ANIMAL SCIENCE

Use of diets with Moringa oleifera forage meal for White Leghorn L 33 laying hens and replacement pullets


Abstract

In order to include levels of Moringa oleifera forage meal in diets for White Leghorn L33 replacement pullets (9 to 18 weeks old) and laying hens (19 to 26 weeks old), two experiments were performed. In experiment 1, 0, 10, 15 and 20% of moringa forage meal was used in the diet for replacement pullets. These animals were randomly distributed, according to a completely randomized design in four treatments with six repetitions each. They received food and water ad libitum. Food intake, food conversion, tarsus length, live weight and organs (ovary, oviduct and liver) weight from 9 to 18 weeks of age showed no differences (P <0.05) among treatments. Abdominal fat deposition was reduced in treatments with 15 and 20%. In experiment 2, fowls from control and treatment with 20% of experiment 1 were used. In week 26, hens consuming 20% of moringa presented similar productive indicators to control treatment, with increased yolk pigmentation. For L33 replacement pullets, from 9 to 18 weeks of age, the use of up to 20% of Moringa oleifera forage meal in diets did not affect growth, productive performance, nor development of ovaries and oviduct. In L33 laying hens, 19 weeks old, the use of 20% of Moringa oleifera forage meal in diets allowed reaching the laying peak at 26 weeks of age.

Keywords: 

food; trees; Moringa oleifera; replacement pullets.

 


The use of fibrous foods in the feeding of replacement pullets and laying hens favors the functioning of the gastrointestinal tract of animals, reduces digestive disorders and does not affect productivity at the beginning and during laying (Bouali et al. 2013).

The use of Moringa oleifera is an encouraging possibility for animal feed, due to the high content of proteins, amino acids, minerals and vitamins that leaves and forages contain (Madalla et al. 2013 and Alegbeleye 2018), where all essential amino acids (Mune et al. 2016) and the low content of anti-nutritional substances (Makkar and Becker 1997) are highlighted.

The use of Moringa oleifera forage meal in diets for broilers with high growth potential (Ebenebe et al. 2012, Gadzirayi et al. 2012 and Kaijage et al. 2014) is recorded at moderate levels, which are between 10 and 15%. Meanwhile, in fowls with lower growth potential (fowls native from Nigeria), their effective use is reported at levels between 8 and 24% of the diet (Ayssiwede et al. 2011). Similarly, in diets for laying hens, between 5 and 10% are recommended (Kakengi et al. 2007, Olugbemi et al. 2010, Abou-Elezz et al. 2011 and Valdivié et al. 2016), as a partial substitute of soybean and corn.

In the consulted literature, there is not much information about the use of moringa in White Leghorn replacement pullets. Therefore, this study aims to include levels of Moringa oleifera forage meal in replacement diets, intended for replacement pullets (between 9 and 18 weeks of age) and for White Leghorn L33 laying hens, at the beginning of laying peak (26 weeks old).

Materials and Methods

The experiment was carried out in the Poultry Experimental Unit of the Institute of Animal Science (ICA), located at km 47½ Carretera Central, San José de las Lajas municipality, Mayabeque province.

Supergenius variety of moringa forage was used in both experiments and it was cut at 55 d of regrowth. Later, it was air dried under roof for five days and then, it was ground in a hammer mill at 1.5 mm in particle size.

Two experiments were performed. Experiment 1 consisted of the use of 0, 10, 15 and 20% of moringa forage meal in the diet for replacement pullets from 9 to 18 weeks of age. For experiment 2, the same animals from control and 20% of moringa forage meal treatments of experiment 1 were used, from 19 to 26 weeks of age.

For preparing diets, the chemical analysis of moringa forage meal was carried out, according to AOAC (2007). Moringa forage meal contained 89% dry matter, 17% crude protein, 13% crude fiber, 3.42% calcium, 0.1% available phosphorus, 4.07% ether extract and 8.49% ashes. Available phosphorus was estimated by considering that young fowls use 30% of total phosphorus, and adults needed 50% (Scott et al. 1982). Amino acid content of Moringa oleifera forage meal was determined in AMINOLab Evonik Industries, Germany (table 1).

Table 1. 

Amino acid content of Moringa oleifera forage meal, at 55d of regrowth

Amino acids, %Dry matter 100 %
Methionine0.243
Cystine0.395
Methionine + Cystine0.640
Lysine0.511
Threonine0.489
Tryptophan0.149
Arginine1.198
Isoleucine0.494
Leucine0.865
Valine0.634
Histidine0.238
Phenylalanine0.576
Glycine0.719
Serine0.527
Proline0.665
Alanine0.728
Aspartic acid 1.032
Glutamic acid 2,118

Metabolizable energy (ME) was estimated according to the value of a Janssen (1989) equation, which fits this type of food:

With this equation, the energy estimate of Moringa oleifera forage of 5.799 Mj of ME/kg (1386 kcal/kg) was obtained, and this value was used for diet formulation.

Experiment 1. An amount of 120 White Leghorn L33 replacement pullets, with 9 weeks of age and mean liveweight of 673 g/pullet, was used. They were housed in metal cages of 1 m2, at the rate of five animals per cage. Hens had water at will in nipple drinkers and ad libitum food in linear feeders. They received a natural lighting regime of 12 h per day between February and May. They were vaccinated against Marek's disease, infectious bronchitis, avian smallpox, Gumboro and Newcastle, according to standards of the Institute of Veterinary Medicine of Cuba

These fowls were randomly distributed, according to a completely randomized design. Four treatments were established, which consisted of the inclusion of 0, 10, 15 and 20% of Moringa oleifera forage meal in the diet, with six repetitions. Each cage constituted an experimental unit.

The composition of the diets for replacement pullets, from 9 to 18 weeks of age, is shown in tables 2 and 3. They were formulated as recommended by UECAN (2013) for the poultry category under study, in terms of crude protein, amino acids, calcium and phosphorus. Diets were non-isoenergetic.

Table 2. 

Composition and calculated nutrient contribution in diets with Moringa oleifera forage meal for replacement pullets (9 to 16 weeks)

Raw matters Moringa forage meal (%)
0101520
Corn meal70.0070.4867.4463.72
Soy bean meal (44% CP)19.9016.0514.5913.10
Inert filler (sand)5.66000
Moringa meal0101520
Dicalcium phosphate 1.571.571.571.57
Calcium carbonate1.520.530.040
Salt0.250.250.250.25
DL methionine0.100.110.110.10
L- lysine00.010.010.01
Premix11.001.001.001.00
Calculated nutrient contribution
Crude protein14.5014.5014.5014.50
Metabolizable energy, Mj/kg11.7912.0811.8011.45
Available phosphorus, %0.370.370.370.37
Total calcium, %0.950.920.901.05
Methionine + Cystine, %0.570.580.570.57
Lysine, %0.660.650.650.65
Threonine, %0.510.510.510.52
Tryptophan, %0.170.170.170.18
Crude fiber, %2.263.363.884.40

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Table 3. 

Composition and calculated nutrient contribution in diets with Moringa oleifera forage meal between 17 and 18 weeks of age

Raw matters Moringa forage meal (%)
0101520
Corn meal66.4259.9556.7653.56
Soy bean meal (44% CP)26.2923.6222.2720.92
Moringa meal 0101520
Dicalcium phosphate1.691.701.701.70
Calcium carbonate 4.143.272.812.36
Salt0.250.250.250.25
DL- methionine0.210.210.210.21
Premix11.001.001.001.00
Calculated nutrient contribution
Crude Protein 17171717
Metabolizable energy, Mj/kg11.8811.2911.0010.72
Available phosphorus, %0.400.400.400.40
Total calcium, %2.002.002.002.00
Methionine + Cystine, %0.730.730.730.73
Lysine, %0.830.830.830.82
Threonine, %0.610.620.620.62
Tryptophan, %0.210.210.220.22
Crude fiber, %2.553.594.124.64

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Individual liveweight of animals was controlled at 9 and 18 weeks of age, as well as weekly feed intake per repetition. A FWE digital balance was used for this, with a scale from 0 to 25 kg and accuracy of 0.001 g. Liveweight gain from 9 to 18 weeks of age and food conversion were calculated. At 18 weeks of age, tarsus length was measured.

Ten fowls were slaughtered per treatment at 18 weeks of age to determine the weight of liver, oviduct, ovary and abdominal fat, expressed in grams (g).

Experiment 2. At 19 weeks of age, hens of control and 20% of moringa treatments were placed in the laying unit to continue experiment 1 and analyze productive indicators at the beginning of laying peak at week 26. They were distributed according to a completely randomized design, at the rate of 2 hens per cage and 10 repetitions per treatment.

The cages used were 40 cm in the front by 41 cm deep. Food was offered in linear feeders, and water was provided at will in nipple drinkers (2 nipples/cage). An amount of 16 hours of light and eight hours of darkness was offered each day.

Diet composition in the stage from 19 to 26 weeks of age (beginning of production) is shown in table 4.

Table 4. 

Diets with 0 and 20 % of moringa forage meal during the stage of laying hens (19- 26 weeks)

Raw matters for feedstuff and contributionsMoringa forage meal (%)
020
Corn meal57.7544.77
Soy bean meal (44% CP)27.9222.55
Moringa meal-20
Vegetal oil2.302.30
Dicalcium phosphate1.701.76
Calcium carbonate8.867.15
Salt0.250.25
DL- methionine0.220.22
Premix11.001.00
Calculated nutrient contribution
Crude Protein 1717
Metabolizable energy, MJ/kg11.6510.90
Available phosphorus, %0.400.40
Total calcium, %3.803.80
Methionine + Cystine, %0.730.73
Lysine, %0.860.85
Threonine, %0.620.62
Tryptophan, %0.210.22
Crude fiber, %2.494.58

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Laying rate, feed intake per animal per day and egg weight were monitored. Yolk pigmentation was determined by Roche yolk color fan. Food needed for producing an egg was calculated.

For the statistical processing of results of both experiments, INFOSTAT, version 2012 (Di Rienzo et al. 2012) was used. To determine the differences between means, Duncan (1955) test was applied for P <0.05, in the necessary cases.

Covariate analysis was performed for the variables tarsus length, at the beginning and 18 weeks of age. Liveweight at 18 weeks of age, mean weight gain during the stage and conversion were determined. Initial weight was taken as concomitant variable.

Results and Discussion

Experiment 1. During the stage between 9 and 18 weeks of age, viability was high and superior to 96% in all treatments. This indicates that, at that stage, the inclusion of up to 20% of moringa forge meal in feed for replacement pullets does not generate high mortality, which coincides with reports of Valdivié et al. (2016). These authors reported that the use of 20% or higher levels of forage meal is assimilable in fowls.

Tables 5 and 6 show that the moringa meal levels evaluated did not affect liveweight nor liveweight gain at 18 weeks of age. Food intake during 9-18 weeks and food conversion showed no differences among treatments, nor for tarsal length in treatments.

This performance demonstrates that diets with moringa forage meal were able to meet the nutritional needs of White Leghorn L33 replacement pullets, between 9 and 18 weeks of age. According to Makkar and Becker (1997), these diets do not contain anti-nutritional substances at harmful levels. Cabrera et al. (2017) describe low amount of tannins in leaves, which allows a better use of nutrients by the animals that consume it.

Table 5. 

Liveweight at 18 weeks, intake between 9 and 18 weeks and tarsus length in replacement pullets

IndicatorsMoringa forage meal (%)SE ±Sig.
0101520
Liveweight at 18 weeks, g126912561237124829P=0.8854
Intake from 9 to 18 weeks, g423844364504444795P=0.2453
Tarsus length, mm89.1988.4289.3488.400.57P=0.5241

Table 6. 

Liveweight gain and conversion between 9 and 18 weeks in replacement pullets

Indicators (from 9 to 18 weeks)Moringa forage meal (%)Sig. Treat.Sig. Covariable
0101520
Weight gain, g591 ± 29593 ± 30564 ± 29570 ± 29P=0.8585P=0.0236
Food conversion7.27 ± 0.477.74 ± 0.488.09 ± 0.467.89 ± 0.47P=0.6481P=0.0386

In this study, regardless of the increase of crude fiber content in the diets used, it did not exceed 5%. Replacement pullets assimilated this contribution for their growth and development.

Table 7 shows that, at 18 weeks of age, there were no differences for the weights of liver, ovary and oviduct. This indicates that growth and development of the fowls were normal with diets containing up to 20% of moringa meal.

Table 7. 

Weights of liver, abdominal fat, oviduct and ovary in replacement pullets consuming diets with the inclusion of moringa forage meal

IndicatorMoringa forage meal (%)SE ±Sig.
0101520
Liver , g27.4426.4426.6724.561.93P=0.7511
Abdominal fat, g13.11b8.56ab3.33a4.56a2.05P=0.0084
Oviduct, g5.894.225.676.441.94P=0.8694
Ovary, g0.891.331.110.560.47P=0.6881

a,b different letters in the same line indicate significant differences for P<0.05

According to Valdivié et al. (2016), abdominal fat deposition was reduced in the treatments with 15 and 20% of moringa meal compared to control (table 7). This is attributed to the lowest ME concentration in diets for replacement pullets with these moringa levels.

Experiment 2. In the 26th week of age, hens consuming 20% of moringa in the diet presented productive indicators similar to control treatment (table 8). Laying rate was above 90%, which indicates that hens at that age reached their laying peak (Rostagno et al. 2017). Intake was higher than control, which was perhaps a response to meet their energy needs, without deteriorating conversion (g of feed/egg).

Yolk pigmentation, at 26 weeks, was higher with 20% moringa meal in the diet. As stated by Abou-Elezz et al. (2011), Moyo et al. (2011), Tesfaye et al. (2014) and Valdivié et al. (2016), this is attributed to carotenoid pigments provided by moringa meal.

Table 8. 

Production indicators of laying hens consuming moringa forage meal (week 26 of age, beginning of laying peak)

IndicatorsMoringa forage meal (%)SE ±Sig.
020
Laying, %93.5793.571.050.9999
Intake, g/animal/d 10610910.0480
g of feedstuff/egg113118120.6740
Egg weight, g495010.3824
Yolk pigmentation460.20.0001

Table 9 shows that animals consumed the amount of nutrients needed to meet their requirements according to NRC (1994). Even when hens consumed non-isoenergetic diets, the amount of nutrients was enough for maintaining the laying.

Table 9. 

Daily nutrient intake per animal

IndicatorMoringa forage meal (%)
020
Crude protein, g18.0218.53
Metabolizable energy, kcal295284
Crude fiber, g2.644.99
Available phosphorus, mg424436
Total calcium, g4.034.14
Methionine + cystine, mg774796
Lysine, mg912927
Threonine, mg657676
Tryptophan, mg223240

Conclusions

Experiment 1. For White Leghorn L33 replacement pullets, from 9 to 18 weeks of age, the use of up to 20% of Moringa oleifera forage meal in diets does not affect growth, productive performance nor development of ovaries and oviduct.

Experiment 2. In 19-week-old White Leghorn L33 laying hens, the use of 20% of Moringa oleifera forage meal in diets allows reaching the laying peak at 26 weeks of age.

 

References

Abou-Elezz, F.M.K., Sarmiento, L., Santos, R. & Solorio, F. 2011. “Nutritional effects of dietary inclusion of Leucaena leucocephala and Moringa oleifera leaf meal on Rhode Island Red hens performance”. Cuban Journal of Agricultural Science, 45(2): 163-169, ISSN: 2079-3480

Alegbeleye, O.O. 2018. “How functional is Moringa Oleifera? A review of its nutritive, medicinal, and socioeconomic potential”. Food and Nutrition Bulletin, 39(1): 149-170, ISSN: 0379-5721, DOI: https://doi.org/10.1177/0379572117749814

AOAC (Association of Official Analytical Chemists). 2007. Official Methods of Analysis. 18th Ed. Ed. AOAC International, Maryland, USA

Ayssiwede, S.B., Dieng, A., Bello, H., Chrysostome, C., Hane, M.B., Mankor, A., Dahouda, M., Houinato, M.R., Hornick, J.L. & Missohou, A. 2011. “Effects of Moringa oleifera (Lam.) leaves meal incorporation in diets on growth performances, carcass characteristics and economics results of growing indigenous Senegal chickens”. Pakistan Journal of Nutrition, 10(12): 1132-1145, ISSN: 1680-5194

Bouali, O., Pérez, A., Guzmán, P., Mandalawi, H.A. & Mateos, G.G. 2013. “Efecto de la fuente y el nivel de fibra en pienso de pollitas durante la fase de recría sobre la productividad en puesta”. In: ITEA, XV Jornadas sobre Producción Animal, Tomo I, p. 222-224, Zaragoza, España

Cabrera, J.L., Jaramillo, C., Dután, F., Cun, J., García, P.A. & de Astudillo, L.R. 2017. “Variación del contenido de alcaloides, fenoles, flavonoides y taninos en Moringa oleifera Lam. en función de su edad y altura”. Bioagro, 29(1): 53-60, ISSN: 1316-3361

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M. & Robledo, C. W. 2012. InfoStat version 2012 [Windows]. Grupo InfoStat, Universidad Nacional de Córdoba, Argentina. Available: http://www.infostat.com.ar

Duncan, D.B. 1955. “Multiple Range and Multiple F Tests”. Biometrics, 11(1): 1-42, ISSN: 0006-341X, DOI: https://doi.org/10.2307/3001478

Ebenebe, C.I., Umegechi, C.O. & Nweze, B.O. 2012. “Comparison of haematological parameters and weight changes of broiler chicks fed different levels of Moringa oleifera diet.”. International Journal of Agriculture and Biosciences, 1(1): 23-25, ISSN: 2305-6622

Gadzirayi, C.T., Masamha, B., Mupangwa, J.F. & Washaya, S. 2012. “Performance of broiler chickens fed on mature Moringa oleifera leaf meal as a protein supplement to soyabean meal”. International Journal of Poultry Science, 11(1): 5-10, ISSN: 1682-8356, DOI: https://doi.org/10.3923/ijps.2012.5.10

Janssen, W. 1989. European table of energy values for poultry feedstuffs. 3rd Ed. Ed. Beekbergen, Spelderholt Center for Poultry Research and Information Services Netherlands, p. 15

Kaijage, J.T., Mutayoba, S.K., Katule, A. & Kakengi, A.M.V 2014. “Relative effects of Moringa oleifera leaf meal and molasses as additives in grain sorghum based diets on performance of growing chicks in Tanzania”. Livestock Research for Rural Development, 26(12), ISSN: 0121-3784, Available: http://www.lrrd.org/lrrd26/12/kaij26220.html

Kakengi, A.M.V, Kaijage, J.T., Sarwatt, S.V, Mutayoba, S.K., Shem, M.N. & Fujihara, T. 2007. “Effect of Moringa oleifera leaf meal as a substitute for sunflower seed meal on performance of laying hens in Tanzania”. Livestock Research for Rural Development, 19(8), ISSN: 0121-3784, Available: http://www.lrrd.org/lrrd19/8/kake19120.htm

Madalla, N., Agbo, N.W. & Jauncey, K. 2013. “Evaluation of aqueous extracted moringa leaf meal as a protein source for Nile Tilapia Juveniles”. Tanzania Journal of Agricultural Sciences, 12(1): 53-64

Makkar, H.P.S. & Becker, K. 1997. “Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree”. The Journal of Agricultural Science, 128(3): 311-322, ISSN: 1469-5146, DOI: https://doi.org/10.1017/S0021859697004292

Moyo, B., Masika, P.J., Hugo, A. & Muchenje, V. 2011. “Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves”. African Journal of Biotechnology, 10(60): 12925-12933, ISSN: 1684-5315, DOI: https://doi.org/10.5897/AJB10.1599

Mune, A., Nyobe, E.C., Bakwo, C. & Minka, S.R. 2016. “A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds”. Cogent Food & Agriculture, 2(1): 1-8, ISSN: 2331-1932, DOI: https://doi.org/10.1080/23311932.2016.1213618

NRC. Nutrient Requirements of Poultry. 1994. 9th Rev. Ed. Ed. National Academic Press, Washington D.C., USA, p. 155, ISBN: 978-0-309-04892-7, DOI: https://doi.org/10.17226/2114

Olugbemi, T.S., Mutayoba, S.K. & Lekule, F.P. 2010. “Evaluation of Moringa oleifera leaf meal inclusion in cassava chip based diets fed to laying birds”. Livestock Research for Rural Development, 22(6), ISSN: 0121-3784, Available: https://www.lrrd.cipav.org.co/lrrd22/6/olug22118.htm

Rostagno, H.S., Albino, L.F., Hannas, H.I., Donzele, J.L., Sakomura, N.K., Perazzo, F.G., Saraiva, A., Teixeira, M.V., Rodríguez, P.B., Oliveira, R.F., Barreto, S.L., & Brito, C.O. 2017. Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais. 4ta Edição. Ed. Departamento de Zootecnia, Universidade Federal de Viçosa. Brasil, p. 488

Scott, M., Nesheim, M. & Young, R. 1982. Nutrition of the Chicken. 3rd Ed. Ed. Humprey Press Genova, New York, USA, p. 562

Tesfaye, E.B., Animut, G.M., Urge, M.L. & Dessie, T.A. 2014. “Cassava root chips and Moringa oleifera leaf meal as alternative feed ingredients in the layer ration”. Journal of Applied Poultry Research, 23(4): 614-624, ISSN: 1056-6171, DOI: https://doi.org/10.3382/japr.2013-00920

UECAN (Unión de Empresas del Combinado Avícola Nacional). 2013. Manual Tecnológico para la cría de aves. Ponedoras y sus reemplazos. 6th Ed. Ed. Ministerio de la Agricultura, La Habana, Cuba

Valdivié, M., Mesa, O. & Rodríguez, B. 2016. “Use of diets with Moringa oleifera (stems+ leaves) meals in laying hens”. Cuban Journal of Agricultural Science, 50(3): 445-454, ISSN: 2079-3480

 

 

 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution License

 

CIENCIA ANIMAL

 

Utilización de dietas con harina de forraje de Moringa oleifera para pollitas de reemplazo y gallinas ponedoras White Leghorn L33


Resumen

Para incluir niveles de harina de forraje de Moringa oleifera en las dietas de reemplazo destinadas a gallinas ponedoras (9 a 18 semanas de edad) y gallinas ponedoras White Leghorn L33 (19 a 26 semanas de edad), se realizaron dos experimentos. En el experimento 1 se utilizó 0, 10, 15 y 20 % de harina de forraje de moringa en la dieta para reemplazo de ponedoras. Las aves se distribuyeron al azar, según diseño completamente aleatorizado en cuatro tratamientos con seis repeticiones cada uno. Recibieron el alimento y agua ad libitum. El consumo de alimento, conversión alimentaria, largo del tarso, peso vivo y de los órganos (ovario, oviducto e hígado) de 9 a 18 semanas de edad no mostraron diferencias (P<0.05) entre tratamientos. La deposición de grasa abdominal se redujo en los tratamientos con 15 y 20 %. En el experimento 2, se usaron las aves del experimento 1 de los grupos control y 20 %. En la semana 26, las gallinas que consumieron 20 % de moringa presentaron indicadores productivos similares al tratamiento control, con incremento en la pigmentación de la yema de los huevos. Para las aves de reemplazo L33, desde las 9 hasta las 18 semanas de edad, la utilización de hasta 20 % de harina de forraje de Moringa oleifera en las dietas no afectó el crecimiento, el comportamiento productivo ni el desarrollo de ovarios y oviducto. En gallinas ponedoras L33, de 19 semanas de edad, la utilización de 20 % de harina de forraje de Moringa oleifera en las dietas permitió alcanzar el pico de puesta a las 26 semanas de edad.

Palabras clave: 

alimentación; arbóreas; Moringa oleifera; aves de postura.


El uso de alimentos fibrosos en la alimentación del reemplazo y de la gallina ponedora favorece el funcionamiento del tracto gastrointestinal de las aves, reduce los trastornos digestivos y no afecta la productividad al inicio y durante la puesta (Bouali et al. 2013).

El uso de Moringa oleifera es una posibilidad alentadora para la alimentación animal, por el alto contenido de proteínas, aminoácidos, minerales y vitaminas que presentan las hojas y los forrajes (Madalla et al. 2013 y Alegbeleye 2018), donde se destacan todos los aminoácidos esenciales (Mune et al. 2016) y el bajo contenido de sustancias antinutricionales (Makkar y Becker 1997).

La utilización de la harina de forraje de Moringa oleifera en dietas para pollos de engorde de alto potencial de crecimiento (Ebenebe et al. 2012, Gadzirayi et al. 2012 y Kaijage et al. 2014) se registra en niveles moderados, que se hallan entre 10 y 15 %. Mientras, en pollos de menor potencial de crecimiento (pollos indígenas de Nigeria), se informa su uso efectivo en niveles entre 8 y 24 % de la dieta (Ayssiwede et al. 2011). De igual forma, en dietas para gallinas ponedoras, se recomienda entre 5 y 10 % (Kakengi et al. 2007, Olugbemi et al. 2010, Abou-Elezz et al. 2011 y Valdivié et al. 2016), como sustituto parcial de la harina de soya y del maíz.

En la literatura consultada no se dispone de mucha información acerca del uso de la moringa en aves de reemplazo de ponedoras White Leghorn. Por ello, este estudio tuvo como objetivo incluir niveles de harina de forraje de Moringa oleifera en dietas de reemplazo, destinadas a ponedoras (entre 9 y 18 semanas de edad) y para gallinas ponedoras White Leghorn L33, al inicio del pico de puesta (26 semanas de edad).

Materiales y Métodos

El trabajo se desarrolló en la Unidad Experimental Avícola del Instituto de Ciencia Animal (ICA), situado en el km 47½ de la Carretera Central, municipio San José de las Lajas, provincia Mayabeque.

El forraje de moringa que se utilizó en ambos experimentos es de la variedad Supergenius. Se cortó a los 55 d de rebrote. Posteriormente, se secó al aire bajo techo durante cinco días y luego, se molió en un molino de martillo a 1,5 mm de tamaño de partícula.

Se realizaron dos experimentos. El experimento 1 consistió en la utilización de 0, 10, 15 y 20 % de harina de forraje de moringa en la dieta para reemplazo de ponedoras de 9 a 18 semanas de edad. En el experimento 2, se usaron las mismas aves del experimento 1, de 19 a 26 semanas de edad, de los grupos control y 20 % de harina de forraje de moringa en la dieta.

Para la confección de las dietas se realizó el análisis químico de la harina de forraje de moringa, según AOAC (2007). La harina de forraje de moringa contenía 89 % de materia seca, 17 % de proteína bruta, 13 % de fibra bruta, 3,42 % de calcio, 0,1 % de fósforo disponible, 4,07 % de extracto etéreo y 8,49 % de cenizas. El fósforo disponible se estimó al considerar que las aves jóvenes utilizan 30 % del fósforo total, y las adultas 50 % (Scott et al. 1982). El contenido de aminoácidos de la harina de forraje de Moringa oleifera se determinó en laboratorios de AMINOLab Evonik Industries, Alemania (tabla 1).

Table 1. 

Amino acid content of Moringa oleifera forage meal, at 55d of regrowth

Amino acids, %Dry matter 100 %
Methionine0.243
Cystine0.395
Methionine + Cystine0.640
Lysine0.511
Threonine0.489
Tryptophan0.149
Arginine1.198
Isoleucine0.494
Leucine0.865
Valine0.634
Histidine0.238
Phenylalanine0.576
Glycine0.719
Serine0.527
Proline0.665
Alanine0.728
Aspartic acid 1.032
Glutamic acid 2,118

La energía metabolizable (EM) se estimó según el valor de una ecuación de Janssen (1989), que se ajusta a este tipo de alimento:

Con esta ecuación se obtuvo la estimación energética del forraje de Moringa oleifera de 5,799 Mj de EM/kg (1386 kcal/kg), siendo este valor el utilizado para la formulación de las dietas.

Experimento 1. Se utilizaron 120 aves de reemplazo de ponedoras White Leghorn L33, con 9 semanas de edad y peso vivo promedio de 673 g/ave. Se alojaron en jaulas metálicas de 1 m2, a razón de cinco aves por jaula. Las gallinas dispusieron de agua a voluntad en bebederos de niple y alimento ad libitum en comederos lineales. Recibieron el régimen de iluminación natural de 12 h por día entre febrero y mayo. Se vacunaron contra la enfermedad de Marek, bronquitis infecciosa, viruela aviar, Gumboro y Newcastle, según las normas del Instituto de Medicina Veterinaria de Cuba

Las aves se distribuyeron al azar, según diseño completamente aleatorizado. Se establecieron cuatro tratamientos, que consistieron en la inclusión en la dieta de 0, 10, 15 y 20 % de harina de forraje de Moringa oleifera, con seis repeticiones. Cada jaula constituyó la unidad experimental.

La composición de las dietas utilizadas en aves de 9 a 18 semanas de edad se muestra en las tablas 2 y 3. Se formularon según lo recomendado por la UECAN (2013) para la categoría avícola en estudio, en cuanto a proteína bruta, aminoácidos, calcio y fósforo. Las dietas fueron no isoenergéticas.

Table 2. 

Composition and calculated nutrient contribution in diets with Moringa oleifera forage meal for replacement pullets (9 to 16 weeks)

Raw matters Moringa forage meal (%)
0101520
Corn meal70.0070.4867.4463.72
Soy bean meal (44% CP)19.9016.0514.5913.10
Inert filler (sand)5.66000
Moringa meal0101520
Dicalcium phosphate 1.571.571.571.57
Calcium carbonate1.520.530.040
Salt0.250.250.250.25
DL methionine0.100.110.110.10
L- lysine00.010.010.01
Premix11.001.001.001.00
Calculated nutrient contribution
Crude protein14.5014.5014.5014.50
Metabolizable energy, Mj/kg11.7912.0811.8011.45
Available phosphorus, %0.370.370.370.37
Total calcium, %0.950.920.901.05
Methionine + Cystine, %0.570.580.570.57
Lysine, %0.660.650.650.65
Threonine, %0.510.510.510.52
Tryptophan, %0.170.170.170.18
Crude fiber, %2.263.363.884.40

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Table 3. 

Composition and calculated nutrient contribution in diets with Moringa oleifera forage meal between 17 and 18 weeks of age

Raw matters Moringa forage meal (%)
0101520
Corn meal66.4259.9556.7653.56
Soy bean meal (44% CP)26.2923.6222.2720.92
Moringa meal 0101520
Dicalcium phosphate1.691.701.701.70
Calcium carbonate 4.143.272.812.36
Salt0.250.250.250.25
DL- methionine0.210.210.210.21
Premix11.001.001.001.00
Calculated nutrient contribution
Crude Protein 17171717
Metabolizable energy, Mj/kg11.8811.2911.0010.72
Available phosphorus, %0.400.400.400.40
Total calcium, %2.002.002.002.00
Methionine + Cystine, %0.730.730.730.73
Lysine, %0.830.830.830.82
Threonine, %0.610.620.620.62
Tryptophan, %0.210.210.220.22
Crude fiber, %2.553.594.124.64

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Se controló el peso vivo individual de las aves a las 9 y 18 semanas de edad, así como el consumo de alimento semanal por repetición. Se utilizó para ello una pesa digital FWE, con escala de 0 a 25 kg y precisión de 0.001 g. Se calculó la ganancia de peso vivo de 9 a 18 semanas de edad y la conversión alimentaria. A las 18 semanas de edad se midió el largo de los tarsos.

Se sacrificaron 10 aves por tratamiento a las 18 semanas de edad para determinar el peso del hígado, el oviducto, el ovario y la grasa abdominal, expresados en gramos (g).

Experimento 2. A las 19 semanas de edad, se ubicaron las gallinas de los tratamientos control y 20 % de moringa en la nave de ponedoras para dar continuidad al experimento 1 y analizar los indicadores productivos al inicio del pico de puesta en la semana 26. Se distribuyeron según diseño completamente aleatorizado, a razón de 2 gallinas por jaula y 10 repeticiones por tratamiento.

Las jaulas utilizadas fueron de 40 cm de frente por 41 cm de fondo. El alimento se ofertó en comederos lineales, y el agua a voluntad en bebederos de niple (2 niples / jaula). Se ofrecieron 16 h de iluminación y ocho horas de oscuridad cada día.

La composición de las dietas utilizadas en la etapa de 19 a 26 semanas de edad (inicio de producción) se muestra en la tabla 4.

Table 4. 

Diets with 0 and 20 % of moringa forage meal during the stage of laying hens (19- 26 weeks)

Raw matters for feedstuff and contributionsMoringa forage meal (%)
020
Corn meal57.7544.77
Soy bean meal (44% CP)27.9222.55
Moringa meal-20
Vegetal oil2.302.30
Dicalcium phosphate1.701.76
Calcium carbonate8.867.15
Salt0.250.25
DL- methionine0.220.22
Premix11.001.00
Calculated nutrient contribution
Crude Protein 1717
Metabolizable energy, MJ/kg11.6510.90
Available phosphorus, %0.400.40
Total calcium, %3.803.80
Methionine + Cystine, %0.730.73
Lysine, %0.860.85
Threonine, %0.620.62
Tryptophan, %0.210.22
Crude fiber, %2.494.58

1Premix: Vitamin supplement: vit. A, 10,000UI; vit. D3, 2,000 IU; vit. E, 10 mg; vit. K, 2 mg; thiamine, 1 mg; riboflavin, 5 mg; pyridoxine, 2 mg; vit. B12, 15.4 μg; nicotinic acid, 125 mg; calcium pantothenate, 10 mg; folic acid, 0.25 mg; biotin, 0.02 mg. Mineral supplement: selenium, 0.1 mg; iron, 40 mg; copper, 12 mg; zinc, 120 mg; magnesium, 100 mg; iodine, 2.5 mg; cobalt 0.75 mg

Se controló el índice de puesta, consumo de alimento por ave por día y peso de los huevos. La pigmentación de la yema se determinó mediante el abanico Roche. Se calculó el alimento necesario para producir un huevo.

Para el procesamiento estadístico de los resultados de ambos experimentos se utilizó el programa INFOSTAT, versión 2012 (Di Rienzo et al. 2012). Para determinar las diferencias entre medias se aplicó la dócima de Duncan (1955) para P < 0.05, cuando fue necesario.

Se realizó análisis de covariable para las variables largo del tarso, al inicio y 18 semanas de edad. Se determinó el peso vivo a las 18 semanas de edad, ganancia media de la etapa y conversión. Se tomó como variable concomitante el peso inicial.

Resultados y Discusión

Experimento 1. En la etapa de 9 a 18 semanas de edad, la viabilidad fue alta y superior a 96 % en todos los tratamientos. Esto indica que en esa etapa la inclusión de hasta 20 % de harina de forraje de moringa en los piensos para las aves de reemplazo no genera alta mortalidad, lo que coincide con lo informado por Valdivié et al. (2016). Estos autores refirieron que la utilización de 20 % o niveles superiores de harina de forraje es asimilable en las aves.

En las tablas 5 y 6 se muestra que los niveles de harina de moringa evaluados no afectaron el peso vivo ni la ganancia de peso vivo a las 18 semanas de edad. El consumo de alimento en la etapa de 9 a 18 semanas y la conversión alimentaria no mostraron diferencias entre tratamientos. Tampoco las hubo entre tratamientos para el largo del tarso.

Este comportamiento demuestra que las dietas con harina de forraje de moringa lograron satisfacer las necesidades nutritivas de las aves White Leghorn L33 de reemplazo, entre las 9 y 18 semanas de edad. Según Makkar y Becker (1997), estas dietas no contienen sustancias antinutricionales a niveles dañinos. Cabrera et al. (2017) describen baja cantidad de taninos en las hojas, lo que permite un mejor aprovechamiento de los nutrientes por los animales que la consumen.

Table 5. 

Liveweight at 18 weeks, intake between 9 and 18 weeks and tarsus length in replacement pullets

IndicatorsMoringa forage meal (%)SE ±Sig.
0101520
Liveweight at 18 weeks, g126912561237124829P=0.8854
Intake from 9 to 18 weeks, g423844364504444795P=0.2453
Tarsus length, mm89.1988.4289.3488.400.57P=0.5241

Table 6. 

Liveweight gain and conversion between 9 and 18 weeks in replacement pullets

Indicators (from 9 to 18 weeks)Moringa forage meal (%)Sig. Treat.Sig. Covariable
0101520
Weight gain, g591 ± 29593 ± 30564 ± 29570 ± 29P=0.8585P=0.0236
Food conversion7.27 ± 0.477.74 ± 0.488.09 ± 0.467.89 ± 0.47P=0.6481P=0.0386

En este estudio, independientemente de que aumentó el contenido de fibra bruta en las dietas utilizadas, no sobrepasó 5 %. Las aves de reemplazo de ponedoras asimilaron este aporte para su crecimiento y desarrollo.

En la tabla 7 se muestra que, a las 18 semanas de edad, no hubo diferencias para el peso del hígado, peso del ovario y peso del oviducto. Esto indica que el crecimiento de las aves y su desarrollo fueron totalmente normales con las dietas que contenían hasta 20 % de harina de moringa.

Table 7. 

Weights of liver, abdominal fat, oviduct and ovary in replacement pullets consuming diets with the inclusion of moringa forage meal

IndicatorMoringa forage meal (%)SE ±Sig.
0101520
Liver , g27.4426.4426.6724.561.93P=0.7511
Abdominal fat, g13.11b8.56ab3.33a4.56a2.05P=0.0084
Oviduct, g5.894.225.676.441.94P=0.8694
Ovary, g0.891.331.110.560.47P=0.6881

a,b different letters in the same line indicate significant differences for P<0.05

De acuerdo con Valdivié et al. (2016), la deposición de grasa abdominal se redujo en los tratamientos con 15 y 20 % de harina de moringa con respecto al control (tabla 7). Esto se atribuye a la menor concentración de EM en las dietas de prepostura con estos niveles de moringa.

Experimento 2. En la semana 26 de edad, las gallinas que consumieron 20 % de moringa en la dieta presentaron indicadores productivos similares al tratamiento control (tabla 8). El índice de puesta resultó por encima de 90 %, lo que indica que las gallinas a esa edad se encontraban durante el pico de puesta (Rostagno et al. 2017). El consumo fue mayor que el control (tabla 9), lo que tal vez fue una respuesta para satisfacer sus necesidades energéticas, sin llegar a deteriorar la conversión (g de pienso/huevo).

La pigmentación de la yema de los huevos a las 26 semanas de edad fue mayor con 20 % de harina de moringa en la dieta. Según lo planteado por Abou-Elezz et al. (2011), Moyo et al. (2011), Tesfaye et al. (2014) y Valdivié et al. (2016), esto se atribuye a los aportes de pigmentos carotenoides que realiza la harina de moringa

Table 8. 

Production indicators of laying hens consuming moringa forage meal (week 26 of age, beginning of laying peak)

IndicatorsMoringa forage meal (%)SE ±Sig.
020
Laying, %93.5793.571.050.9999
Intake, g/animal/d 10610910.0480
g of feedstuff/egg113118120.6740
Egg weight, g495010.3824
Yolk pigmentation460.20.0001

En la tabla 9 se muestra que las aves consumieron la cantidad de nutrientes necesarios para cubrir sus requerimientos según NRC (1994). Incluso, cuando las aves consumieron dietas no isoenergéticas, la cantidad de nutrientes fue suficiente para mantener la puesta.

Table 9. 

Daily nutrient intake per animal

IndicatorMoringa forage meal (%)
020
Crude protein, g18.0218.53
Metabolizable energy, kcal295284
Crude fiber, g2.644.99
Available phosphorus, mg424436
Total calcium, g4.034.14
Methionine + cystine, mg774796
Lysine, mg912927
Threonine, mg657676
Tryptophan, mg223240

Conclusiones

Experimento 1. Para las aves de reemplazo White Leghorn L33, desde las 9 hasta las 18 semanas de edad, la utilización de hasta 20 % de harina de forraje de Moringa oleifera en las dietas no afecta el crecimiento, el comportamiento productivo ni el desarrollo de ovarios y oviducto.

Experimento 2. En gallinas ponedoras White Leghorn L33, de 19 semanas de edad, la utilización de 20 % de harina de forraje de Moringa oleifera en las dietas permite alcanzar el pico de puesta a las 26 semanas de edad.