiento y
puntos de influencia y gráfico cuantil-cuantil de distribución normal.
Let hat matrix (H),
y,
donde,
son los elementos diagonales de la matriz H. Suponga que cualquier observación que exceda el doble del promedio (hii> 2p/n") está lo suficientemente alejada del resto de los datos para ser considerada un punto de apalancamiento .
Residuos estudentizados definidos por:
donde, ei es el residuo de la i-ésima observación del modelo (diferencia entre el peso observado y ajustado).
Para detectar un punto de influencia usamos la distancia de Cook, definida por:
if
, punto influyente denotado.
Para realizar los análisis se utilizó el software R-project versión 2.13.1 para Windows.
Resultados y DiscussiónEl peso medio de las aves en relación con el tiempo de vida y las diferentes dietas con harina de yuca se muestra en la tabla 6.
Para todos los períodos de evaluación, se verificó que no hubo
diferencia (p-valor> 0.05) en el peso de los pollos de ceba en
relación con diferentes niveles de harina de yuca en la dieta (tabla 6)
Table 6.
Broiler chickens weight according to lifetime and inclusion of cassava meal in diet
lifetime (days) | Broiler chickens weight (g) in inclusion of cassava meal | p-value |
---|
0% | 25% | 50% | 75% | 100% |
---|
7 | 158.8±11.1 | 161.4±10.1 | 170.9±6.4 | 166.8±6.3 | 159.2±15.2 | 0.309 |
14 | 457.2±22.5 | 475.8±10.9 | 470.9±21.2 | 458.6±24.4 | 456.8±25.5 | 0.514 |
21 | 978.8±35.5 | 993.2±42.7 | 978.1±67.4 | 965.1±58.4 | 962.0±46.2 | 0.878 |
28 | 1,787.4±36.6 | 1,778.9±80.2 | 1,771.5±96.4 | 1,725.2±153.5 | 1,729.5±57.7 | 0.751 |
35 | 2,443.2±76.0 | 2,448.4±117.2 | 2,450.5±146.9 | 2,408.4±184.9 | 2,408.4±75.0 | 0.964 |
42 | 3,193.7±64.4 | 3,286.3±171.4 | 3,314.7±159.4 | 3,342.1±214.1 | 3,320.0±59.4 | 0.552 |
Los resultados de este estudio corroboran con los encontrados por de Sousa et al. (2012)Souza,
J.P.L., Rodrigues, K.F., Albino, L.F.T., Santos-Neta, E.R., Vaz,
R.G.M.V., Parente, I.P., Silva, G.F. & Amorim, A.F. 2012. "Bagaço de
mandioca em dietas de frangos de corte". Revista Brasileira de Saúde e Produção Animal, 13(4): 1044-1053, ISSN: 1519-9940, DOI: https://doi.org/10.1590/S1519-99402012000400012.
verificaron una diferencia en la ganancia de peso de pollos de ceba
alimentados con 20 % de harina de yuca en la fase inicial (1-21 días),
mientras que en la fase final (22-40 días) no hubo diferencia en la
ganancia de peso. Carrijo et.al (2010)Carrijo,
A.S., Fascina, V.B., Souza, K.M.R., Ribeiro, S.S., Allaman, I.B.,
Garcia, A.M. A. & Higa, J.A. 2010. "Níveis de farelo da raiz
integral de mandioca em dietas para fêmeas de frangos caipiras". Revista Brasileira de Saúde e Produção Animal, 11(1): 131-139, ISSN: 1519-9940., Souza et al. (2011)Souza,
K.M.R., Carrijo, A.S., Kiefer, C., Fascina, V.B., Falco, A.L.,
Manvailer, G.V. & García, A.M.L. 2011. "Farelo da raiz integral de
mandioca em dietas de frangos de corte tipo caipira". Archivos de Zootecnia, 60(231): 489-499, ISSN: 1885-4494. y Holanda et al. (2015)Holanda,
M.A.C., Holanda, M.C.R., Vigoderes, R.B., Dutra Jr., W.M. & Albino,
L.F.T. 2015. "Desempenho de frangos caipiras alimentados com farelo
integral de mandioca". Revista Brasileira de Saúde e Produção Animal, 16(1): 106-117, ISSN: 1519-9940, DOI: http://dx.doi.org/10.1590/S1519-99402015000100012.,
encontraron que no hubo diferencias en el aumento de peso de los pollos
de ceba de granja alimentados con diferentes niveles de harina de yuca.
La tabla 7
muestra que los modelos exponencial, Weibull, logístico y Gompertz
presentaron potencia explicativa menor que 0,90, además de presentar las
mayores sumas de cuadrados de los residuos, indicando pobre adecuación
de estos modelos para explicar el peso de los pollos de ceba en función
de la edad y porcentaje de harina de yuca introducida en su dieta.
Table 7.
Adjusted regression models and model
adequacy criteria to growth broiler chickens weight fed with levels of
cassava meal in the diet
Regression Models | Regression Equation | R² | SSR | AIC |
---|
Exponential |
| 0.785 | 7.84 | 56.2 |
Weibull |
| 0.708 | 10.61 | 8.4 |
Logistic |
| 0.892 | 1.77 | 66.32 |
Gompertz |
| 0.888 | 4.07 | 75.19 |
Power |
| 0.997 | 0.09 | -82.34 |
Hyperbolic T. |
| 0.975 | 0.90 | 8.46 |
Gamma |
| 0.994 | 0.24 | -93.82 |
R²- model determination coefficient; SSR-sum of squares of residues; AIC- Akaike information criterion;
is the adjusted weight of model of the i-th broiler chickens
after birth; T is the lifetime; Mand is the percentage of cassava
La tabla 8
muestra las estimaciones de los parámetros de los modelos con sus
respectivos errores estándar, estadísticos de prueba y valor p,
mostrando la significancia de cada parámetro.
Table 8.
Estimative, standard error, t value and p-value of parameters models
| Estimate | Std. error | t value | p-value |
---|
Exponential | | | | |
| -2.003 | 0.523 | 13.83 | <0.0001 |
| 0.0835 | 0.017 | 4.91 | <0.0001 |
| -0.00013 | 0.00005 | -5.93 | <0.0001 |
Weibull | | | | |
| -1.862 | 0.14 | -13.26 | <0.0001 |
| 0.0815 | 0.005 | 15.96 | <0.0001 |
| -0.00027 | 0.0001 | 10.26 | <0.0001 |
Logistic | | | | |
| 4.61 | 0.35 | 3.16 | <0.0001 |
| -0.18 | 0.011 | 6.31 | <0.0001 |
| -0.0016 | 0.0003 | 1.58 | <0.0001 |
Gompertz | | | | |
| 2.63 | 0.41 | 6.45 | <0.0001 |
| -0.129 | 0.013 | -9.96 | <0.0001 |
| -0.0015 | 0.0004 | -6.36 | <0.0001 |
Power | | | | |
| 0.0056 | 0.0014 | -95.788 | <0.0001 |
| 1.705 | 0.017 | 99.84 | <0.0001 |
| 0.001 | 0.0004 | 97.35 | <0.0001 |
Hyperbolic Tangent | | | | |
| 0.0008 | 0.00002 | -28.63 | <0.0001 |
| 2.03 | 0.079 | 25.51 | <0.0001 |
| 0.0046 | 0.0018 | 24.10 | <0.0001 |
Gamma | | | | |
| 0.113 | 0.0073 | 15.57 | <0.0001 |
| 0.042 | 0.0004 | 116.89 | <0.0001 |
| -0.00002 | 0.000009 | 18.53 | <0.0001 |
Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.
verificaron que los modelos exponencial, Weibull y Gompertz presentaron
poder explicativo de 0,993, 0,916 y 0,948, respectivamente. Rizzi et al. (2013)Rizzi, C., Contiero, B. & Cassandro, M. 2013. "Growth patterns of Italian local chicken populations". Poultry Science, 92(8): 2226-2235, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2012-02825.
observaron que el modelo de Gompertz fue el más adecuado para explicar
el crecimiento de pollos de ceba con poder explicativo superior al 99 %,
estos resultados divergentes de este estudio, que se puede explicar por
la introducción de niveles crecientes de yuca en la dieta de los pollos
de ceba causaron una pérdida de rendimiento de estos modelos, ya que
estos autores solo evaluaron el crecimiento del peso en función del
tiempo de vida de las aves.
El modelo de tangente hiperbólico
presentó poder explicativo de 0,975 y sumas de cuadrados residuales de
0,90. Estos criterios clasifican estos modelos con buena precisión en la
estimación del peso de los pollos de ceba, sin embargo, estos
resultados son inferiores a los presentados por los modelos de potencia y
gamma, (tabla 7). Michalczuk et al. (2016)Michalczuk,
M., Damaziak, K. & Goryl, A. 2016. "Sigmoid models for the growth
curves in medium-growing meat type chickens, raised under semi-confined
conditions". Annals of Animal Science, 16(1): 65-77, ISSN: 2300-8733, DOI: https://doi.org/10.1515/aoas-2015-0061., Liu et al. (2015)Liu,
X.H., Li, X.L., Li, J. & Lu, C.X. 2015. "Growth curve fitting of
Bashang long-tail chicken during growth and development". Acta Agriculture Zhejiangensis, 27(5): 746-750, ISSN: 1004-1524, DOI: https://doi.org/10.3969/j.issn.1004-1524.2015.05.07., Zhao et al. (2015)Zhao,
Z., Li, S., Huang, H., Li, C., Wang, Q. & Xue, L. 2015.
"Comparative study on growth and developmental model of indigenous
chicken breeds in China". Open Journal of Animal Sciences, 5(2): 219-223, ISSN: 2161-7597, DOI: https://doi.org/10.4236/ojas.2015.52024., Selvaggi et al. (2015)Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048. y Mohammed (2015)Mohammed, F.A. 2015. "Comparison of three nonlinear functions for describing chicken growth curves". Scientia Agriculturae, 9(3): 120-123, ISSN: 2310-953X, DOI: https://doi.org/10.15192/PSCP.SA.2015.9.3.120123
presentaron resultados similares para el modelo
logístico, mientras que los resultados para el modelo de tangente
hiperbólico corroboran con lo descrito por Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.,
es decir, para todas las investigaciones reportadas, el comportamiento
del peso de los animales es similar al utilizar estos modelos
Los
modelos de potencia y gamma presentaron los coeficientes de
determinación del modelo más alto, las sumas más bajas de cuadrados de
los residuos y los criterios de información de Akaike más bajos (tabla 7).
Estos criterios indican que estos modelos son los más eficientes para
estimar el peso de los pollos de ceba en función del tiempo de vida y la
introducción de harina de yuca. Resultados similares fueron reportados
por Lucena et al. (2017)Lucena,
L.R.R., Holanda, M.A.C., Holanda, M.C.R. & Sousa, A.A. 2017.
"Ajuste de modelos de regressão lineares, não lineares e sigmoidal no
ganho de peso simulado de frangos de corte". Agrarian Academy, 4(8): 34-45, ISSN: 2357-9951, DOI: https://doi.org/10.18677/Agrarian_Academy_2017b4.
donde verificaron que el modelo de potencia fue el más adecuado para
explicar el peso de los pollos de ceba con una precisión de 0,997
seguido del modelo gamma con un poder explicativo de 0,989.
Debido
a los diferentes objetivos de selección aplicados por los genetistas en
las últimas décadas, los parámetros de crecimiento de los genotipos de
pollos de ceba pueden diferir en varias características, incluidas las
que afectan sus curvas de crecimiento potencial, con el peso y las tasas
de maduración (Sakomura et al. 2011Sakomura,
N.K., Gous, R.M., Marcato, S.M. & Fernandes, J.B.K. 2011. "A
description of the growth of the major body componentes of 2 broiler
chicken strains". Poultry Science, 90(12): 2888-2896, ISSN: 1525-3171, DOI: https://doi.org/10.3382/ps.2011-01602.).
Las
diferencias entre las funciones en la tasa de crecimiento reflejan
directamente el comportamiento en el ajuste de datos. Las funciones no
lineales se han utilizado ampliamente para representar cambios en el
peso de los pollos de ceba en función de la edad, de modo que se pueda
valorar el potencial genético de los animales (Kuhi et al. 2019Kuhi,
H.D., López, S., France, J., Mohit, A., Shabanpour, A., Zadeh, N.G.H.
& Falahi, S. 2019. "A sinusoidal equation as an alternative to
classical growth functions to describe growth profiles in turkeys". Acta Scientiarum Animal Sciences, 41: 1-7, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.45990.).
La
estimación temprana del peso en la madurez y la tasa de crecimiento en
relación con el tamaño corporal puede ser importante para fines de
selección, dada su asociación con otras características y la economía de
producción (Kuhi et al. 2019Kuhi,
H.D., López, S., France, J., Mohit, A., Shabanpour, A., Zadeh, N.G.H.
& Falahi, S. 2019. "A sinusoidal equation as an alternative to
classical growth functions to describe growth profiles in turkeys". Acta Scientiarum Animal Sciences, 41: 1-7, ISSN: 1806-2636, DOI: https://doi.org/10.4025/actascianimsci.v41i1.45990.).
La exploración de estos parámetros en modelos de crecimiento mediante
el ajuste de curvas utilizando la edad con el peso vivo puede mejorar
positivamente los rendimientos económicos (Salako 2014Salako, A.E. 2014. "Asymptotic nonlinear regression models for the growth of White Fulani and N'dama cattle in Nigeria". Livestock Research for Rural Development, 26(5), ISSN: 0121-3784, Available: <http://www.lrrd.org/lrrd26/5/sala26091.htm>.).
El
éxito en el estudio de las características de crecimiento de los pollos
de ceba ayudará a definir dietas más adecuadas para cubrir los altos
requerimientos nutricionales durante la fase de crecimiento, desde la
eclosión hasta la edad en el punto de sacrificio. Además, seleccionar la
mejor función basada en la capacidad para describir la relación entre
el peso vivo y la edad es el primer paso para desarrollar un programa de
mejora genética (Selvaggi et al. 2015Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048.).
Los parámetros de la curva de crecimiento brindan la oportunidad de
planificar estrategias de selección, modificando las prácticas
dietéticas o la composición genética de la forma de la curva de
crecimiento (Selvaggi et al. 2015Selvaggi,
M., Laudadio, V., Dario, C. & Tufarelli, V. 2015. "Modeling Growth
Curves in a Nondescript Italian Chicken Breed: an Opportunity to Improve
Genetic and Feeding Strategies". Japanese Poultry Science, 52(4): 288-294, ISSN: 0029-0254, DOI: https://doi.org/10.2141/jpsa.0150048.).
La figura 1
muestra que el modelo de potencia presentó mejores estimaciones de los
pesos de los pollos de ceba que el modelo Gamma, porque el modelo de
potencia mostró solo un valor discrepante del peso observado de los
pollos que ocurrió en el día 28, mientras que el modelo Gamma presentó
dos pesos discrepantes ocurridos (día 28 y 42).
Figure 1.
Estimates of the broiler chickens weight in the power (a) and gamma (b) models.
Mediante el método de conglomerado de Ward utilizando la
métrica de criterios de adecuación del modelo, se verificó la formación
de dos grupos de modelos al utilizar una altura de corte mayor de 60, un
grupo formado por los modelos de potencia y gamma (modelos que
presentaron mayor R² y menor SSR y AIC), y el segundo formado por los
otros modelos (modelos que no presentaron criterios similares a los
modelos gamma y de potencia) (figura 2).
Figure 2.
Cluster of adjusted regression models to growth broiler chickens weight fed with levels of cassava meal in the diet
Evaluando los tres criterios de adecuación del modelo, el
análisis de conglomerados y las estimaciones de los pesos de los pollos
de ceba, se propuso el modelo de potencia como el más adecuado para
explicar el crecimiento de los pollos de ceba en función del tiempo de
vida y los diferentes porcentajes de yuca en su dieta
Luego de definir el modelo de potencia como el más apropiado, se realizó el análisis de los residuos (figura 3). No se diagnosticaron residuos discrepantes (figura 3a),
debido a que ninguno se encuentra fuera de los límites de [-2; 2],
además, no se detectó apalancamiento o influencia residual (figura 3b y 3c)
debido a que ningún punto excedió los criterios definidos por las
líneas punteadas, el supuesto de normalidad de los residuos se
diagnosticó en el gráfico cuantil-cuantil de la distribución normal,
donde los residuos están dentro de las bandas de confianza (figura 3d).
Figure 3.
Analysis of residues of the power modelin broilers that consume cassava meal
La harina de yuca en la suplementación dietética de los
pollos de ceba, además de promover un mejor desempeño zootécnico,
disminuye los costos de producción, ya que para las dietas sin inclusión
de la harina de yuca el costo de producción fue mayor porque se utilizó
más maíz ($ 0.27 por kg de alimento para 0%; $ 0.26 por kg de alimento
para el 25%; $ 0.24 por kg de alimento para el 50%; $ 0.23 por kg de
alimento para el 75%; $ 0.21 por kg de alimento para el 100%), mientras
que el costo con inclusión del 100% de harina de yuca fue menor porque
se utilizó la mitad de la cantidad de maíz para la dieta de control.
En
muchos problemas prácticos, como la estimación de parámetros, los
valores de las funciones son inciertos o están sujetos a variación. Por
lo tanto, no es necesaria una solución de alta precisión. En estas
situaciones lo único que se busca es una mejora en el ajuste de la
función, lo que se puede observar en el uso del modelo de potencia.
El
crecimiento de peso de las aves alimentadas con harina de yuca puede
estimarse utilizando el modelo de regresión de potencia. El uso del
modelo de potencia proporciona información sobre el mejor nivel de
inclusión de harina de yuca (100 %) y el mejor momento para el
sacrificio de aves (42 días) maximizando el peso en 3295 g.