ANIMAL SCIENCE

Production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran (Triticum aestivum) and purification of their laccases


Abstract

The present study describes the production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran (Triticum aestivum) and the purification of their laccases. Fermentation process was determined in wheat bran during 7 days and samples were taken every 24h. The enzymatic assay (endo, exo β1, 4-glucanase, xylanases and laccases) was performed. Laccase activity was determined with a spectrophotometer, by syringaldazine oxidation under aerobic conditions and lignin peroxidase was determined by oxidative dimerization dependent on H2O2 of 2.4-dichlorophenol. The enzyme crude was concentrated by membrane filtration with nitrogen stream and purified by ion exchange chromatography with DEAE matrix. Enzyme yield and purification parameters were measured. With the fermentation conditions in wheat bran, a sustained increase in the production of endo β1,4 glucanase and xylanases was obtained after 72 h and exo β1, 4 glucanase at 48 h and laccase enzymatic activity was checked at 24 h and lignin peroxidase after 48h of fermentation. The fungus T. viride M5-2 reached its maximum production of laccases after two days of fermentation and through the proposed purification system, an enzymatic product with a purification factor of 12 was obtained, without affecting the enzyme yield. It is concluded that the T viride strain has the capacity to produce the lignocellulolytic enzyme complex in wheat bran. The separation method used to purify laccase enzymes is effective. It is recommended to add successive steps of purification depending on the degree of purity.

Key words: 

ligninase; fungi; lignin; cellulases; xylanases.

 


Introduction

Although there are worldwide researches focused on the production of basidiomycete fungi ligninases, as a biological method to reduce lignin content of biomass (Janusz et al. 2015), there is still a lack of answers to many questions about obtaining them. In particular, it is necessary to study other potential fungi species in the synthesis and ligninases production (Brijwani et al. 2010) as is the case of Trichoderma genus.

The species of Trichoderma are widely distributed in all latitudes, and occur naturally in different environments, especially in those that contain organic matter or decomposing plant wastes. They have the ability to produce several metabolites and adapt to various environmental conditions and substrates, this gives the Trichoderma genus the possibility of being use in the biotechnology industry.

Laccases generally produced from fungi are accompanied by other types of compounds such as isoforms, proteases, cellulases and other compounds derived from crude extract production (Jia et al. 2019). There are several methods that are used for the separation and purification of laccases from crude extracts of fungi, such as chromatography, centrifugation, phase formation, precipitation and filtration. They are used depending on the objective with the purified protein, either identification or improvement of a subsequent process (Camperi et al. 2014 and Borges et al. 2019).

The mutant strain identified in previous studies as Trichoderma viride M5-2 has the capacity to biotransform highly lignocellulosic substrates such as sugarcane bagasse (Valiño et al. 2004) and some species of temporary legumes (Valiño et al. 2015ab), where the production of its cellulase enzymes was quantified. However, the study of ligninolytic enzyme production of this fungus has not been deepened for enzymatic induction studies by biological interactions with other high laccase-producing fungi in wheat bran. These studies are focused on the industrial importance approach for biotechnological applications (Zhao et al. 2018 and Junior et al. 2020).

For these reason, it is necessary to elucidate and define the methodologies, design parameters and operating conditions for the separation, concentration and purification of ligninolytic enzymes synthesized by this strain. The objective of this research was to study the production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran and the purification of their laccases.

Materials and Methods

Microorganism. The mutant strain of lignocellulolytic T. viride, identified as M5-2 fungus, belonging to the strains collection from Biotechnology Department of the Institute of Animal Science was used (Sosa et al. 2017).

Culture conditions. The fungus strain was cultured in a dish with Potato Dextrose Agar (PDA) medium. It was incubated for 7 days at a temperature of 30 ºC. After this period it was passing to an enriched medium for fungi according to table 1.

Table 1. 

Composition of the enriched medium for fungal growth

Culture mediumQuantity (1L)
Glucose 10.0 g
Potassium phosphate 2.0 g
Magnesium sulphate0.5 g
Malt extract3.5 g
Yeast extract2.0 g
Bactopeptone0.1g
Metallic salts solution 1.0mL
Copper sulphate 0.5 mg
Magnesium sulphate 0.16 mg
Zinc sulphate 1.14 mg
Cobalt chloride 0.29 mg

Fermentation process. One aliquot of 5mL was taken from the enriched media and inoculate into a flask containing 3 g of wheat bran (table 2) and 100 mL of citrate buffer (50 mM, pH 5.0). Liquid cultures were incubated in an orbital shaker at 120 rpm for 10 days at 30 °C. Fermentation samples were taken every 24 hours, filtered through Büchner funnnel, and the resulting liquid was centrifuged (10 000 rpm, 3 min at 4°C) and reserved for further analysis.

Table 2. 

Description for every 40 grams of high-fiber wheat bran

ContentGrams
Proteins6.0 0
Fats1.50
Available carbohydrates 18.00
Sugars 7.00
Dietary fiber11.00
Sodium 0.11

Assay of enzymatic cellulase activities (endo β1, 4-glucanase and exo β 1, 4-glucanase). Endo β1,4-glucanase (CMCasa) activity was determined on the carboxymethylcellulose substrate and exo β1,4-glucanase (PFasa) activity on crystalline cellulose. They were calculated and expressed in international units per milliliter (U/ mL). This activity refers to glucose micromoles released per minute of reaction under the conditions of the activity assay (Mandels et al. 1976). The content of reducing sugars released was determined by the 3.5-dinitrosalicylic acid method (Miller, 1959).

Xylanase activity was determined by mixing 0.9 mL of 1% (w/v) birch wood xylan (prepared in 50 mM Sodium-citrate buffer, pH 5.3) with 0.1 mL of suitably diluted enzyme and the mixture was incubated at 50 °C for 5 min (Bailey et al. 1992). The reaction was stopped by addition of 1.5 mL of 3, 5 dinitrosalicylic acid (DNS) and the content was boiled for 5 min (Miller 1959). After cooling, the developed color was read at 540 nm. The amount of liberated reducing sugar was quantified using xylose as standard. One unit of xylanase activity was defined as the amount of enzyme that liberates 1 mol of xylose equivalents per minute under the assay.

The enzymatic assay of laccase and lignin peroxidase activity was carried out according to the methodology proposed by Kumar et al. (2016). Samples were taken from the submerged fermentation of wheat bran as previously described.

Laccase activity was determined with a spectrophotometer, by syringaldazine oxidation under aerobic conditions. The resulting violet color was measured at 530 nm. The analytical conditions were 5 mM of syringaldazine, 50 mM buffer citrate, pH 4.5, 30°C and 1 minute reaction time. A laccase unit (U) is the amount of enzyme that catalyzes the conversion of 1.0 mmol of syringaldazine per minute under these conditions. Lignin peroxidase was determined by the H2O2-dependent oxidative dimerization of 2.4-dichlorophenol at 25°C, where the reaction mixture contained 26 mM of 4-amino-antipyrin, 20 mM of 2.4-dichlorophenol and 3 mM of H2O2 in 20 mM with pH 4.5 of sodium succinate. The change in absorbance was monitored at 510 nm (ε = 1.85x104 M-1cm-1).

Estimation of protein. Protein concentration was determined at different fermentation hours and after each step of the purification process by the Bradford method, with the use of a standard curve of bovine serum albumin (BSA) (AOAC 2005).

Statistical analysis. A completely randomized design was used, in which differences of pH, enzymatic activity, productivity and humidity were measured, with respect to fermentation times. All this determination was made with three repetitions, where each Erlenmeyer constituted an experimental unit. For result processing, a simple classification was carried out in the statistical system INFOSTAT (di Rienzo et al. 2012). The differences between means were established according to Duncan (1955) test.

Purification of laccase of the T viride M5-2 fungus (Gagaoua and Hafid 2016). From laccase production kinetics, establish for the strain, the fermentation time of greater production of this enzyme was used to produce more extract in order to carry out the purification process. According to this, 1 L of liquid medium was prepared, which was inoculated with an equal proportion of 5 mL of inoculum of the fungus per 100 mL of medium. After the fermentation time, the culture was filtered in sterile gauze and centrifuged at 1 400 rpm for 1 min. The supernatant was again subjected to enzymatic laccase analysis and the protein concentration was measured. The enzymatic extract was concentrated by filtration in membrane Pellicon ® XL filter of 30 KDa (Millipore, Germany) and five washings were performed with phosphate buffer (10 mM, pH 7)

Anion exchange chromatography. Anion exchange chromatography was developed according to the methodology proposed by Janson (2011). The sample was applied to a DEAE anion exchange sepharose fast flow column in a fast protein liquid chromatography (FPLC) BioRad, United States. The resin was packed in a 20 cm by 1 cm column to a volume of 15 mL. It was balanced by three volumes of buffer A (sodium acetate 10 mM, pH 5) at a flow rate of 3 mL/min. After sample application, a gradient program was followed by steps from 100 to zero percent of buffer A, with a consequent increase in buffer B or elution buffer (sodium acetate 10 mM, pH 5 with molar sodium chloride 2). Fractions of 3 mL were collected throughout the program running. Each of the collected fractions was dialyzed and concentrated with an Amicon® Ultra fifteen device, Germany and the laccase activity was analyzed with syringaldazine as a substrate. The fractions found as positive were pooled and concentrated through the Amicon® device to calculate the specific activity and purification parameters.

Purification parameters (purification factor and enzyme yield). From the values of enzymatic activity and protein concentration, the purification parameters were calculated as:

Results and Discussion

Cellulolytic and xylanolytic enzymatic activity. Figure 1 shows the determinations of endo and exo β 1,4-glucanase and xylanases cellulolytic activity in solid medium submerged in wheat bran with the pH and temperature conditions established for this fermentation p <0.0001. The maximum production achieved for exo β 1,4-glucanase was 0.222 U/mL at 48h. However, for endo β 1,4-glucanase and xylanases, these conditions favor its production after 72h of fermentation, with 0.214 and 0.31U/mL respectively.

Figure 1. 

Cellulolytic activity endo β1, 4 glucanase (P <0.0001, SE ±0.0013) and exo β 1.4 glucanase (P <0.0001, SE ±0.0033) and xylanase (P <0.0001, SE ±0.0021) by T. viride M5-2 in submerged medium of wheat bran. The activity maximum values were obtained at a temperature of 30ºC.

Differences between maximum enzyme production and low values found in relation to fermentation time suggest that they may be related to wheat bran chemical composition, that do not favor the action of exoglucananase and the rest. This requires additional experimental justification.

Cellulase production in cultures is associated with growth and is influenced by various parameters including the nature of cellulosic substrate, medium pH and nutrient availability. In addition, a large-scale production of cellulases requires understanding and proper control of the growth and enzyme production capabilities of the producer (Singhania et al. 2017). This is, however, extremely complicated because many factors and their interactions can affect cellulase productivity. Media formulation for fermentation is of significant concern because no general composition can provide the optimum growth and cellulase production. Amorim et al. (2019) proposed liquefied wheat bran as carbon source and inducer in high-solids submerged cultivation for xylanase production. Enzyme synergism results improved reduced sugar yield and it depends on enzyme composition and ultrastructural features of substrate (Meehnian et al. 2017). Structural features of substrate are sometimes altered in the presence of additives (Obenga et al. 2017).

This result differs from the fermentation in sugar cane bagasse in terms of production time of the enzyme, where cellulolytic activity is higher. The major technical limitation in fermentative production of cellulases remains the increased fermentation times with low productivity (Van Dyk and Pletschke 2012 and Singhania et al. 2017). The candidate strain for enzymatic production fermentative processes are those capable of expressing their maximum capacity during the first fermentation hours, since this reduces the working time and optimizes the process as the results achieved in this study (Valiño et al. 2016a b).

Laccase and peroxidase enzymatic activity. Figure 2 shows the results obtained in the enzymatic laccase activity assay. The maximum production of laccases was reached at 48 h of submerged fermentation in wheat bran, with 0.22 U/mL. To be a conidial fungus, it has an important production of enzymes in a short time of incubation.

Figure 2. 

Laccase activity of T. viride M5-2 in submerged medium of wheat bran, in a fermentation kinetics of 250h (EE ±1, 07; P<0, 0001)

These values are similar to those reported in some basidiomycetes. According to Ozcirak and Ozturk (2017), patterns of ligninolytic enzymes production in Pleurotus (excellent lignin degrader), during 23 days at 25°C in solid state fermentation using pretreated potato peel were 6 708.3 ± 75 U/L for laccase and 2 503.6 ± 50 U/L for manganese peroxidase.

Lignin degradation is catalyzed by an extracellular complex produced by some fungi, when they have been exposed to nutrient limiting conditions in the culture medium (Pollegioni 2015). This complex is composed by three ligninolytic enzymes involved in the degradation of lignin, manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase (Selvam et al. 2003 and Rybczyńska and Korniłłowicz, 2017).

According to Moreno (2013) and Rezaei et al. (2017), delignification process can increase enzyme accessibility by increasing the number of pores and the accessible surface area, thus improving the yields of enzymatic hydrolysis (Oliva et al. 2015).

Laccase activity can be detected in lignin bioassays as the only carbon source, although the analytical tests for lignin determination make them expensive. However, other organic compounds such as syringaldazine, used in this study, are also substrates of others lignin-modifying enzymes, for example the lignin peroxidase, where the activity is easily revealed by a change in the coloring of the culture medium (Mehandia et al. 2020).

The results of the assay to detect lignin peroxidase did not show rapid activity. Notable changes in the coloration of substrate were manifested after 5 min of the enzymatic reaction (figure 3). This indicates that lignin peroxidase is at a lower concentration compared to laccase, probablemente due to fermentation time and conditions for peroxidase activity assay.

Figure 3. 

Peroxidase activity of T. viride M5-2 in submerged medium of wheat bran in a fermentation kinetics of 230h (EE ±0.0021; P<0, 0001)

Kinetics of peroxidase production by the T. viride M5-2 strain is different from laccase production kinetics, possiblly due to different mechanisms of action of these enzymes, where lignin peroxidase is capable of acting directly on phenolic (Guerberoff and Camusso 2019) and non-phenolic (Kumar et al. 2016) lignin wastes, while laccases can also act on non-phenolic wastes through a lipid peroxidation secondary reaction (Moreno 2013).

Laccase purification. The enzymatic concentrate obtained from the fermentation of wheat bran with T. viride M5-2 strain was worked according to a laccase purification methodology. In this process, it is known that they have an acidic isoelectric point, so it is feasible to purify them at pH above this one by means of ion exchange chromatography.

In this study, a positively charged DEAE sepharose matrix was used, which allowed the enzyme to be negatively charged above its isoelectric point and could adhere to the matrix, and as a consequence could be eluted by pH variation or ionic strength.

During the study, different bands associated with the presence of laccases were observed in the exchange columns, so the activity test of this enzyme was performed on the different collected fractions. According to the dish test, it was determined that the T viride M5-2 fungus was able to oxidize phenolic substrates such as siringaldazyne and has two types of laccases, the first eight fractions collected have a high enzymatic activity and the fractions of the eighteen to the twenty seven have another type of laccase with lower activity.

The fractions with eluted laccase activity, showed different chromatographic performances, which could be closely associated to their structure. The first eight fractions, as well as the fractions from eighteen to twenty-seven, were joined to form two new fractions called Fraction I and Fraction II. These fractions were again concentrated by membrane filtration with nitrogen current.

It was found that Enzymatic Fraction I showed higher laccase activity than the most retained Enzymatic Fraction II, due to the low activity of this fraction. Purification parameters of laccase from T. viride M5-2 were determined with Fraction I as shown in figure 4.

Figure 4. 

Purification process parameters of the Fraction I laccase of T. viride M5-2. CE: Crude extract, PL: Purified Laccase, Pc: Protein content (EE ± 0.10), Ea: Enzymatic activity (EE ± 5.68), Sa: Specific activity (EE ± 1.05), PF: Purification factor, Y: Yield, The significance was the same for all the parameters evaluated (P <0.0001)

Specific activity of the enzymatic extract in this Fraction was increased by achieving the removal of a large part of the contaminating proteins and reaching a purification factor higher than twelve, which indicates that this Fraction is twelve times purer than the initial preparation. The purification scheme used in this study also allowed not compromising the enzyme yield, obtaining a value of 182 %.

Regarding the overall performance of the process, this study coincides with the results proposed by Gagaoua and Hafid (2016), who obtained yields greater than 100% with low purification factors, which is associated with the presence of laccase as a predominant protein. However, there are crude extracts that have a high protein concentration that are not precisely the protein of interest, where the presence of more pollutants affects the process performance. Liu et al. (2015) reported yields below 70% due to these reasons.

Another aspect that should be highlighted is the use of wheat bran as raw material for obtaining ligninase enzymes and the selection of fermentation system in submerged solid medium that guarantees a faster and simpler obtaining process. It is also necessary to point out the effectiveness of the purification system used in this study in the selective separation of laccase enzymes present in the crudes.

There are several methods that are used for the separation and purification of laccases from raw fungus extracts. These include chromatographic methods, ultra centrifugation, phase formation, precipitation and ultra-filtration. These methods are used depending on the utility pursued with the purified protein, whether it is identification or improvement of a subsequent process (Camperi et al. 2014).

To select the specific purification method for laccases, factors such as: application availability, enzyme activity conservation, purification efficiency and amount of purified protein must be taken into account. With these factors, centrifugation is initially ruled out to separate laccase because this method is ideal for separating enzymes from biomass remnants in the enzyme extract and for analyzing structures and variable separation times. However, the use of this method generates phases where the target protein is, together with other proteins of similar molecular weight, which creates confusion. In addition, structural modifications of protein occur, which affects the performance of the enzymatic activity (Shi, 2016).

It is important to highlight that chromatographic methods are the most used to purified enzymes, but sometimes yields are not so high. This is a problem, especially if it is intended to use the purified enzyme in pretreatment processes of lignocellulosic material. In general, these methods are used in the identification and molecular study of proteins (Camperi et al. 2014). However, results of the present study show a purification factor that allows the enzyme to be concentrated without affecting the yield, which is an aspect that is important to propose this working methodology in the purification of lacases from this species

It is concluded that T. viride strain has the capacity to produce the lignocellulolytic enzyme complex in wheat bran. The separation method used to purify laccase enzymes is effective. It is recommended to add successive steps of purification depending on the degree of purity.

 

References

AOAC. 2005. Official Methods of Analysis. 18th Ed. Ed. Association of Officiating Analytical Chemists, Washington DC, U.S.A, ISBN: 9780935584752

Adney B. & Baker J. 2008. Measurement of cellulase activities. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42628. National Renewable Energy Laboratory, Midwest Research Institute, Colorado, U.S.A, p. 11

Amorim, C.C., Farinas, C.S. & Miranda, E.A. 2019. “Liquefied wheat bran as carbon source and inducer in high-solids submerged cultivation of Aspergillus niger for xylanase production”. Biocatalysis and Agricultural Biotechnology, 21: 101346, ISSN: 1878-8181, DOI: 10.1016/j.bcab.2019.101346

Bailey, M.J., Biely, P. & Poutanen, K. 1992. “Interlaboratory testing of methods for assay of xylanase activity”. Journal of Biotechnology, 23(3): 257-270, ISSN: 0168-1656, DOI: 10.1016/0168-1656(92)90074-J

Soares, G., Agnezi, J.C., Paulino, L.B., Hencker, L.B., de Lira, T.S., Tardioli, P.W. & Pinotti, L.M. 2019. “Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi”. Biocatalysis and Agricultural Biotechnology , 17: 1-6, ISSN: 1878-8181, DOI: 10.1016/j.bcab.2018.10.019

Brijwani, K., Rigdon, A. & Vadlani, P.V 2010. “Fungal laccases: production, function, and applications in food processing”. Enzyme Research, 2010: 1-10, ISSN: 2090-0414, DOI: 10.4061/2010/149748

Camperi, S.A., Martínez, M.C., Giudicessi, S.L., Marani, M.M., Albericio, F. & Cascone, O. 2014. Protein Downstream Processing. Labrou, N.E. (ed), Ed. Humana Press, Agricultural University of Athens, Athens, Greece, p. 545, ISSN: 1064-3745, ISBN: 978-1-62703-976-5, DOI 10.1007/978-1-62703-977-2

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. 2012. InfoStat. version 2012,[Windows], Universidad Nacional de Córdoba, Argentina: Grupo InfoStat. Available: http://www.infostat.com.ar

Duncan, D.B. 1955. “Multiple Range and Multiple F Tests”. Biometrics, 11(1): 1-42, ISSN: 0006-341X, DOI: 10.2307/3001478

Janson, J.C. 2011. Protein Purification: Principles, High Resolution Methods, and Applications. 3rd Ed. Ed. Wiley, Uppsala, Sweden, p. 548, ISBN: 978-0-471-74661-4

Gagaoua, M. & Hafid, K. 2016. “Three phase partitioning system, an emerging non-chromatographic tool for proteolytic enzymes recovery and purification”. Biosensors Journal, 5(1): 1-4, ISSN: 2090-4967, DOI: 10.4172/2090-4967.1000134

Guerberoff, G.K. & Camusso, C.C. 2019. “Effect of laccase from Trametes versicolor on the oxidative stability of edible vegetable oils”. Food Science and Human Wellness, 8(4): 356-361, ISSN: 2213-4530, DOI: 10.1016/j.fshw.2019.09.003

Janusz, G., Czuryło, A., Frąc, M., Rola, B., Sulej, J., Pawlik, A., Siwulski, M. & Rogalski, J. 2015. “Laccase production and metabolic diversity among Flammulina velutipes strains”. World Journal of Microbiology and Biotechnology, 31(1): 121-133, ISSN: 0959-3993, DOI: 10.1007/s11274-014-1769

Jia, M., Chen, J., Liu, X., Xie, M., Nie, S., Chen, Y., Xie, J. & Yu, Q. 2019. “Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation”. Food Hydrocolloids, 94: 468-474, ISSN: 0268-005X, DOI: 10.1016/j.foodhyd.2019.03.047

Junior, J.A., Vieira, Y.A., Cruz, I.A., da Silva, D., Aguiar, M.M., Torres, N.H., Bharagava, R.N., Lima, Á.S., de Souza, R.L. & Ferreira, L.F. 2020. “Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification”. Biotechnology Reports, 25: e00411, ISSN: 2215-017X, DOI: 10.1016/j.btre.2019.e00411

Kumar, R., Kaur, J., Jain, S. & Kumar, A. 2016. “Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization”. Journal of Genetic Engineering and Biotechnology, 14: 125-131, ISSN: 1687-157X, DOI: 10.1016/j.jgeb.2016.05.006

Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D., Shen, Y., He, X., Lai, M. & He, Y. 2014. “Study on biodegradation process of lignin by FTIR and DSC”. Environmental Science and Pollution Research, 21(24): 14004-14013, ISSN: 0944-1344, DOI: 10.1007/s11356-014-3342-5

Makkar, H.P. 2003. Quantification of tannins in tree and shrub foliage: a laboratory manual. Ed. Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 34, ISBN: 1-4020-1632-8

Mandels, M. 1982. “Cellulases”. In: Annual Reports on Fermentation Processes, 5: 35-78, ISBN: 0140-9115, DOI: 10.1016/ B978-0-12-040305-9.50006-6

Mandels, M., Andreotti, R. & Roche, C. 1976. “Measurement of saccharifying cellulase”. Biotechnology and Bioengineering Symposium, 6: 21-33, ISSN: 0572-6565

Meehnian, H., Jana, A.K. & Jana, M.M. 2017. “Pretreatment of cotton stalks by synergistic interaction of Daedalea flavida and Phlebia radiata in co-culture for improvement in delignification and saccharification”. International Biodeterioration & Biodegradation, 117: 68-77, ISSN: 0964-8305, DOI: 10.1016/j.ibiod.2016.11.022

Miller, G. L. 1959. “Use of dinitrosalicylic acid reagent for determination of reducing sugar”. Analytical Chemistry, 31(3): 426-428, ISSN: 0003-2700, DOI: 10.1021/ac60147a030

Moreno, A.D. 2013. Estudio de enzimas oxidorreductasas en la transformación de biomasa lignocelulósica en biocombustibles. Deslignificación y destoxificación. PhD Thesis. Departamento de Bioquímica y Biología Molecular I, Facultad De Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, España, p. 247

Obeng, E.M., Budiman, C. & Ongkudon, C.M. 2017. “Identifying additives for cellulase enhancement-A systematic approach”. Biocatalysis and Agricultural Biotechnology , 11: 67-74, ISSN: 1878-8181, DOI: 10.1016/j.bcab.2017.06.006

Ogudoro, A. C., Saidu, A.N. & Kabiru, A.Y. 2014. “Evaluation of the phytochemical and antinutrient composition of raw and processed Mucuna pruriens (Velvet beans)”. Annals. Food Science and Technology, 15(1): 60-69, ISSN: 2344-4916

Ozcirak, S. & Urek, R.O. 2017. “Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus”. Annals of Agrarian Science, 15(2): 273-277, ISSN: 1512-1887, DOI: 10.1016/j.aasci.2017.04.003

Pollegioni, L., Tonin, F. & Rosini, E. 2015. “Lignin‐degrading enzymes”. The FEBS Journal, 282(7): 1190-1213, ISSN: 1742-464X

Quiroz, R.E. & Folch, J.L. 2011. “Proteínas que remodelan y degradan la pared celular vegetal: perspectivas actuales”. Biotecnología Aplicada, 28(4): 205-215, ISSN: 1027-2852

Rezaei, S., Shahverdi, A.R. & Faramarzi, M.A. 2017. “Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp”. Bioresource Technology, 230: 67-75, ISSN: 0960-8524, DOI: 10.1016/j.biortech.2017.01.036

Rybczyńska, K. & Korniłłowicz, T. 2017. “Biotransformation and ecotoxicity evaluation of alkali lignin in optimized cultures of microscopic fungi”. International Biodeterioration & Biodegradation , 117: 131-140, ISSN: 0964-8305, DOI: 10.1016/j. ibiod.2016.12.011

Selvam, K., Swaminathan, K. & Chae, K.S. 2003. “Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp.”. Bioresource Technology , 88(2): 115-119, ISSN: 0960-8524, DOI: 10.1016/S0960-8524(02)00280-8

Shi, J.B., Yang, Q.L., Lin, L., Zhuang, J.P., Pang, C.S., Xie, T.J. & Liu, Y. 2012. “The structural changes of the bagasse hemicelluloses during the cooking process involving active oxygen and solid alkali”. Carbohydrate Research, 359: 65-69, ISSN: 0008-6215, DOI: 10.1016/j.carres.2012.06.021

Singh, G., Oberoi, H.S., Kaur, S., Bansal, S. & Brar, S.K. 2011. “Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi”. Industrial Crops and Products, 34(1): 1160-1167, ISSN: 0926-6690, DOI: 10.1016/j.indcrop.2011.04.001

Singhania, R.R., Adsul, M., Pandey, A., & Patel, A.K. 2017. Cellulases. In: Current Developments in Biotechnology and Bioengineering. 1st Ed. Ed. Elsevier, p. 73-101, ISBN: 9780444636638, DOI:10.1016/b978-0-444-63662-1.00004-x

Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E., Galindo, J., Sosa, D., Alberto, M., Roque, D. & Albelo, N. 2018. “Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science”. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480

Oliva, A., Tomás, E., Demuez, M., González, C. & Ballesteros, M. 2016. “Phenols and lignin: key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase”. Journal of Biotechnology , 218: 94-101, ISSN: 0168-1656, DOI: 10.1016/j.jbiotec.2015.11.004

Valiño, E., Dustet, J.C., Pérez, H., Brandão, L.R., Rosa, A.C. & Scull, I. 2016a. “Transformation of Stizolobium niveum with cellulolytics fungi strains as functional food”. Academia Journal of Microbiology Research, 4(4): 62-71, ISSN: 2315-7771, DOI: 10.15413/ajmr.2015.0106

Valiño, E., Elías, A., Rodríguez, M. & Albelo, N. 2015. “Evaluation Using Fourier Transformed-Infrared Spectroscopy (FT-IR) of Biodegradation by the Strain Trichoderma viride M5-2 from the Cell Walls of Sugarcane (Saccharum officinarum Lin) Bagasse Pretreated”. International Journal of Chemical and Biomolecular Science, 1(3): 134-140, ISSN: 2319-7064

Valiño, E., Savón, L., Elías, A., Rodríguez, M. & Albelo, N. 2016b. “Nutritive value improvement of seasonal legumes Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus, through processing their grains with Trichoderma viride M5-2.”. Cuban Journal of Agricultural Science , 49(1): 81-89, ISSN: 2079-3480

Valiño, E.C., Elías, A., Torres, V., Carrasco, T. & Albelo, N. 2004. “Improvement of sugarcane bagasse composition by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor.”. Cuban Journal of Agricultural Science , 38(2): 143-150, ISSN: 2079-3480

Van Dyk, J.S. & Pletschke, B.I. 2012. “A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic 11 cooperation between enzymes-factors affecting enzymes, conversion and synergy”. Biotechnology Advances, 30(6): 1458-1480, ISSN: 0734-9750, DOI: 10.1016/j.biotechadv.2012.03.002

Zhao, C., Deng, L. & Fang, H. 2018. “Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability”. Biomass and Bioenergy, 112: 93-98, ISSN: 0961-9534, DOI: 10.1016/j.biombioe.2018.03.001

 

 

 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution License

 

CIENCIA ANIMAL

 

Producción de enzimas lignocelulasas de Trichoderma viride M5-2 en salvado de trigo (Triticum aestivum) y purificación de sus lacasas


Resumen

Esta investigación describe la producción de enzimas lignocelulasas del Trichoderma viride M5-2 en salvado de trigo (Triticum aestivum) y la purificación de sus lacasas. El proceso de fermentación se realizó en el salvado de trigo durante 7 días y se tomaron muestras cada 24 h. Se realizó el ensayo enzimático (endo, exo β1,4 glucanasa, xilanasas y lacasas). La actividad de la lacasa se determinó por espectrofotometría, por oxidación de siringaldazina en condiciones aeróbicas, y la lignina peroxidasa por dimerización oxidativa dependiente de H2O2 de 2,4-diclorofenol. El crudo enzimático se concentró por filtración de la membrana con un flujo de nitrógeno y se purifico a través de cromatografía de intercambio iónico con matriz de DEAE. Se midieron los indicadores de purificación y el rendimiento de la enzima. Con las condiciones de fermentación del salvado de trigo se obtuvo un aumento continuo de la producción de endo β 1,4 glucanasa and xilanasas después de 72 h y de exo β1, 4 glucanasa a las 48 h. Además, la actividad enzimática de la lacasa se supervisó a las 24h y la lignina peroxidasa tras 48 h d fermentación. El hongo T. viride M5-2 alcanzó su máxima producción de lacasas después de 2 días de fermentación y a través del sistema propuesto de purificación, se obtuvo un producto enzimático con factor de purificación de 12, sin afectar el rendimiento enzimático. Se concluye que la cepa de T. viride tiene la capacidad de producir un complejo de enzimas ligncelulticas en el salvado de trigo. El método de separación utilizado para purificar las enzimas lacasas es efectivo. Se recomienda añadir etapas adicionales de purificación, en dependencia del grado de pureza.

Palabras clave: 

ligninasa; hongos; lignina; celulasas; xilanasas.


Introducción

Aunque existen investigaciones por todo el mundo enfocadas en la producción de ligninasas de hongos bacidiomicetos, como método biológico para reducir el contenido de lignina en la biomasa (Janusz et al. 2015), aun escasean las respuestas a muchas preguntas acerca de cómo obtenerlas. Específicamente, es necesario estudiar otras especies potenciales de hongos para la síntesis y producción de ligninasas (Brijwani et al. 2010), como es el caso de la Trichoderma.

Las especies de Trichoderma están ampliamente distribuidas en todas las latitudes, y se encuentran naturalmente en diversos ambientes, especialmente en aquellos que contienen materia orgánica o desechos de plantas en descomposición. Tienen la habilidad de producir varios metabolitos y adaptarse a múltiples sustratos y condiciones ambientales. Esto posibilita que el género Trichoderma pueda utilizarse en la industria biotecnológica.

Las lacasas que generalmente provienen de hongos están acompañadas de otros tipos de compuestos como los isoformes, proteasas, celulasas y otros compuestos derivados de la producción de extracto crudo (Jía et al. 2019). Existen muchos métodos para la separación y purificación de lacasas de los extractos crudos de hongo. Entre estos métodos se podrían mencionar los de cromatografía, centrifugación, formación de fase, precipitación y filtración. Estos se utilizan en dependencia del objetivo que se persiga con la proteína purificada, tanto la identificación o mejoría de los procesos posteriores (Camperi et al. 2014 y Borges et al. 2019).

La cepa mutante identificada en estudios anteriores como Trichoderma viride M5-2 tiene la capacidad de biotransformar substratos altamente lignocelulíticos como el bagazo de caña (Valiño et al. 2004) y otras especies de leguminosas temporales (Valiño et al. 2015ab), donde se cuantificó la producción de sus enzimas celulasas. Sin embargo, el estudio de la producción de enzimas lignocelulíticas de este hongo no se ha profundizado para estudios de inducción enzimática por interacciones biológicas con otros hongos altamente productores de lacasa en el salvado de trigo. Estos estudios se centran en la importancia industrial para aplicaciones biotecnológicas (Zhao et al. 2018 y Junior et al. 2020).

Por esta razón, es necesario dilucidar y definir las metodologías, indicadores de diseño y condiciones de funcionamiento para separar, concentrar y purificar enzimas lignolíticas sintetizadas por esta cepa. Por lo tanto, el objetivo de este estudio fue analizar la producción de enzimas lignocelulasas de Trichoderma viride M5-2 en el salvado de trigo y la purificación de sus lacasas.

Materiales y Métodos

Microorganismo. Se utilizó la cepa lignocelulolítica mutante de T. viride, identificado como hongo M5-2, perteneciente a la colección de cepas del Departamento de Biotecnología del Instituto de Ciencia Animal (Sosa et al. 2017).

Condiciones de cultivo. La cepa del hongo se cultivó en una placa con un medio de papa-dextrosa-agar (PDA). Se incubó por 7 días a una temperatura de 30 ºC. Después de este período, pasó a un medio enriquecido para hongos, de acuerdo con la tabla 1.

Tabla 1. 

Composición del medio enriquecido para el crecimiento de los hongos

Medio de cultivoCantidad (1L)
Glucosa10 g
Fosfato de potasio 2 g
Sulfato de magnesio0.5 g
Extracto de malta 3.5 g
Extracto de levadura 2 g
Bactopeptona0.1g
Solución de sales metálicas 1.0mL
Sulfato de cobre 0.5 mg
Sulfato de magnesio 0.16 mg
Sulfato de zinc 1.14 mg
Cloruro de cobalto 0.29 mg

Proceso de fermentación. Se extrajo una alícuota de 5 mL de los medios enriquecidos y se inoculó en un frasco que contenía 3 g de salvado de trigo (tabla 2) y 100 mL de una solución tampón de citrato (50 mM, pH 5.0). Los cultivos líquidos se incubaron en una centrífuga orbital a 120 rpm durante 10 días a 30 °C. Se tomaron muestras de la fermentación cada 24 horas, se filtraron a través del embudo Büchner, y el líquido resultante se centrifugó (10,000 rpm, por 3 min a 4 ° C) y reservó para su posterior análisis.

Tabla 2. 

Descripción por cada 40 gramos de salvado de trigo altamente fibroso

ContenidoGramos
Proteínas6.0
Grasas 1.5
Carbohidratos disponibles 18.0
Azucares 7.0
Fibra dietética 11.0
Sodio 0.11

Ensayo de las actividades de celulasa enzimática (endo β1,4-glucanasa y exo β1,4-glucanasa). La actividad endo β1,4-glucanasa (CMCasa) se determinó en el sustrato de carboximetilcelulosa y la exo β1,4-glucanasa (PFasa) en celulosa cristalina. Se calcularon y expresaron en unidades internacionales por mililitro (U/mL). Esta actividad refiere los micromoles de glucosa liberados por minuto de reacción en las condiciones de ensayo de la actividad (Mandels et al. 1976). El contenido de azúcares reductores liberados se determinó por el método del ácido 3,5-dinitrosalicílico (Miller 1959).

La actividad de xilanasa se determinó mezclando 0,9 mL de xilano de madera de abedul al 1% (p/v) (preparado en solución tampón de citrato de sodio 50 mM, con pH 5,3) con 0,1 mL de enzima adecuadamente diluida, y la mezcla se incubó a 50 °C durante 5 min (Bailey et al. 1992). La reacción se detuvo por la adición de 1,5 mL de 3,5 ácido dinitrosalicílico (DNS) y el contenido ebulló durante 5 minutos (Miller 1959). Después de enfriar, el color desarrollado se leyó a 540 nm. La cantidad de azúcar reductora liberada se cuantificó usando xilosa como estándar. Una unidad de actividad de xilanasa se definió como la cantidad de enzima que libera 1 mol de xilosa por minuto en el ensayo.

El ensayo enzimático de la actividad de lacasa y lignina peroxidasa se realizó de acuerdo con la metodología propuesta por Kumar et al. (2016). Las muestras se tomaron de la fermentación sumergida de salvado de trigo como se describió anteriormente.

La actividad de la lacasa se determinó por espectrofotometría, por la oxidación de siringaldazina en condiciones aeróbicas. El color violeta producido se midió a 530 nm. Las condiciones analíticas en las que se desarrolló fueron 5 mM de siringaldazina, 50 mM de solución tampón de citrato, pH 4,5, 30 ° C y 1 minuto de tiempo de reacción. Una unidad de lacasa (U) representa la cantidad de enzima que cataliza la conversión de 1,0 mmol de siringaldazina por minuto en estas condiciones. La lignina peroxidasa se determinó mediante la dimerización oxidativa dependiente de H2O2 de 2,4-diclorofenol a 25 ° C, donde la mezcla de reacción contenía 26 mM de 4-amino-antipirina, 20 mM de 2,4-diclorofenol y 3 mM de H2O2 en 20 mM con pH de 4.5 de succinato de sodio. El cambio en la absorbancia se controló a 510 nm (ε = 1.85x104 M-1cm-1).

Estimación de proteínas. La concentración de proteínas se determinó en las diferentes horas de fermentación y después de cada paso del proceso de purificación por el método de Bradford, con el uso de una curva estándar de albúmina de suero bovino (BSA) (AOAC 2005).

Análisis estadístico. Se utilizó un diseño completamente al azar donde las diferencias en pH, actividad enzimática, productividad y humedad se midieron con respecto a los tiempos de fermentación. Toda la determinación se realizó con tres repeticiones, donde cada Erlenmeyer constituyó una unidad experimental. Para el procesamiento de los resultados, se realizó una clasificación simple con el sistema estadístico INFOSTAT (di Rienzo et al. (2012). Las diferencias entre medias se establecieron según la dócima de Duncan (1955).

Purificación de lacasa del hongo T. viride M5-2 (Gagaoua y Fafil 2016). A partir de la cinética de producción de lacasa, establecida para la cepa, el tiempo de fermentación de mayor producción de esta enzima se utilizó para obtener más extracto para realizar el proceso de purificación. De acuerdo con esto, se preparó 1 L de medio líquido, que se inoculó con una proporción igual de 5 mL de inóculo del hongo por 100 mL de medio. Después del tiempo de fermentación, el cultivo se filtró con una gasa estéril y se centrifugó a 1400 rpm durante 1 minuto. El sobrenadante se sometió nuevamente a un análisis de la enzima lacasa y se midió la concentración de proteína. El extracto enzimático se concentró por filtración, con un filtro de membrana Pellicon® XL de 30 KDa (Millipore, Alemania) y se realizaron cinco lavados con solución tampón de fosfato (10 mM, pH 7).

Cromatografía de intercambio aniónico. La cromatografía de intercambio aniónico se desarrolló de acuerdo con la metodología propuesta por Janson (2011). La muestra se aplicó a una columna de flujo rápido de sepharose de intercambio aniónico DEAE en una cromatografía líquida rápida de proteínas (FPLC) BioRad, Estados Unidos. La resina se empaquetó en una columna de 20 cm por 1 cm hasta un volumen de 15 mL. Esta se balanceó con tres volúmenes de tampón A (acetato de sodio 10 mM, pH 5) a una tasa de flujo de 3 mL/min. Después de la aplicación de la muestra, se siguió un programa de gradiente por pasos desde 100 a cero por ciento de tampón A, con el aumento consiguiente en el tampón B o tampón de elución (acetato de sodio 10 mM, pH 5 con 2 de cloruro de sodio molar). Se colectaron fracciones de 3 mL durante toda la ejecución del programa. Cada una de las fracciones recogidas se dializó y se concentró en un dispositivo Amicon® Ultra quince, Alemania, y la actividad de lacasa se analizó con siringaldazina como sustrato. Las fracciones positivas se agruparon y se concentraron con el dispositivo Amicon® para calcular los indicadores de purificación y actividad específica.

Indicadores de purificación (factor de purificación y rendimiento enzimático). A partir de los valores de actividad enzimática y concentración de proteínas, los indicadores de purificación se calcularon como:

Resultados y Discusión

Actividad enzimática celulolítica y xilanolítica. La figura 1 muestra las determinaciones de la actividad celulolítica endo y exo β 1,4-glucanasa y xilanasas en medio sólido sumergido en salvado de trigo con las condiciones de pH y temperatura establecidas para esta fermentación p <0,0001. La producción máxima alcanzada para exo β 1,4-glucanasa fue de 0.222 U / mL a las 48 h. Sin embargo, para endo β 1,4-glucanasa y xilanasas estas condiciones favorecen su producción cuando la fermentación sobrepasa las 72 h, con 0.214 y 0.31 U / mL, respectivamente.

Figura 1. 

Actividad celulolítica de endo β1, 4 glucanasa (P <0.0001, EE ±0.0013) y exo β 1,4 glucanasa (P <0.0001, EE ±0.0033) y xilanasa (P <0.0001, EE ±0.0021) de T. viride M5-2 en medio sumergido de salvado de trigo. Los valores máximos de actividad se obtuvieron a 30ºC.

Las diferencias entre la producción máxima de enzimas y los valores bajos encontrados en relación con el tiempo de fermentación sugieren que pueden estar relacionados con la composición química del salvado de trigo que no favorece la acción de la exoglucananasa y del resto. Esto requiere una justificación experimental adicional.

La producción de celulasa en cultivos se asocia con el crecimiento y varios indicadores, que incluyen la naturaleza del sustrato celulósico, el pH del medio y la disponibilidad de nutrientes, influyen en ella. Además, la producción a gran escala de celulasas requiere comprensión y control del crecimiento y de las capacidades de producción enzimática (Singhania et al. 2017). Sin embargo, esto es extremadamente complicado porque muchos factores y sus interacciones pueden afectar la productividad de la celulasa. La formulación de medios para la fermentación es motivo de gran preocupación porque ninguna composición general puede proporcionar el crecimiento óptimo y la producción de celulasa. Amorim et al. (2019) propusieron al salvado de trigo licuado como fuente de carbono e inductor en el cultivo sumergido con alto contenido de sólidos para la producción de xilanasa. Los resultados del sinergismo enzimático mejoraron el rendimiento de azúcares reductores y depende de la composición de enzimas y las características ultraestructurales del sustrato (Meehnian et al. 2017). Estas características algunas veces se alteran en presencia de aditivos (Obenga et al. 2017).

Este resultado difiere de la fermentación en bagazo de caña en términos de tiempo de producción de la enzima, donde la actividad celulolítica es mayor. La principal limitación técnica en la producción fermentativa de celulasas continua siendo el aumento de los tiempos de fermentación con baja productividad (Van Dyk y Pletschke 2012 y Singhania et al. 2017). La cepa candidata para los procesos fermentativos de producción enzimática es aquella que pueda expresar su capacidad máxima durante las primeras horas de fermentación, ya que esto reduce el tiempo de trabajo y optimiza el proceso, como en los resultados de este estudio (Valiño et al. 2016a b).

Actividad enzimática lacasa y peroxidasa. La figura 2 muestra los resultados del ensayo de actividad enzimática de la lacasa. La mayor producción de lacasas se alcanzó a las 48 h de fermentación sumergida en salvado de trigo, con 0.22 U/mL. Para ser un hongo conidial, tiene una producción importante de enzimas en un tiempo corto de incubación.

Figura 2. 

Actividad de lacasa de T. viride M5-2 en un medio sumergido de salvado de trigo, con cinética de fermentación de 250h (EE ±1, 07; P<0, 0001)

Estos valores son similares a los informados en algunos basidiomicetos. Según Ozcirak y Ozturk (2017), los patrones de producción de enzimas ligninolíticas en Pleurotus (excelente degradador de lignina), durante un período de 23 días a 25 °C, en fermentación en estado sólido usando cáscara pretratada de papa, fueron de 6 708.3 ± 75 U/L de lacasa y 2 503.6 ± 50 U/L de manganeso peroxidasa.

La degradación de la lignina se catalizó por un complejo extracelular producido por algunos hongos, cuando se expusieron a condiciones limitantes de nutrientes en el medio de cultivo (Pollegioni 2015). Este complejo se compone de tres enzimas ligninolíticas involucradas en la degradación de lignina, peroxidasa de manganeso (MnP), peroxidasa de lignina (LiP) y lacasa (Selvam et al. 2003 y Rybczyńska y Korniłłowicz 2017).

Según Moreno (2013) y Rezaei (2017), el proceso de delignificación puede aumentar la accesibilidad de las enzimas al aumentar el número de poros y el área de superficie accesible, mejorando así los rendimientos de hidrólisis enzimática (Oliva et al. 2015).

La actividad de la lacasa se puede detectar en los bioensayos de lignina como única fuente de carbono, aunque las pruebas analíticas para la determinación de la lignina los convierten en costosos. Sin embargo, otros compuestos orgánicos como la siringaldazina, utilizada en este estudio, también son sustratos de otras enzimas modificadoras de lignina, como la lignina peroxidasa, donde la actividad se revela fácilmente por un cambio en la coloración del medio de cultivo (Mehandia et al. 2020).

Los resultados del ensayo para detectar la peroxidasa de lignina no mostraron actividad rápidamente. Los cambios notables en la coloración del sustrato se manifestaron después de 5 minutos de la reacción enzimática (figura 3). Esto indica que la lignina peroxidasa está en una concentración más baja en comparación con la lacasa, probablemente debido al tiempo de fermentación y a las condiciones del ensayo de actividad de la peroxidasa.

Figura 3. 

Actividad de la peroxidasa de T. viride M5-2 en un medio sumergido de salvado de trigo, con cinética de fermentación de 230h (EE ±0.0021; P<0, 0001)

La cinética de la producción de peroxidasa por la cepa T. viride M5-2 es diferente de la cinética de producción de lacasa (p <0.0001), posiblemente debido a los diferentes mecanismos de acción de estas enzimas donde la lignina peroxidasa es capaz de actuar directamente en los desechos fenólicos (Guerberoff y Camusso 2019) y no fenólicos (Kumar et al. 2016) de la lignina, mientras que las lacasas, a través de una reacción secundaria de peroxidación lipídica, también pueden actuar en los desechos no fenólicos (Moreno 2013).

Purificación de lacasa. El concentrado enzimático obtenido de la fermentación del salvado de trigo con la cepa T. viride M5-2 se trabajó de acuerdo con una metodología de purificación de lacasa. En este proceso se conoce que tienen un punto isoeléctrico ácido, por lo que es posible purificarlos a pH superior a este, mediante el uso de cromatografía de intercambio iónico.

En este estudio, se utilizó una matriz de DEAE sepharose cargada positivamente, que permitió que la enzima se cargara negativamente por encima de su punto isoeléctrico y pudiera adherirse a la matriz, y como consecuencia, pudiera eluirse por la variación del pH o la fuerza iónica.

Durante el estudio, se observaron diferentes bandas asociadas con la presencia de lacasas en las columnas de intercambio, por lo que la prueba de actividad de esta enzima se realizó en las diferentes fracciones recogidas. De acuerdo con la prueba en placa, se determinó que el hongo T. viride M5-2 fue capaz de oxidar sustratos fenólicos como siringaldazina y tiene dos tipos de lacasas. Las primeras ocho fracciones recolectadas tienen una gran actividad enzimática y las fracciones del dieciocho al veintisiete tienen otro tipo de lacasa con menor actividad.

Las fracciones con actividad lacasa eluidas, mostraron diferentes comportamientos cromatográficos que podrían estar estrechamente asociados a su estructura. Las primeras ocho fracciones, así como las fracciones del dieciocho al veintisiete, se unieron para formar dos nuevas fracciones llamadas fracción I y fracción II, las cuales se concentraron nuevamente por filtración de membrana con corriente de nitrógeno.

Se encontró que la fracción enzimática I mostró mayor actividad de lacasa que la fracción enzimática II más retenida, debido a la baja actividad de esta fracción. Los indicadores de purificación de lacasa de T. viride M5-2 se determinaron con la fracción I como se muestra en la figura 4.

Figura 4. 

Indicadores del proceso de purificación de la fracción I de la actividad de lacasa de T. viride M5-2. CE: extracto crudo, PL: lacasa purificada, Pc: contenido de proteina (EE ± 0.10), Ea: Enzymatic activity (EE ± 5.68), Sa: Specific activity (EE ± 1.05), PF: Purification factor, Y: Yield, The significance was the same for all the parameters evaluated (P <0.0001)

La actividad específica del extracto enzimático en esta fracción se incrementó al lograr la eliminación de gran parte de las proteínas contaminantes y al alcanzar un factor de purificación de más de doce, lo que indica que esta fracción es doce veces más pura que la preparación inicial. El esquema de purificación utilizado en este estudio no permitió comprometer el rendimiento de la enzima, obteniendo un valor de 182 %.

Con respecto al comportamiento general del proceso, este estudio coincide con los resultados propuestos por Gagaoua y Hafid (2016) quienes obtuvieron rendimientos mayores al 100% con factores de baja purificación, lo que se asocia con la presencia de lacasa como proteína predominante. Sin embargo, hay extractos crudos que tienen una alta concentración de proteínas que no son precisamente la proteína de interés, donde la presencia de más contaminantes afecta el desempeño del proceso. Liu et al. (2015) reportaron rendimientos por debajo de 70% por estas razones.

Otro aspecto que debe destacarse es el uso de salvado de trigo como materia prima para producir enzimas ligninasas y la selección del sistema de fermentación en medio sólido sumergido que garantiza un proceso de obtención más rápido y sencillo. También es necesario señalar la efectividad del sistema de purificación utilizado en este estudio en la separación selectiva de las enzimas lacasa presentes en los crudos.

Existen varios métodos que se utilizan para la separación y purificación de las lacasas a partir de extractos crudos de hongos. Estos incluyen métodos cromatográficos, ultra centrifugación, formación de fases, precipitación y ultrafiltración. Estos métodos se usan en dependencia de la utilidad que se persigue con la proteína purificada, ya sea para identificar o mejorar un proceso posterior (Camperi et al. 2014).

Para seleccionar el método específico de purificación para las lacasas, deben tenerse en cuenta factores como disponibilidad de aplicación, conservación de la actividad enzimática, eficiencia de purificación y cantidad de proteína purificada. Con estos factores, se descarta inicialmente la centrifugación para separar la lacasa porque este método es ideal para separar las enzimas de los restos de biomasa en el extracto enzimático y para analizar estructuras y tiempos variables de separación. Sin embargo, el uso de este método genera fases donde se encuentra la proteína diana con otras proteínas de peso molecular similar, lo cual crea confusión. Además, se producen modificaciones estructurales de la proteína, lo que afecta el comportamiento de la actividad enzimática (Shi 2016).

Es importante resaltar que los métodos cromatográficos son los más utilizados para purificar enzimas, pero algunas veces los rendimientos no son tan altos. Esto es un problema, especialmente si se trata de utilizar la enzima purificada en procesos de pretratamiento de material lignocelulósico. En general, estos métodos se emplean para identificación y estudio molecular de proteínas (Camperi et al. 2014). Sin embargo, los resultados de la presente investigación muestran un factor de purificación que permite que la enzima se concentre sin afectar el rendimiento, aspecto que es importante para proponer esta metodología de trabajo en la purificación de lacasas en esta especie.

Se concluye que la cepa T. viride tiene la capacidad de producir el complejo enzimático lignocelulolítico en el salvado de trigo. El método de separación utilizado para purificar enzimas lacasas es efectivo. Se recomienda agregar pasos sucesivos de purificación dependiendo del grado de pureza.