
1Cuban Journal of Agricultural Science, Volume 46, Number 1, 2012.

Statistical procedures most used in the analysis of measures repeated in 
time in the agricultural sector

Sarai Gómez1, Verena Torres1, Yoleisy García1 and J.A. Navarro2

1Instituto de Ciencia Animal, Apartado Postal 24, San José de las Lajas, Mayabeque, Cuba  
2Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, km 15.5 Carretera Mérida-Xmatkuil, 

Apartado Postal 4-116 Itzimná Mérida, Yucatán, México
Email: sgomez@ica.co.cu 

In the agricultural research, situations are presented where it is difficult to use the classical linear models of analysis of variance, because 
the assumptions of independence, equality of variances and linearity are not fulfilled by making measures repeated in time. This paper 
had as object to review the statistical procedures used to analyze the designs of measures repeated in time, and determine which analytical 
strategies are more appropriate for each purpose. In this study, three types of traditionally used analyses are described: univariate variance 
(ANOVA), multivariate variance (MANOVA), and the recent one, the approach of mixed models. At present, it has been agreed that the latter 
is the most adequate and versatile, because it provides the possibility of examining data with structures of dependence, unbalance, and lack 
of normality. Besides, it provides a solution to the limitation of the multivariate analysis of variance in respect to the number of individuals 
and variables. Also, the model of random effects is described, another member of the wide spectrum of the mixed models that is used in 
numerous studies in the agricultural field. This approach is strengthened by the use of selection criteria of models, due to the estimation of 
parameters is based on methods of maximum likelihood or restricted maximum likelihood. The Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC) are described, permitting the optimum selection of competing mixed models. 
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INTRODUCTION

One of the most used research methods is measuring 
the response variables of interest in the same experimental 
units at different times. This design of "repeated 
measures", with its corresponding analysis, is found 
among the most used currently in the medical, social, 
and psychological research. If this type of analysis 
is applied adequately, it increases the validity of the 
statistical conclusions, because it has higher accuracy in 
the estimation of the parameters of the model of analysis, 
it improves the power of the test and reduces the sample 
size (Fernández and Vallejo 1996). 

There are contexts where it is not possible to use 
classical linear models for the analysis of variance, 
because the assumptions of independence, normality, 
equality of variances and linearity demanded for their 

utilization are unfulfilled by making measures repeated 
in time in the same experimental units. This situation 
limits the application of the classical models. Given the 
specific characteristics of these experiments of repeated 
measures, it is determined which analytical strategy is 
more appropriate. Traditionally, the univariate (ANOVA), 
the multivariate (MANOVA), and the mixed analyses of 
variance are applied. This latter has great advantages, and 
it is the one that has been applied in the SAS software, 
with the name of PROC MIXED (Balzarini et al. 2005).                                                                                                                                           
The objective of this paper is to review the statistical 
procedures used in the design and analysis of measures 
repeated in time, besides describing the most adequate 
analytical strategies for studies in the agricultural  
area.  

PARTICULARITIES OF THE DESIGNS OF REPEATED MEASURES 

Making  r epea ted  measu res  in  the  same 
experimental unit implies that it is not possible 
to randomize the time factor. This, together with 
the fact that the measures performed in the same 
individual are close in time, could provoke the 
measures be correlated between themselves. Thus, 
the assumption of independence of errors of the 
classical models of analysis of variance cannot be 
supported. Besides, the variances of the repeated 
measures could change frequently in time. These 

problems lead to deficiencies in the accuracy and 
the capacity of prediction of the models fitted to the 
classical assumptions (Gonzalez and López 2002 and 
Carrero et al. 2008). 

There are various statistical methods to analyze data 
of repeated measures, which go from the most basic 
up to the most complex. According to Littell et al. 
(1998), these methods include the univariate analysis 
of variance, the multivariate, and the analysis through 
mixed models. 
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UNIVARIATE ANALYSIS OF VARIANCE (ANOVA) 

For measures repeated in time in the same experimental 
unit, the assumption of independence of errors is 
unfulfilled. This can be determined through the analysis 
of the matrix of correlation of Pearson, permitting to test 
if a matrix is identity or not, through the test of sphericity 
of Bartlett (Balzarini et al. 2001).

Torres et al. (2003) stated that the univariate analysis 
of variance is used, according to model of split plots, 
when there is not significant correlation between the 
measures in time. Also, it can be stated the assumption 
of equal correlation between any couple of repeated 
measures in the same individual (model of compounds 
symmetry) for the matrices of variance-covariance 
of the observations in the same experimental unit. In 
this model, the treatment factor is associated with the 

experimental units in the main plots, and with the time 
in the subplots. It is necessary to correct the degrees of 
freedom of the numerator and the denominator in the 
tests involving the time factor. 

These procedures have been applied in the study of 
the effect of biological preparations with viable yeasts 
on the rumen microbial population and fermentative 
indicators in cows fed roughages. Also, they have been 
used in an experiment with upgraded Holstein bulls, 
fitted with rumen cannula and housed in individual pens 
to study the effect of the concentrate form on the rumen 
microbial population and on fermentative indicators in 
diets with sugarcane forage (Saccharum officinarum) 
(Marrero et al. 2006 and 2007) 

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA)

The observations obtained in the designs of repeated 
measures are correlated between themselves, and they 
are, essentially, of multivariate nature. According to 
Cole and Grizzle (1966), the multivariate procedure is 
the adequate method to analyze these designs. These 
authors also noted that the multivariate approach 
shares all the assumptions with the univariate, except 
permitting the variance-covariance matrix to have any 
structure. The observations from the same individual, 
besides being correlated, have a matrix of variances-
covariances between the repeated measures that has a 
Toeplitz structure, that is, the closest scores have higher 
correlation. 

In the multivariate model, no particular model is 
assumed for the matrix, but it is based on the estimation 
of all the possible covariances between the repeated 
measures. This model without structure should be used 
when there are sufficient observations for the estimation 
of the parameters. For its application, the number of 
repeated measures should be lower or equal to the 
number of repetitions of the experiment (Torres et al. 

2003). 
Between the univariate and the multivariate analysis, 

only the multivariate guarantees that the error of Type I 
is not above the nominal.

The multivariate analysis of repeated measures is a 
methodology that has been traditionally used in the study 
of data of repeated measures, from experiments in the 
agricultural area. An example of their application is the 
methane production in the rumen, out of the fermentation 
of the carbohydrates for a mixed microbial population 
composed of methanogens, participating also other 
groups of bacteria and protozoa. Also, it has been used in 
studies on male buffalo calves (Bubalus bubalis) of the 
Bufalipso breed, fitted with rumen cannula, to evaluate 
the effect of different levels of supplementation on in 
situ rumen DM intake and degradability of star grass 
(Cynodon nlemfuensis) forage (Galindo et al. 2009  and 
López et al. 2009)

The statistical theory describes three types of 
mathematical models: that of fixed effects, the random, 
and the mixed.

MODEL OF FIXED EFFECTS 

The model of fixed effects of analysis of variance is 
applied to situations where the experimentator subjects 
the group or material analyzed to one or various factors. 
Each is affected only by the mean, and remains the 
"response variable" (or in an equivalent form the term 
of error) as the only random variable that has a particular 
distribution. This model is used when the researcher is 
interested, only, in the levels of the factor present in the 
experiment, thus, any variation in the scores could be 
due to the experimental error (Spiegel et al. 2007). 

The simplest model of fixed effects is the classical 
parametric model of analysis of variance with only 
one factor (or one-way). In this particular model, the 
"response variable" (or in an equivalent form, the term 

of error) is assumed as normal, with constant variance. 
Thus, the levels of the only factor are assumed as fixed, 
because they are those of interest to be analyzed by 
the researcher, not extending the inferences to a larger 
cluster of treatments. 

Be yij the random response observed in the unit j of 
the treatment i from a population of observations under 
the treatment i, with normal distribution with mean μi and 
variance σ2 , the model of one-way analysis of variance 
of fixed effects for yij is:

E(yij)= μi  where,
 E (.) represents the expectation operator
μi is the expected response for an observation under 
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the treatment i. 
In this model, called model of means, each μi 

is considered as a constant. These constants (fixed 
values) represent, in certain form, the magnitudes to be 
estimated. It can be of interest to estimate μi  and μj or 
μi -μj. The constants to be estimated μi´s, with i=1,…, 
a correspond explicitly to the a treatments tested in the 
experiment. There are treatments that are of interest, 
and that, thus, are arbitrarily selected. The effect of the 
treatment i is defined as:

 τi =μi –μ where, 
 μ is the general mean of the response variable, thus 

the model can be written as follows:

E(yij)= μ + τi,
A formal justification of why it is called "of fixed 

effects" is in the effects of treatment τi, that in this model 
are assumed as constants. If eij represents the value of 
the deviation or difference between yij and its expected 
value, term called error in yij, the complete model of fixed 
effects can be expressed as the sum of its expected value 
and one error (random) (Balzarini  et al. 2005):

yij = μi + eij  or equivalent to   yij = μ + τi + eij.
This latter expression (or "parameterization") of the 

model of one-way analysis of variance is called model 
of effects (Littell et al. 2006). 

MODEL OF RANDOM EFFECTS

The models of random effects are used to describe 
situations where there are incomparable differences 
in the experimental material or group. The simplest 
example is that of estimating the unknown mean of a 
population composed of different individuals, where 
these differences are mixed with the errors of the 
measurement instrument.

This model is used when the researcher is interested 
in a population of levels of the factor under study, 
theoretically infinite, out of which only a random sample 
is present (t levels) (Spiegel et al. 2007). In this instance, 
each level of the factor treatment is assigned randomly 
on n experimental units. There are n random observations 
for each of the a levels of the factor of interest. 

The simplest model of random effects is that 
containing only one random factor. If yij represents the 
response observed in the unit j of the treatment i, the 
model "of effects" for the data is: 

E(yij | ai) = μ + ai, where, 
μ is the general mean of the response variable.
ai is the effect of the level i of the factor of interest.  
ai = μi - μ, and E(yij | ai)
E(yij | ai) represents the conditional expected value 

of yij, given the random amount ai (random effect of 
treatment). Despite the previous expression is quite 
similar to that corresponding to the model of fixed 
effects, the underlying assumptions are different. This 
is due to the levels of the factor treatment represent a 

random sample of the population. Due to the amounts ai 
are random variables, it is necessary to characterize their 
distribution of probabilities. Usually, the amounts ai are 
considered independent and identically distributed, with 
expectation zero and variance σa

2 for all i  (Balzarini et 
al. 2005).  

The model with only one classical random factor 
(i.e. with normal error) can be written out of the 
parameterization by "effects":

yij = μ + ai + eij, where, 
- eij is a component of random error assumed as 

normal with mean 0 and constant variance, associated 
with the level i of only one factor (random)

- ai is the effect of the level i of the only factor, 
which is distributed normally with mean 0 and constant 
variance. 

Out of this parameterization, the model contains two 
"components of variance" for the response variable yij: 

- a component due to the part of random effects 
of the model ai.

- another due to the part of the error or residual 
ei. 

It should be noted that in a recently described model 
"participates" a fixed effect (μ, the global mean). This 
explains why the models of fixed and random effects can 
be unified through the theory of "mixed" models (Littell 
et al. 2006), where effects of the two types (fixed and 
random) are involved. 

MIXED MODELS

The mixed statistical models are used more 
frequently in the medical sciences and less applied 
in researches of the agricultural field; thus, their 
application would be useful due to their advantages. 
These models permit modeling the response of an 
experimental or observational study as function of 
factors or covariables, whose effects are considered 
fixed constants or random variables (Molinero 2003). 
The fixed and the random effects are present in the 
mixed models. They are a combination of both, and to 

decide when a set of effects is dealt with, as fixed or 
random, it is important to analyze the data within their 
context, that is, the environment they come from, the 
way they are collected and, mainly, the inference space 
(Verde 2000 and Balzarini et al. 2005) 

Different types of models are considered within the 
general frame of the mixed models. It is noteworthy 
to recall that these models are presented as those 
permitting to model data sets where the observations 
are not independent (Balzarini et al. 2005).
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If it is considered that a model of random effects 
also contains a fixed effect (the global mean), then, 
the simplest type of mixed model is that of random 
effects. Other mixed models are those of random 
coefficients, which combine random effects and 
coefficients, and those incorporating covariance 
patterns of "within" individuals or subjects (being 
the latter those related to the designs of repeated 
measures). The selection of the mixed model depends 
on the characteristics of the experiment and on the 

objective of the analysis. 
The linear and non-linear mixed models emerge from 

incorporating random effects, different to the associates 
with the term of error. The greatest advantage of them is 
in the generality in the inference and in the possibility 
they provide of modeling the correlation between the 
observations. The estimation of parameters in these 
models is performed by likelihood methods (Carrero 
et al. 2008).

ANALYSES OF DESIGNS OF REPEATED MEASURES BY MEANS OF MIXED MODELS 

The univariate analysis of the variance of the 
repeated measures can be performed through mixed 
models (Arnau and Balluerka 2004). In the model 
of repeated measures, the experimental units are 
considered a random factor, and the time, as fixed. 
According to Carrero et al. (2008), the methodology 
of mixed models permit analyzing in a correct 
and efficient form the data from experiments 
with repeated measures through the modeling 
of the structure of covariances, which considers 
the correlations between repeated measures and 
the presence of heterogeneous variances.  Not 

considering the correlation between subjects with 
the utilization of models of fixed effects (in SAS 
they are executed through ANOVA procedures or by 
general linear model GLM) or mixed models with 
very simple structures of covariances, could originate 
the increase in the rate of error type I (rejection of 
the null hypothesis when it should be accepted) for 
the test of fixed effects of the model. Nevertheless, 
a very complex model would affect the power and 
efficiency of the test for the fixed effects (Pérez et 
al. 2005 and Vallejo et al. 2010)

METHODS OF ESTIMATION OF PARAMETERS IN THE MODELS OF REPEATED  
MEASURES 

For estimating the parameters of a mixed model, 
a wide range of methods can be applied: moments, 
unbiased quadratic estimation of minimum variance, 
maximum likelihood, restricted maximum likelihood, 
and pseudo-likelihood (Littell et al. 2006). However, 
for the case of the analyses of repeated measures, the 
efficient estimation of the parameters of covariance 
is attained through the restricted maximum likelihood 
(REML = Restricted Maximum Likelihood). The 
basic antecedent to understand intuitionally the 
idea behind the REML is the method of maximum 
likelihood.

The method of maximum likelihood (Maximum 
Likelihood, ML) is a classical method of estimation 
of parameters associated with functions of density 
or probability of random variables. The likelihood 
associated with a sample of random variables is the 
function of joined density of these variables for the 
observed values, considered as a function of the 
parameters that define it. If the density function 
of a random variable is known, as it is the case of 
the classical mixed models that assume a normal 
distribution of the response variable, it is then 
possible to find out the estimators of maximum 
likelihood (EML) of the parameters of the mixed 
model. These EML are the values of the parameters 
that make maximum the probability (likelihood) 
of the data occurrence, that is, those being more 

compatible with the observed data, assuming that 
it is correct the postulated mathematical model 
(Molinero 2003). 

The procedures of estimation of ML work well, 
even in instances where there are incomplete records, 
different to the method of least squares. If the repeated 
measures are considered as "nested" to the subject 
factor, the ML estimation permits analyzing an unequal 
number of observations per experimental unit and 
different space in time. Also, it admits incorporating 
parameters of inter-individual variability in growth, 
whose estimation considers the different precisions 
derived from different number of measures in each 
experimental unit (Oliver et al. 2000 and Posada and 
Rosero 2007).

In general, the ML estimators function very well 
for large samples. From the technical point of view, 
they possess asymptotic properties, which make them 
preferable to those obtained with other methods. Besides, 
they do not require sets of balanced data to maintain 
these properties (Galán et al. 2003 and León 2004). 
These estimators are characterized by being:

- Consistent
- Invariant to biunivocal transformations, that is, 

if   is the estimator of maximum likelihood of θMV , and  
g(θ) is a biunivocal function of θ, g(θMV) is the estimator 
of maximum likelihood of g(θ). 

- If θ is a sufficient estimator of  θ, its estimator 
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of maximum likelihood θMV,  is function of the sample 
through  θ. 

- Asymptotically normal.
- Asymptotically efficient, that is, among all 

the consistent estimators of a parameter θ, those of 
maximum likelihood are those of minimum variance. 

For samples of moderate or small size, ML seems 
to produce biased estimations of the parameters, 
that is, the expected value of the estimator of the 
parameter is not equal to it because it does not 
consider the degrees of freedom lost when estimating 
the mean (León 2004). The restricted estimators of 
maximum likelihood (REML, Restricted Maximum 
Likelihood) emerged to prevent this problem. They 
consist in factoring the complete likelihood in two 

independent parts. One of them does not contain 
the mean, assuming that by using this part of the 
likelihood, information is not lost in respect to the 
complete likelihood. The restricted likelihood is in 
correspondence with the likelihood associated with a 
linear combination of the observations, whose mean 
is null and fulfills the conditions mentioned (being 
a factor independent from the other with which the 
complete likelihood is reproduced and not supposing 
loss of information compared with the use of the 
original data). The REML method produces unbiased 
estimations of the variance in mixed models with 
random or normal residual error. Thus, it surpasses 
the classical ML method.

INFORMATION CRITERIA FOR THE SELECTION OF THE MODELS IN REPEATED  
MEASURES

There are several criteria to determine the goodness 
of fit of the chosen model during the modeling process 
in the analysis of repeated measures. For comparing 
models, the most used criterion is that of the deviation 
or deviance. The deviance is calculated from the 
logarithm of the function of likelihood or restricted 
likelihood, depending on choosing a model with 
identical structure of covariance or of means. Others 
are also used, such as the Akaike Information Criterion 
(AIC), the AIC corrected (AICC) and the Bayesian 

Information Criterion (BIC), as well as various 
versions emerging from these criteria. Especially, 
the AIC and the BIC are implemented in most of the 
programs that fit mixed models. At greater or smaller 
extent, all penalize the logarithm of the likelihood 
function by the number of parameters, most of the 
time out of the marginal formulation of the model, and 
choose the model that minimizes their value (Vallejo 
et al 2010). 

AKAIKE INFORMATION CRITERION (AIC) 

Information Criterion (AIC). This method permits 
determining the efficiency of the models fitted to a 
database (Posada and Rosero 2007 and Noguera et 
al. 2008). This alternative approach can be applied to 
nested and non-nested models, and does not rely on 
values of P (probability) or on the concept of statistical 
significance: 

AIC=-2(ln likelihood - nº parameters)
The selection criterion is to choose models with lower 

values of the AIC. The model that accounted the best 
for the data with the minimum number of parameters is 
the one having the lowest value of AIC (Molinero 2003 
and Balzarini et al. 2005).

The logic behind this method is not that of the 
hypothesis tests. Therefore, a null hypothesis should 
not be stated, nor should be calculated a value of P, 
and it is not necessary to decide about the trend of 
the value of P to determine its statistical significance. 
Besides, the method permits determining which model 
is the most likeable to the correct and quantifying its 
resemblance.   

The AIC value can be negative or positive, depending 
on the units in which the data are expressed, and it cannot 
be interpreted as an individual value. This criterion has 
great importance when comparing the models; thus, 

work is conducted with the differences between the AIC 
(Schermelleh et al. 2003)

Define A as the simplest model, and B as the most 
complex (that is with larger number of parameters). The 
difference of the AIC between A and B is defined as:

As in the F test ,  this analysis establishes 
a  compromise  be tween the  goodness  of  f i t 
characterized by the sum of squares with the change 
in the number of parameters to be fitted (Posada 
and Rosero 2007). Because the model A will have 
almost always the worst fit, the sum of squares of 
A will be higher than that of B. As the logarithm 
of a fraction is always negative, the first term of 
the equation will be negative. As the model B has 
more parameters, KB will be higher than KA, which 
makes the last term is positive. If the final outcome 
is negative, it means that the difference in the 
sum of squares is higher than expected, out of the 
difference in the number of parameters, hence, the 
model B is the best. If the difference in the AIC is 
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positive, thus, the change in the sum of squares is 
not that large as expected with the change in the 
number of parameters, thereby showing that the 
data come from the model A.

The previous equation helps to understand the 
function of the AIC, out of the balance of the changes in 

the goodness of fit versus the difference in the number 
of parameters. In fact, what it is done is to calculate the 
two individual AIC, and the model with the lowest AIC 
is chosen, being the most correct (Posada and Rosero  
2007). 

BAYESIAN INFORMATION CRITERION OF SCHWARZ

The Bayesian statistics emerges, in fact, from the 
famous theorem of Bayes, which in essence, permits, in 
case of knowing the probability of an event to happen, 
to modify its value when having new information 
(Molinero 2002).

The information criterion of Schwarz is called 
Bayesian by being based on arguments of the so-called 
Bayesian statistics. The Bayesian methods are an 
alternative to the traditional statistics, which is based on 
the hypothesis contrast. These methods are different in 
that they incorporate information external to the study. 
With this information and with the observed data, a 

distribution of probability is estimated for the magnitude 
effect under study (Díaz and Batanero 2008).

The formula for the Bayesian information criterion 
(BIC) is similar to the Akaike criterion, as well as its 
interpretation:

BIC=G - gl . ln N, where, 
G is the quotient of likelihood
gl are the degrees of freedom 
N is the size of the sample 
The criterion to choose the best model is the same 

as that of Akaike: that having the lowest value of BIC 
(Calegario et al. 2005 and Carrero et al. 2008) 

DISCUSSION

The particular characteristics of the researches 
with repeated measures in the agricultural field make 
difficult the utilization of the classical models of 
analysis of variance because the data do not fulfill the 
basic assumptions. This work describes the methods 
used to make adequately the analyses of repeated 
measures. The enumeration of the properties of these 
procedures has suggested the use of the mixed models 
to model the experimental data. The advantages of the 
mixed models are various: permit analyzing data with 
structures of dependence and unbalances in the data. 
Besides, it is possible to analyze non-normal data with 
repeated measures through the so-called generalized 
mixed models (Littell et al. 2006). Therefore, the 
concern about the fulfillment of the traditional 
assumptions of normality and equal variances goes 
into a second order.  

The advantages in the use of the mixed models 
described in this review to be applied in the analysis 
of repeated measures can be seen in practice in 
experimental studies in the agricultural branch. For 
instance, an experiment was developed with mutant 

strains of the cellulolytic fungi Trichoderma viride 
M5 and MCX1371 and also it was studied a herd 
of crossbred animals of the Holstein, Brown Swiss 
and Brahman breeds, from the commercial farm La 
Duquesa, located in the “Río Grande” sector, Pan 
American municipality, Táchira state, in Venezuela. 
This farm is devoted to dual-purpose cattle rearing, 
but with a trend to milk yield. 

The analysis of the data from the latter was performed 
initially by the methodology of Torres et al. (2003), 
although it was necessary to prove the fulfillment of the 
basic hypotheses, specifically the fact that the number 
of repeated observations was smaller than the number 
of repetitions of the experiment (Balzarini et al. 2005). 
Sometimes, this hampered the analysis, because it was 
necessary to reduce the number of schedules and it was 
not possible to study completely the sequence of the 
experiment, which affected the results. Thus, it was used 
the alternative of analysis with mixed models. Even 
when results similar to the first analysis were obtained, 
there was greater flexibility in the data processing with 
the mixed model.

CONCLUSION

For the analysis of the repeated measures in the 
same experimental unit at different times, adequate 
statistical procedures are necessary, being different to 
the traditional, in a way that the validity of the statistical 
conclusion is accentuated. Thus, the procedures used 
in the designs of repeated measures in the agricultural 
field are analyzed: the univariate analysis (ANOVA), 
the multivariate variance (MANOVA) and the mixed 

models. 
It is concluded that the latter are the most 

recommendable due to their advantages: 1) solving 
the inconvenient in the lack of fulfillment of the basic 
suppositions of the classical methods of analysis of 
variance;  2) solving the limitations of the univariate 
analysis of repeated measures in respect to very simple 
structures of covariance; 3) solving the limitations 
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of the multivariate analysis of repeated measures in 
respect to the requirement of large sample sizes, and 4) 

providing information criteria needed for selecting the 
best model. 
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