Cuban Journal of Agricultural Science Vol. 58, January-December 2024, ISSN: 2079-3480
Código QR
Cu-ID: https://cu-id.com/1996/v58e26
Pasture Science and other Crops

Determination of fructans in vegetative organs of Agave Offoyana (Asparagaceae) and its potential use as a prebiotic

 

iDA.R. Hernández Montesinos1Instituto de Ciencia Animal, C. Central, km 47½, San José de las Lajas, C.P. 32700, Mayabeque, Cuba*✉:andresraulhm@gmail.com

iDD. Alfonso González2Jardín Botánico Nacional, Universidad de La Habana, Carretera El Rocío km 3 ½, C.P. 19230. Calabazar, Boyeros, La Habana, Cuba

iDDayanna Coronado Acosta3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba

iDR. Reyes Fernández3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba

iDDaymara Rodríguez Alfonso3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba


1Instituto de Ciencia Animal, C. Central, km 47½, San José de las Lajas, C.P. 32700, Mayabeque, Cuba

2Jardín Botánico Nacional, Universidad de La Habana, Carretera El Rocío km 3 ½, C.P. 19230. Calabazar, Boyeros, La Habana, Cuba

3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba

 

* Email:andresraulhm@gmail.com

Fructans are carbohydrates in which the links between fructose residues predominate. They are synthesized in approximately 15 % of angiosperms. These molecules have various applications in food and health, due to the lack of digestibility and their selective use by the beneficial intestinal microbiota in monogastric animals. The objective of this study was to determine, using chromatographic methods, the presence of fructans in vegetative organs of the endemic species Agave offoyana (maguey). Plants were collected in three different physiological states during two climatic periods. They were taken from the managed floristic reserve Tres Ceibas de Clavellina, in Matanzas province, Cuba. Samples were analyzed by different chromatographic methods. Thin layer chromatography showed the presence of fructans in stems and leaves, but not in roots. The accumulation was greater in stems. Both organs contain from the trisaccharide to molecules with a high degree of polymerization. The presence of the polysaccharide was greater in the leaves at the base than in the middle and shoot apex. There was an increase in the accumulation of fructans in the organ samples collected during the dry season. High-performance liquid chromatography confirmed the presence of fructooligosaccharides extracted from the stem. Results showed that Agave offoyana accumulates fructans in the stem, although they are also present in leaves. This Cuban species can be used to obtain fructans for human and animal feeding and health.

Key words: 
chromatography, fructooligosaccharides, maguey

Received: 02/6/2023; Accepted: 16/9/2023

Conflict of interests: The authors declare that there is no conflict of interest.

CRediT Authorship Contribution Statement: A.R. Hernández Montesinos: Investigation, Visualization, Writing - original draft. D. Alfonso González: Conceptualization, Investigation, Supervision, Writing - original draft. Dayanna Coronado Acosta: Investigation, Supervision, Writing - original draft. R. Reyes Fernández: Investigation, Writing - original draft. Daymara Rodríguez Alfonso: Investigation, Writing - original draft.

CONTENT

Introduction

 

Fructans are carbohydrates in which the links among fructose residues predominate. This definition is independent of molecule size, since there are fructans that contain from two to more than 106 units (Waterhouse and Chatterton 1993Waterhouse, A.L. & Chatterton, N.J. 1993. Glossary of fructan terms. In: Michio Suzuki, N. y J. Chatterton (eds.). Science and technology of fructans. CRC Press. Boca Raton, USA. Pp. 1-7. ISBN: 0-8493-5111-1.). There are different criteria for the classification of fructans. According to Waterhouse and Chatterton (1993)Waterhouse, A.L. & Chatterton, N.J. 1993. Glossary of fructan terms. In: Michio Suzuki, N. y J. Chatterton (eds.). Science and technology of fructans. CRC Press. Boca Raton, USA. Pp. 1-7. ISBN: 0-8493-5111-1., their grouping is based on three essential criteria: the predominant type of bond among fructose residues, degree of polymerization (DP) of the molecule and its origin. According to this, the most frequent terms that appear in the bibliography are: kestoses, inulin, levan, phlein and graminan, each described with its characteristic structures. Oligomeric fructans, which contain a saccharose linked to one or more fructose residues, are called fructooligosaccharides (FOS) and can be of microbial or plant origin.

Van den Ende (2013)Van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4: 1-11, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2013.00247. and Franco-Robles and López (2015)Franco-Robles, E. & López, M. 2015. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 2015: 15, ISSN: 2356-6140. http://dx.doi.org/10.1155/2015/289267. established a classification criterion based on the type of glycosidic bond present. These authors grouped fructans into inulins, levans, graminans and neofructans (neoinulins or neoseries inulins and neolevans or neoseries levans). There is a specific type of fructan, which is characterized by a highly branched complex structure, with an external glucose in the graminans and an internal one in the neofructans. These compounds are produced in agaves, which is why they are called agavins (Mancilla-Margalli and López 2006Mancilla-Margalli, N.A. & López, M.G. 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry, 54(20): 7832-7839, ISSN: 1520-5118. https://doi.org/10.1021/jf060354v.).

In the plant kingdom Plantae, approximately 15 % of flowering plants are able to synthesize and store this compound in leaves, stems and roots, mainly in storage organs such as bulbs, tubers and rhizomes (Hendry 1993Hendry, G. 1993. Evolutionary origins and natural functions of fructans a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123(1): 3-14, ISSN: 1469-8137. https://doi.org/10.1111/j.1469-8137.1993.tb04525.x.). These plants are found in a small group of mono and dicotyledonous families: Amaryllidaceae, Poaceae, Asteraceae, Nolinaceae and Asparagaceae (Franco-Robles and López 2015Franco-Robles, E. & López, M. 2015. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 2015: 15, ISSN: 2356-6140. http://dx.doi.org/10.1155/2015/289267.).

The most studied medicinal property of fructans is their prebiotic action (Ayala et al. 2018Ayala, M.M.A., Hernández, S.D., Pinto, R.R., González, M.S.S., Bárcena, G.J.R., Hernández, M.O. & Torres, S.N. 2018. Prebiotic effect of two sources of inulin on in vitro growth of Lactobacillus salivarius and Enterococcus faecium. Revista Mexicana de Ciencias Pecuarias, 9(2): 346-361, ISSN: 2448-6698. http://dx.doi.org/10.22319/rmcp.v9i2.4488., Guillot 2018Guillot, C.C. 2018. Update in prebiotics. Revista Cubana de Pediatría, 90(4): 648, ISSN: 1561-3119. and Armas et al. 2019Armas, R.R.A., Martínez, G.D. & Pérez, C.E.R. 2019. Inulin-typefructans: effect on gut microbiota, obesity and satiety. Gaceta Médica Espirituana, 21(2): 134-145, ISSN: 1608-8921.). In addition, they are involved in the decrease of body mass index, the reduction of total body fat and triglycerides in obese individuals (Padilla-Camberos et al. 2018Padilla-Camberos, E., Barragán-Álvarez, C.P., Díaz-Martínez, N.E., Rathod, V. & Flores-Fernández, J.M. 2018. Effects of Agave fructans (Agave tequilana Weber var. azul) on body fat and serum lipids in obesity. Plant Foods for Human Nutrition, 73: 34-39, ISSN: 1573-9104. https://doi.org/10.1007/s11130-018-0654-5. ). They also reduce glycemic indicators in individuals with prediabetes and diabetes mellitus, prevent colorectal cancer, osteoporosis and have brain protection properties (Wang et al. 2019Wang, L., Yang, H., Huang, H., Zhang, C., Zuo, H.X., Xu, P., Niu, Y.M. & Wu, S.S. 2019. Inulin‑type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE‑assessed systematic review and dose-response meta‑analysis of 33 randomized controlled trials. Journal of Translational Medicine, 17(410): 1-19, ISSN: 1479-5876. https://doi.org/10.1186/s12967-019-02159-0. and Espinosa-Andrews et al. 2021Espinosa-Andrews, H., Urias-Silvas, J.E. & Morales-Hernández, N. 2021. The role of agave fructans in health and food applications: A review. Trends in Food Science & Technology, 114: 585-598, ISSN: 0924-2244. https://doi.org/10.1016/j.tifs.2021.06.022.). Fructans are incorporated into foods for their technological properties: emulsifiers, stabilisers, gelling agents and sweeteners (Verma et al. 2021Verma, D.K., Patel, A.R., Thakur, M., Singh, S., Tripathy, S., Srivastav, P.P. & Aguilar, C.N. 2021. A review of the composition and toxicology of fructans, and their applications in foods and health. Journal of Food Composition and Analysis, 99: 103884, ISSN: 1096-0481. https://doi.org/10.1016/j.jfca.2021.103884. ). Furthermore, Agave tequilana agavins are used in the industrial production of beverages such as tequila and mezcal (Hernández 2018Hernández, J. de J. 2018. El mezcal como patrimonio social: de indicaciones geográficas genéricas a denominaciones de origen regional. EmQuestão, 24(2): 404-433, ISSN: 1808-5245. http://dx.doi.org/10.19132/1808-5245242.404-433.).

Nowadays, the use of fructans as prebiotic additives in animal production is increasing (de Lange et al. 2010de Lange, C.F.M., Pluske, J., Gong, J. & Nyachoti, C.M. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1-3): 124-134, ISSN: 1871-1413. https://doi:10.1016/j.livsci.2010.06.117.). García-Curbelo et al. (2018)García-Curbelo, Y., Ayala, L., Bocourt, R., Albelo, N., Nuñez, O., Rodríguez, Y. & López, M.G. 2018. Agavinas como prebióticos: su influencia en el metabolismo lipídico de cerdos. Cuban Journal of Agricultural Science, 52(4): 395-400, ISSN: 2079-3480. included Agave fourcroydes L. agavins in pig diet and obtained modifications in lipid metabolism, related to the decrease of total cholesterol, low-density lipoproteins and total lipids. Alvarado-Loza et al. (2017)Alvarado-Loza, E., Orozco-Hernández, R., Ruíz-García, I., Paredes-Ibarra, F. & Fuentes-Hernández, V. 2017. The 2% of Agave inulin level in the rabbit feed affect spositively the digestibility and gutmicrobia. Abanico Veterinario, 7(3): 55-62, ISSN: 2448-6132. http://dx.doi.org/10.21929/abavet2017.73.6., by supplying 2 % of Agave inulin in rabbit feed, reported its positive influence on digestibility and intestinal microbiota. In addition, Chávez-Mora et al. (2019)Chávez-Mora, I., Sánchez-Chiprés, D., Galindo-García, J., Ayala-Valdovinos, M.A., Duifhuis-Rivera, T. & Ly-Carmenatti, J. 2019. Efecto de oligofructosa de agave en dietas de gallinas ponedoras en la producción de huevos. Revista MVZ Córdoba, 24(1): 7108-7112, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.1522. observed an increase in the percentage of laying and weight of the egg, as well as in its quality indices, in favor of treatments with Agave oligofructose.

Agave genus is considered native to Mexico, where 272 species of the 310 reported are found. Of these, 135 are endemic (Mancilla-Margalli and López 2006Mancilla-Margalli, N.A. & López, M.G. 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry, 54(20): 7832-7839, ISSN: 1520-5118. https://doi.org/10.1021/jf060354v.).

In Cuba, this genus includes 16 native species (Greuter and Rankin 2017Greuter, W. & Rankin, R. 2017. The Spermatophyta of Cuba. A Preliminary Checklist. Second, updated edition of the The Spermatophyta of Cuba with Pteridophyta added. Botanischer Garten and Botanisches Museum Berlin-Dahlem, Berlín.). Agave offoyana Jacobi is commonly known as maguey. It is an endemic species (Romero-Jiménez et al. 2015Romero-Jiménez, M., Castañeda-Noa, I. & de las Mercedes, L. 2015. Origen y estado actual de la flora espermatófita en áreas naturales de cayo Las Brujas, Villa Clara. Revista del Jardín Botánico Nacional, 36: 31-46, ISSN: 2410-5546.) and is distributed on the Northern coast and some inland regions (de Zayas 1980de Zayas, A.A. 1980. Agave cajalbanensis: una nueva especie de Cuba occidental. Revista del Jardín Botánico Nacional, 1(2-3): 33-39, ISSN: 2410-5546.). It grows in evergreen forests, coastal and subcoastal microphylls. It is a local resource, used as a medicinal, honey-producing and ornamental plant (Romero-Jiménez et al. 2015Romero-Jiménez, M., Castañeda-Noa, I. & de las Mercedes, L. 2015. Origen y estado actual de la flora espermatófita en áreas naturales de cayo Las Brujas, Villa Clara. Revista del Jardín Botánico Nacional, 36: 31-46, ISSN: 2410-5546.).

Several species of Agave are used to obtain products for use in health, industry and human and animal food. However, they are not Cuban. Out of the 24 species that grow in Cuba, A. offoyana stands out for its size and could store fructans as a carbon source, as occurs in several Mexican species.

The objective of this study was to determine, using chromatographic methods, the presence of fructans in vegetative organs of the endemic species Agave offoyana (maguey).

Materials and Methods

 

Plant material

 

Specimens of Agave offoyana were collected in the Tres Ceibas de Clavellina managed floristic reserve, Matanzas province, Cuba (23º05’48.6” N and 81º39’20.5” W). For plant identification, the characteristics of this species, described in Flora de Cuba, first fascicle (León 1946León, H. 1946. Flora de Cuba, Gimnospermas, Monocotiledóneas. Vol. I Contribuciones ocasionales del Museo de Historia Natural del Colegio La Salle No 8. La Habana. 441 pp.), were used as a reference.

Samples were taken at two times of the year. The first, in December 2016, during dry period, and the second, in July 2017, rainy season. In December, nine plants were collected, three juveniles, three adults and three in bloom (early stage), close to four, eight and ten years of age, respectively. In July, three adult specimens close to ten years of age were studied.

From each plant collected in December, samples of roots, stems, and a leaf inserted in the base, middle, and apex of the stem, were taken. From those collected in July, only samples of the stem and the leaf inserted in the middle of the stem (fourth leaf from the base of the stem) were taken (figure 1). Samples were transported separately in plastic bags to the plant biotechnology laboratory of the Faculty of Agronomy, of the Agricultural University of Havana.

Figure 1.  Scheme of sample collecting of vegetative organs in plants of Agave offoyana Jacobi

Determination of fructans by thin layer chromatography (TLC)

 

For fructan extraction, the protocol followed by Wack and Blaschek (2006)Wack, M. & Blaschek, W. 2006. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohydrate Research, 341(9): 1147-1153, ISSN: 1873-426X. https://doi.org/10.1016/j.carres.2006.03.034. was modified. All collected samples were processed in the laboratory, where each organ was fractionated, sterilized and crushed separately. Leaves were sectioned at the base, middle and apex (figure 1). The organ segments (stem, leaves and roots) were weighed and sterilized separately, with water, in a 1:2 (w/v) ratio, in an autoclave, at 121 °C and 1 atm of pressure for 40 min. Then, they were crushed separately in a blender until a paste was obtained. They were placed in 1.5 mL tubes and centrifuged at 9000 rpm in a microcentrifuge to obtain the aqueous phase.

The presence of fructans was determined by thin layer chromatography (TLC), according to the method proposed by Trujillo et al. (2004)Trujillo, T.L.E., Gómez, R.R., Banguela, C.A., Soto, R.M., Arrieta, S.J.G. & Hernández, G.L. 2004. Catalytical properties of N-glycosylated Gluconacetobacterdiazotrophicus levansucrase produced in yeast. Electronic Journal of Biotechnology, 7(2): 115-123, ISSN: 0717-3458. https://doi.org/10.4067/S0717-34582004000200005. . For this purpose, 1.5 μL of the aqueous phase extracted from roots, stems and leaves was applied to a TLC plate (silica gel on aluminum sheets, Fluka, Germany) and introduced three times into a closed chamber containing 10 mL of running solution (1-butanol, 2-propanol and water in a 3:12:0.5 ratio).

The plate was developed by applying a solution (saturated butanol 93 mL, orthophosphoric acid 85 % 7 mL and urea 3 g). Absolute ethanol was also added until the solution became transparent and it was incubated at 80 °C to accelerate the reaction. The combination of these reagents allowed the profiles and the fructose molecule to be visualized. An aqueous extract of onion bulbs (Allium cepa L.) was used as a molecular weight standard, as described by Vijn et al. (1998)Vijn, I., van Dijken, A., Lüscher, M., Bos, A., Smeets, E., Weisbeek, P., Wiemken, A. & Smeekens, S. 1998. Cloning of sucrose: sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiology, 117(4): 1507-1513, ISSN: 1532-2548. https://doi.org/10.1104/pp.117.4.1507. .

Determination of fructans by high-performance liquid chromatography (HPLC)

 

To determine the presence of fructans, a stem sample from an adult plant collected in December was used and analyzed by HPLC, as described by Meyer (2010)Meyer, V.R. 2010. Practical High-Performance Liquid Chromatography. John Wiley and Sons, Ltd, New York, USA. pp. 5-141. ISBN: 978-0-470-68218-0.. Prior to performing the HPLC, TLCs were performed on organs of the plants collected in December, which allowed to select the one used as sample.

The run was performed on a Nucleosil NH2 column (0.8 x 25.0 cm) (Sigma, USA) using 80% acetonitrile in water as the elution solution and a flow rate of 0.4 mL min-1 at 37 ºC. The eluted sugars were found with a differential refractometer (Knauer, Germany). For calibration of the equipment, the standards sucrose, 1-kestose and nystose, were used, prepared at 10 mg mL-1.

Results

 

Product profiles obtained from organ samples from adult plants revealed that A. offoyana stores fructans as a carbon source. These carbohydrates were mainly accumulated in the stems and are found in lower concentrations in leaves. They were not found in the roots. Low and high molecular weight polymers were observed in both plant organs (figure 2a).

A. offoyana contains fructans in the leaves of juvenile, adult and flowering plants (figure 2b), although in the latter two the concentration is higher than in young plants. In the same figure, TLC also showed that the juvenile plant mainly produces low molecular weight fructans in leaves. However, in the adult and flowering plants, low and high degree of polymerization molecules were observed, which was evidenced by the dark spot present at the application point.

Figures 2c and 2d show that the presence of fructans in leaves inserted at the base and middle of the stem of adult and flowering plants was greater than in the leaves at the stem apex. Furthermore, when these leaves were divided into base, middle and apex, it was found that the concentration of fructans was greater in the areas at the base and middle than at the apex. As demonstrated in the figures, the presence of high molecular weight molecules in the basal area of ​​leaves at the base, middle and stem apex was greater than in the middle. There was little representation of these molecules at the apex of leaves.

Young, adult and flowering plants stored similar amounts of fructans in stem samples taken during dry season (figure 2e). Besides, this figure shows the TLC and the presence of low and high molecular weight polymers during the three phases of plant growth. The concentration of carbohydrates increased slightly with the degree of plant development.

a. Root, leaf* inserted at the base of the stem and stem of three adult plantsb. Leaves* inserted in the base, middle and stem apex in juvenile, adult and flowering plants.c. Leaves of an adult plant (base, middle and stem apex) sectioned at base, middle and apex.d. Leaves of a flowering plant (base, middle and stem apex) sectioned at base, middle and apexe. Stems of juvenile, adult and flowering plants (collected in December). J (juvenile), A (adult), F (flowering), HMT (leaf inserted in the middle of the stem), B (base), M (middle), AC (stem apex), E (apex), C (onion), F (fructose), S (sucrose), 3GP (trisaccharide), GP (degree of polymerization). *Refers to the basal area of ​​the leaf.
Figure 2.  Product profiles obtained by TLC from the extracts of the different plant organs of Agave offoyana Jacobi

Stem and leaves inserted in the middle of the stem of adult plants stored fructans during dry (December) and rainy (July) periods, although there was a slight increase in the accumulation in these organs during the dry period. The light spots on the dark background at the point of application of some samples indicate the saturation by high molecular weight fructans (figures 3a and 3b).

a. Stem of adult plants collected in December and July.b. Leaves* inserted in the middle of the stem of adult plants collected in December and July. A (adult), T (stem), HMT (leaf inserted in the middle of the stem), C (onion), F (fructose), S (sucrose), 3GP (trisaccharide), DP (degree of polymerization). * Refers to the basal area of ​​the leaf.
Figure 3.  Product profiles obtained by TLC of the extracts of different organs of Agave offoyana Jacobi plants

High-performance liquid chromatography (HPLC) showed the presence of fructans from molecules with DP 3 to DP 6. This technique does not allow the separation of molecules with higher DP, which are seen grouped in a single peak. The polymer with the highest concentration is the one composed of three fructose units (figure 4).

Figure 4.  Chromatographic profile obtained by HPLC of extracts of Agave offoyana Jacobi stems. G (glucose), F (fructose), S (sucrose), DP (degree of polymerization).

Discussion

 

Fructans are found in several plant families as reserve carbohydrates. They also function as osmoprotective substances during drought and cold stress (Ritsema and Smeekens 2003Ritsema, T. & Smeekensm, S. 2003. Engineering fructan metabolism in plants. Journal of Plant Physiology, 160: 811-820, ISSN: 1618-1328. https://doi.org/10.1078/0176-1617-01029.). The studied A. offoyana plants contain more fructans in stems than in leaves. These polymers are the main reserve carbohydrate present in Agave stems (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). Fructans are also the most abundant carbohydrates in adult plants of Agave fourcroydes (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485.). Likewise, Agave tequilana has more fructans in stem than in leaves. In this species, the head or cone (stem and leaf bases) stores the largest amount of total non-reducing sugars, where inulin and fructooligosaccharides (FOS) are predominant. This is followed by the base of leaves, where inulin and, to a lesser extent, FOS are also predominant (Montañez-Soto et al. 2011Montañez-Soto, J., Venegas-González, J., Vivar-Vera, M. & Ramos-Ramírez, E. 2011. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber var. Azul. Bioagro, 23(3): 199-206, ISSN: 1316-3361. and Ferrer-Serrano et al. 2023Ferrer-Serrano, C.M., Zumalacárregui-de-Cárdenas, B. & Mazorra-Mestre, M. 2023. Extracción de inulina a partir de piñas de desecho de henequeneras cubanas. Revista Cubana de Química, 35(2): 322-337, ISSN: 2224-5421.).

Leaves inserted at the base of the stem of A. offoyana are green, without mechanical damage. They grow on previously dead leaves or leaves in the senescence phase. They represent the most mature leaves of the plant and have the highest amount of fructans. However, in A. fourcroydes, intermediate leaves store the highest fructan concentration (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485.). In A. offoyana leaves, it occurred at the base of this organ. This coincides with what has been reported in adult plants of A. tequilana, where fructan content is equivalent to 68.6 %, with respect of that of the head or cone. The base of leaves constitutes the second fraction with the greatest contribution to the biomass of A. tequilana crop. It is mainly composed of inulin, FOS (to a lesser extent) and reducing sugars (Montañez-Soto et al. 2011Montañez-Soto, J., Venegas-González, J., Vivar-Vera, M. & Ramos-Ramírez, E. 2011. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber var. Azul. Bioagro, 23(3): 199-206, ISSN: 1316-3361. ). Also, in the lower leaves of Agave mapisaga, 68 % of FOS and 32 % of high molecular weight fructans were found (Plascencia et al. 2019Plascencia, A., Gutiérrez-Mora, A., Rodríguez-Domínguez, M., Castañeda-Nava, J., Gallardo-Valdez, J. & Camacho-Ruíz, R.M. 2019. Characterization of fructans extracted from Agave mapisaga leaves. In: Gutierrez Mora, A. (ed.). Sustainable and Integrated use of Agave. CONACYT / CIATEJ / Agared, Zapopan, Jalisco, Mexico. Pp. 101-106. ISBN: 978-607-8734-03-0.).

Fructan accumulation in A. offoyana occurs from the juvenile phase until the beginning of flowering. Likewise, carbohydrate content is directly related to the age and physiological stage of A. tequilana. The highest concentrations were observed in adult plants, while the lowest concentrations were quantified in juveniles (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). In a study with plants of Agave angustifolia Haw. and Agave potatorum Zucc., from one to six years old, it was determined that the concentration of simple carbohydrates was higher in young plants and that fructans with a higher DP predominated in adult plants for both species (Márquez‐López et al. 2022Márquez-López, R.E., Santiago-García, P.A. & López, M.G. 2022. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants, 11(14): 1834, ISSN: 2223-7747. https://doi.org/10.3390/plants11141834.).

A. offoyana specimens were collected in a natural area. Stems and leaves of juvenile plants (approximately four years old) showed less accumulation of fructans, of low and high DP, compared to adult plants and at the beginning of flowering. In stems and base of the leaves of different Agave species, plants from two to four years old exhibited the highest concentrations of free sugars and fructans with low DP. On the contrary, plants aged 10 to 12 years old showed low fructan concentration with higher DP (Aldrete-Herrera et al. 2019Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M. & Ortiz-Basurto, R.I. 2019. Physicochemical composition and apparent degree of polymerization of fructans in five wild Agave varieties: potential industrial use. Foods, 8(9): 404, ISSN: 2304-8158. https://doi.org/10.3390/foods8090404.).

Contrary to the previous result, in A. fourcroydes cones, a greater quantity of sugars was obtained in 12-year-old plants, compared to those of seven years (Ferrer-Serrano et al. 2023Ferrer-Serrano, C.M., Zumalacárregui-de-Cárdenas, B. & Mazorra-Mestre, M. 2023. Extracción de inulina a partir de piñas de desecho de henequeneras cubanas. Revista Cubana de Química, 35(2): 322-337, ISSN: 2224-5421.). Similarly, in A. tequilana, aged four years, lower concentrations of fructans are shown compared to those of six and eight years. Those corresponding to ten years hydrolyze fructose to supply the energy demand of the flowering stage (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ).

Plants store polysaccharides during the vegetative period to provide the necessary energy during the reproductive stage (Pérez and Martínez-Laborde 1994Pérez, F. & Martínez-Laborde, J.B. 1994. Utilización y transporte de los fotoasimilados. In: Pérez García, F. y J. B. Martínez-Laborde (eds.). Introducción a la Fisiología Vegetal. Ediciones Mundi-Prensa. Madrid, España. Pp. 87-94. ISBN: 84-7114-471-9.). However, A. offoyana accumulates these carbohydrates even during the beginning of flowering in a similar way to the adult phase, which could be due to the asexual reproduction mechanism that follows the sexual one, and that takes place in the same inflorescence (García-Beltrán et al. 2017García-Beltrán, J.A., Granado, P.L. & Bécquer, E.R. 2017. Las familias de las angiospermas de la flora de Cuba: visión diagnóstica desde los sistemas filogenéticos. Revista del Jardín Botánico Nacional, 38: 65-117, ISSN: 2410-5546.). Unlike A. offoyana, the concentrations of this carbohydrate decreased in A. tequilana plants that were in the flowering stage (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). In most of the studies carried out on species of Agave genus, plants were harvested before flowering, because the main function of the storage of fructose polymers is their use during flowering and fruiting (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485., Arrizon et al. 2010Arrizon, J., Morel, S., Gschaedler, A. & Monsan, P. 2010. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry, 122(1): 123-130, ISSN: 2590-1575. http://doi:10.1016/j.foodchem.2010.02.028., García-Curbelo et al. 2015García-Curbelo, Y., López, M. G., Bocourt, R., Collado, E., Albelo, N. & Nuñez, O. 2015. Structural characterization of fructans from Agave fourcroydes (Lem.) with potential as prebiotic. Cuban Journal of Agricultural Science, 49(1): 75-80, ISSN: 2079-3480. and Godínez-Hernández et al. 2016Godínez-Hernández, C.I., Aguirre-Rivera, J.R., Juárez-Flores, B.I., Ortiz-Pérez, M.D. & Becerra-Jiménez, J. 2016. Extraction and characterization of Agave salmiana Otto ex Salm-Dyckfructans. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(1): 59-72, ISSN: 2007-3828. https://doi:10.5154/r.rchscfa.2015.02.007.). As the reproductive stage begins, the development of photosynthetically active leaves is suppressed and the leaves and stems start to age, indicating that carbohydrate reserves were used for the reproductive phase (Delgado et al. 2012Delgado, S.S.D.C., Abraham, J.M.J. & Simpson, J. 2012. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sexual Plant Reproduction, 25(1): 11-26, ISSN: 0934-0882. https://doi.org/10.1007/s00497-011-0176-x.).

The stem and leaves of adult A. offoyana plants stored fructans in both periods of the year, although a slight increase in their accumulation was evident in the dry season (figures 3a and 3b). In Cuba, there are two seasonal periods (rainy and dry) with specific characteristics. More than 80% of the annual precipitation accumulates in rainy season (ONEI 2021ONEI. 2021. Anuario estadístico de Cuba 2020. Medio Ambiente. Oficina Nacional de Estadística e Información. Cuba. 60 pp.). Dry season does not favor the vegetative development of plants due to the scarcity of water. Daily accumulation rate increases when there are high temperatures during the day and low temperatures at night (Taiz and Zeiger 2002Taiz, L. & Zeiger, E. 2002. Respiration and Lipid Metabolism. In: Taiz, L. y E. Zeiger (eds.). Plant physiology. Sinauer Associates Inc. Sunderland, Massachusetts, USA. Pp. 245-247. ISBN: 0-87893-823-0.). These results coincide with those obtained in A. tequilana, in Mexico, where total reducing sugar values ​​ (23.68 to 30.80 %) were reported in dry and rainy periods (27.08 to 32.69 %). Agave cones have a higher fructan content in dry season, because the juice contains less water, so sugars are concentrated. In humid period, the content decreases due to the increase in the amount of water within the juice (Bautista-Justo et al. 2001Bautista-Justo, M., García-Oropeza, L., Salcedo-Hernández, R. & Parra-Negrete, L.A. 2001. Azúcares en agaves (Agave tequilana Weber) cultivados en el estado de Guanajuato. Acta Universitaria, 11(1): 33-38, ISSN: 2007-9621. https://doi.org/10.15174/au.2001.325.).

Agave fructans are a complex mixture of FOS and high DP fructans (Márquez‐López et al. 2022Márquez-López, R.E., Santiago-García, P.A. & López, M.G. 2022. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants, 11(14): 1834, ISSN: 2223-7747. https://doi.org/10.3390/plants11141834.). Thus, high-performance liquid chromatography showed polymers of three and up to six fructose units in A. offoyana, although this technique did not allow the separation of molecules with DP greater than seven. Similar results were found in the head or cone of adult plants of Agave salmiana and A. tequilana, where fructans superior to four DP were identified (Pérez-López et al. 2021Pérez-López, A.V., Simpson, J., Clench, M.R., Gomez-Vargas, A.D. & Ordaz-Ortiz, J.J. 2021. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber var. Azul. Frontiers in Plant Science, 11: 1-16, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2020.608850. and Regalado et al. 2021Regalado, E., Godínez-Hernández, C.I., Aguirre Rivera, J.R., Camacho, R.M. & Juárez, B.I. 2021. Characterization of fructans from stems of Agave salmiana Otto ex Salm-Dyck and A. tequilana F.A.C. Weber at full physiological maturity. Botanical Sciences, 9(2): 388-397, ISSN: 2007-4476. https://doi.org/10.17129/botsci.2641.). In a study to search for fructans with different molecular structures, mutant plants of A. tequilana were recorded, which stored trisaccharide neokestose in the stem, which has greater nutritional value with respect to 1-kestose (Ángeles-Espino et al. 2020Ángeles-Espino, A., Dimas-Estrada, H.E., Ramírez-Alvarado, D., Cruz-Rubio, J.M., Palmeros-Suárez, P.A. & Gómez-Leyva, J.F. 2020. Molecular characterization of Agave tequilana mutants induced with gamma radiation Co60 and its effect in the fructooligosaccharides accumulation. Acta Universitaria, 30: 1-11, ISSN: 2007-9621. http://doi.org/10.15174/au.2020.2696.).

Other important metabolites are generated in the stem and leaves of Agaves, such as inulin, saponins and flavonoids, which are important for food and pharmaceutical industries (Trujillo-Ramírez et al. 2023Trujillo-Ramírez, D., Bustos-Vázquez, M.G., Martínez-Velasco, A. & Torres-de los Santos, R. 2023. Integral use of Henequen (Agave fourcroydes): applications and trends-a review. Tropical and Subtropical Agroecosystems, 26(2): 1-18, ISSN: 1870-0462. http://doi.org/10.56369/tsaes.4619. ). The A. offoyana species also produces other secondary metabolites, such as saponins, which were found in the inflorescence and leaves (Pérez et al. 2013Pérez, A.J., Calle, J.M., Simonet, A.M., Guerra, J.O., Stochmal, A. & Macías, F.A. 2013. Bioactive steroidal saponins from Agave offoyana flowers. Phytochemistry, 95: 298-307, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2013.06.020. and Pérez et al. 2014Pérez, A.J., Simonet, A.M., Calle, J.M., Pecio, L., Guerra, J.O., Stochmal, A. & Macías, F.A. 2014. Phytotoxic steroidal saponins from Agave offoyana leaves. Phytochemistry, 105: 92-100, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2014.05.014. ).

It is concluded that the Cuban endemic species A. offoyana stores fructans as a carbon source. These carbohydrates are present in stem and leaves, but not in the roots of the plant. Adult plants and those at the beginning of flowering accumulate a greater quantity of fructans in the stem. This species stores fructans in the stem and synthesizes them in leaves, mainly in those inserted at the base of the stem and in the area closest to this organ. These carbohydrates accumulate throughout the year, although a slight increase was found in dry season. The polymer with the greatest presence in the stems of adult plants is made up of three fructose units. The plant can be used to obtain fructans with possible uses as prebiotic in human and animal health and feeding.

Acknowledgements

 

Thanks to all the staff of the plant biotechnology laboratory of the Faculty of Agronomy of the Agricultural University of Havana for their wisdom and professional experience. Gratitude is also expressed to Carlos González, specialist of the Tres Ceibas de Clavellina managed floristic reserve, to Andrés Hernández Rego, for the logistical support for the development of the collections, and to Lázaro Hernández, researcher of the Center for Genetic Engineering and Biotechnology, for his recommendations on the application of chromatographic techniques.

References

 

Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M. & Ortiz-Basurto, R.I. 2019. Physicochemical composition and apparent degree of polymerization of fructans in five wild Agave varieties: potential industrial use. Foods, 8(9): 404, ISSN: 2304-8158. https://doi.org/10.3390/foods8090404.

Alvarado-Loza, E., Orozco-Hernández, R., Ruíz-García, I., Paredes-Ibarra, F. & Fuentes-Hernández, V. 2017. The 2% of Agave inulin level in the rabbit feed affect spositively the digestibility and gutmicrobia. Abanico Veterinario, 7(3): 55-62, ISSN: 2448-6132. http://dx.doi.org/10.21929/abavet2017.73.6.

Ángeles-Espino, A., Dimas-Estrada, H.E., Ramírez-Alvarado, D., Cruz-Rubio, J.M., Palmeros-Suárez, P.A. & Gómez-Leyva, J.F. 2020. Molecular characterization of Agave tequilana mutants induced with gamma radiation Co60 and its effect in the fructooligosaccharides accumulation. Acta Universitaria, 30: 1-11, ISSN: 2007-9621. http://doi.org/10.15174/au.2020.2696.

Armas, R.R.A., Martínez, G.D. & Pérez, C.E.R. 2019. Inulin-typefructans: effect on gut microbiota, obesity and satiety. Gaceta Médica Espirituana, 21(2): 134-145, ISSN: 1608-8921.

Arrizon, J., Morel, S., Gschaedler, A. & Monsan, P. 2010. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry, 122(1): 123-130, ISSN: 2590-1575. http://doi:10.1016/j.foodchem.2010.02.028.

Ayala, M.M.A., Hernández, S.D., Pinto, R.R., González, M.S.S., Bárcena, G.J.R., Hernández, M.O. & Torres, S.N. 2018. Prebiotic effect of two sources of inulin on in vitro growth of Lactobacillus salivarius and Enterococcus faecium. Revista Mexicana de Ciencias Pecuarias, 9(2): 346-361, ISSN: 2448-6698. http://dx.doi.org/10.22319/rmcp.v9i2.4488.

Bautista-Justo, M., García-Oropeza, L., Salcedo-Hernández, R. & Parra-Negrete, L.A. 2001. Azúcares en agaves (Agave tequilana Weber) cultivados en el estado de Guanajuato. Acta Universitaria, 11(1): 33-38, ISSN: 2007-9621. https://doi.org/10.15174/au.2001.325.

Chávez-Mora, I., Sánchez-Chiprés, D., Galindo-García, J., Ayala-Valdovinos, M.A., Duifhuis-Rivera, T. & Ly-Carmenatti, J. 2019. Efecto de oligofructosa de agave en dietas de gallinas ponedoras en la producción de huevos. Revista MVZ Córdoba, 24(1): 7108-7112, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.1522.

de Lange, C.F.M., Pluske, J., Gong, J. & Nyachoti, C.M. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1-3): 124-134, ISSN: 1871-1413. https://doi:10.1016/j.livsci.2010.06.117.

de Zayas, A.A. 1980. Agave cajalbanensis: una nueva especie de Cuba occidental. Revista del Jardín Botánico Nacional, 1(2-3): 33-39, ISSN: 2410-5546.

Delgado, S.S.D.C., Abraham, J.M.J. & Simpson, J. 2012. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sexual Plant Reproduction, 25(1): 11-26, ISSN: 0934-0882. https://doi.org/10.1007/s00497-011-0176-x.

Espinosa-Andrews, H., Urias-Silvas, J.E. & Morales-Hernández, N. 2021. The role of agave fructans in health and food applications: A review. Trends in Food Science & Technology, 114: 585-598, ISSN: 0924-2244. https://doi.org/10.1016/j.tifs.2021.06.022.

Ferrer-Serrano, C.M., Zumalacárregui-de-Cárdenas, B. & Mazorra-Mestre, M. 2023. Extracción de inulina a partir de piñas de desecho de henequeneras cubanas. Revista Cubana de Química, 35(2): 322-337, ISSN: 2224-5421.

Franco-Robles, E. & López, M. 2015. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 2015: 15, ISSN: 2356-6140. http://dx.doi.org/10.1155/2015/289267.

García-Beltrán, J.A., Granado, P.L. & Bécquer, E.R. 2017. Las familias de las angiospermas de la flora de Cuba: visión diagnóstica desde los sistemas filogenéticos. Revista del Jardín Botánico Nacional, 38: 65-117, ISSN: 2410-5546.

García-Curbelo, Y., Ayala, L., Bocourt, R., Albelo, N., Nuñez, O., Rodríguez, Y. & López, M.G. 2018. Agavinas como prebióticos: su influencia en el metabolismo lipídico de cerdos. Cuban Journal of Agricultural Science, 52(4): 395-400, ISSN: 2079-3480.

García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485.

García-Curbelo, Y., López, M. G., Bocourt, R., Collado, E., Albelo, N. & Nuñez, O. 2015. Structural characterization of fructans from Agave fourcroydes (Lem.) with potential as prebiotic. Cuban Journal of Agricultural Science, 49(1): 75-80, ISSN: 2079-3480.

Godínez-Hernández, C.I., Aguirre-Rivera, J.R., Juárez-Flores, B.I., Ortiz-Pérez, M.D. & Becerra-Jiménez, J. 2016. Extraction and characterization of Agave salmiana Otto ex Salm-Dyckfructans. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(1): 59-72, ISSN: 2007-3828. https://doi:10.5154/r.rchscfa.2015.02.007.

Greuter, W. & Rankin, R. 2017. The Spermatophyta of Cuba. A Preliminary Checklist. Second, updated edition of the The Spermatophyta of Cuba with Pteridophyta added. Botanischer Garten and Botanisches Museum Berlin-Dahlem, Berlín.

Guillot, C.C. 2018. Update in prebiotics. Revista Cubana de Pediatría, 90(4): 648, ISSN: 1561-3119.

Hendry, G. 1993. Evolutionary origins and natural functions of fructans a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123(1): 3-14, ISSN: 1469-8137. https://doi.org/10.1111/j.1469-8137.1993.tb04525.x.

Hernández, J. de J. 2018. El mezcal como patrimonio social: de indicaciones geográficas genéricas a denominaciones de origen regional. EmQuestão, 24(2): 404-433, ISSN: 1808-5245. http://dx.doi.org/10.19132/1808-5245242.404-433.

León, H. 1946. Flora de Cuba, Gimnospermas, Monocotiledóneas. Vol. I Contribuciones ocasionales del Museo de Historia Natural del Colegio La Salle No 8. La Habana. 441 pp.

Mancilla-Margalli, N.A. & López, M.G. 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry, 54(20): 7832-7839, ISSN: 1520-5118. https://doi.org/10.1021/jf060354v.

Márquez-López, R.E., Santiago-García, P.A. & López, M.G. 2022. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants, 11(14): 1834, ISSN: 2223-7747. https://doi.org/10.3390/plants11141834.

Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626.

Meyer, V.R. 2010. Practical High-Performance Liquid Chromatography. John Wiley and Sons, Ltd, New York, USA. pp. 5-141. ISBN: 978-0-470-68218-0.

Montañez-Soto, J., Venegas-González, J., Vivar-Vera, M. & Ramos-Ramírez, E. 2011. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber var. Azul. Bioagro, 23(3): 199-206, ISSN: 1316-3361.

ONEI. 2021. Anuario estadístico de Cuba 2020. Medio Ambiente. Oficina Nacional de Estadística e Información. Cuba. 60 pp.

Padilla-Camberos, E., Barragán-Álvarez, C.P., Díaz-Martínez, N.E., Rathod, V. & Flores-Fernández, J.M. 2018. Effects of Agave fructans (Agave tequilana Weber var. azul) on body fat and serum lipids in obesity. Plant Foods for Human Nutrition, 73: 34-39, ISSN: 1573-9104. https://doi.org/10.1007/s11130-018-0654-5.

Pérez, A.J., Calle, J.M., Simonet, A.M., Guerra, J.O., Stochmal, A. & Macías, F.A. 2013. Bioactive steroidal saponins from Agave offoyana flowers. Phytochemistry, 95: 298-307, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2013.06.020.

Pérez, A.J., Simonet, A.M., Calle, J.M., Pecio, L., Guerra, J.O., Stochmal, A. & Macías, F.A. 2014. Phytotoxic steroidal saponins from Agave offoyana leaves. Phytochemistry, 105: 92-100, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2014.05.014.

Pérez, F. & Martínez-Laborde, J.B. 1994. Utilización y transporte de los fotoasimilados. In: Pérez García, F. y J. B. Martínez-Laborde (eds.). Introducción a la Fisiología Vegetal. Ediciones Mundi-Prensa. Madrid, España. Pp. 87-94. ISBN: 84-7114-471-9.

Pérez-López, A.V., Simpson, J., Clench, M.R., Gomez-Vargas, A.D. & Ordaz-Ortiz, J.J. 2021. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber var. Azul. Frontiers in Plant Science, 11: 1-16, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2020.608850.

Plascencia, A., Gutiérrez-Mora, A., Rodríguez-Domínguez, M., Castañeda-Nava, J., Gallardo-Valdez, J. & Camacho-Ruíz, R.M. 2019. Characterization of fructans extracted from Agave mapisaga leaves. In: Gutierrez Mora, A. (ed.). Sustainable and Integrated use of Agave. CONACYT / CIATEJ / Agared, Zapopan, Jalisco, Mexico. Pp. 101-106. ISBN: 978-607-8734-03-0.

Regalado, E., Godínez-Hernández, C.I., Aguirre Rivera, J.R., Camacho, R.M. & Juárez, B.I. 2021. Characterization of fructans from stems of Agave salmiana Otto ex Salm-Dyck and A. tequilana F.A.C. Weber at full physiological maturity. Botanical Sciences, 9(2): 388-397, ISSN: 2007-4476. https://doi.org/10.17129/botsci.2641.

Ritsema, T. & Smeekensm, S. 2003. Engineering fructan metabolism in plants. Journal of Plant Physiology, 160: 811-820, ISSN: 1618-1328. https://doi.org/10.1078/0176-1617-01029.

Romero-Jiménez, M., Castañeda-Noa, I. & de las Mercedes, L. 2015. Origen y estado actual de la flora espermatófita en áreas naturales de cayo Las Brujas, Villa Clara. Revista del Jardín Botánico Nacional, 36: 31-46, ISSN: 2410-5546.

Taiz, L. & Zeiger, E. 2002. Respiration and Lipid Metabolism. In: Taiz, L. y E. Zeiger (eds.). Plant physiology. Sinauer Associates Inc. Sunderland, Massachusetts, USA. Pp. 245-247. ISBN: 0-87893-823-0.

Trujillo, T.L.E., Gómez, R.R., Banguela, C.A., Soto, R.M., Arrieta, S.J.G. & Hernández, G.L. 2004. Catalytical properties of N-glycosylated Gluconacetobacterdiazotrophicus levansucrase produced in yeast. Electronic Journal of Biotechnology, 7(2): 115-123, ISSN: 0717-3458. https://doi.org/10.4067/S0717-34582004000200005.

Trujillo-Ramírez, D., Bustos-Vázquez, M.G., Martínez-Velasco, A. & Torres-de los Santos, R. 2023. Integral use of Henequen (Agave fourcroydes): applications and trends-a review. Tropical and Subtropical Agroecosystems, 26(2): 1-18, ISSN: 1870-0462. http://doi.org/10.56369/tsaes.4619.

Van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4: 1-11, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2013.00247.

Verma, D.K., Patel, A.R., Thakur, M., Singh, S., Tripathy, S., Srivastav, P.P. & Aguilar, C.N. 2021. A review of the composition and toxicology of fructans, and their applications in foods and health. Journal of Food Composition and Analysis, 99: 103884, ISSN: 1096-0481. https://doi.org/10.1016/j.jfca.2021.103884.

Vijn, I., van Dijken, A., Lüscher, M., Bos, A., Smeets, E., Weisbeek, P., Wiemken, A. & Smeekens, S. 1998. Cloning of sucrose: sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiology, 117(4): 1507-1513, ISSN: 1532-2548. https://doi.org/10.1104/pp.117.4.1507.

Wack, M. & Blaschek, W. 2006. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohydrate Research, 341(9): 1147-1153, ISSN: 1873-426X. https://doi.org/10.1016/j.carres.2006.03.034.

Wang, L., Yang, H., Huang, H., Zhang, C., Zuo, H.X., Xu, P., Niu, Y.M. & Wu, S.S. 2019. Inulin‑type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE‑assessed systematic review and dose-response meta‑analysis of 33 randomized controlled trials. Journal of Translational Medicine, 17(410): 1-19, ISSN: 1479-5876. https://doi.org/10.1186/s12967-019-02159-0.

Waterhouse, A.L. & Chatterton, N.J. 1993. Glossary of fructan terms. In: Michio Suzuki, N. y J. Chatterton (eds.). Science and technology of fructans. CRC Press. Boca Raton, USA. Pp. 1-7. ISBN: 0-8493-5111-1.


 
Ciencia de los Pastos y otros Cultivos

Determinación de fructanos en órganos vegetativos de Agave Offoyana (Asparagaceae), potencialidades de su uso como prebiótico

 

iDA.R. Hernández Montesinos1Instituto de Ciencia Animal, C. Central, km 47½, San José de las Lajas, C.P. 32700, Mayabeque, Cuba*✉:andresraulhm@gmail.com

iDD. Alfonso González2Jardín Botánico Nacional, Universidad de La Habana, Carretera El Rocío km 3 ½, C.P. 19230. Calabazar, Boyeros, La Habana, Cuba

iDDayanna Coronado Acosta3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba.

iDR. Reyes Fernández3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba.

iDDaymara Rodríguez Alfonso3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba.


1Instituto de Ciencia Animal, C. Central, km 47½, San José de las Lajas, C.P. 32700, Mayabeque, Cuba

2Jardín Botánico Nacional, Universidad de La Habana, Carretera El Rocío km 3 ½, C.P. 19230. Calabazar, Boyeros, La Habana, Cuba

3Universidad Agraria de La Habana, Autopista Nacional, km 23 ½, C.P. 32700, San José de las Lajas, Mayabeque, Cuba.

 

* Email:andresraulhm@gmail.com

Los fructanos son carbohidratos en los que predominan los enlaces entre residuos de fructosa. Se sintetizan en aproximadamente 15 % de las angiospermas. Estas moléculas tienen diversas aplicaciones en la alimentación y la salud, debido a la ausencia de digestibilidad y a su utilización selectiva por la microbiota intestinal benéfica en animales monogástricos. El objetivo de este trabajo fue determinar mediante métodos cromatográficos la presencia de fructanos en órganos vegetativos de la especie endémica Agave offoyana (maguey). Las plantas se recolectaron en tres estados fisiológicos diferentes durante dos períodos climáticos. Se tomaron de la reserva florística manejada Tres Ceibas de Clavellina, de la provincia Matanzas, Cuba. Las muestras se analizaron por diferentes métodos cromatográficos. La cromatografía de capa fina mostró presencia de fructanos en tallos y hojas, no así en las raíces. La acumulación fue mayor en los tallos. Ambos órganos contienen desde el trisacárido hasta moléculas con alto grado de polimerización. La presencia del polisacárido fue mayor en las hojas de la base con respecto a las del medio y del ápice caulinar. Hubo aumento en la acumulación de fructanos en las muestras de órganos recolectados en el período poco lluvioso. La cromatografía líquida de alta resolución confirmó la presencia de los fructoligosacáridos extraídos del tallo. Los resultados demostraron que Agave offoyana acumula fructanos en el tallo, aunque también están presentes en las hojas. Esta especie cubana se puede utilizar en la obtención de fructanos para la alimentación y la salud humana y animal.

Palabras clave: 
cromatografía, fructoligosacáridos, maguey

Introducción

 

Los fructanos son carbohidratos en los que predominan los enlaces entre residuos de fructosa. Esta definición es independiente del tamaño de la molécula, ya que existen fructanos que contienen desde dos hasta más de 106 unidades (Waterhouse y Chatterton 1993Waterhouse, A.L. & Chatterton, N.J. 1993. Glossary of fructan terms. In: Michio Suzuki, N. y J. Chatterton (eds.). Science and technology of fructans. CRC Press. Boca Raton, USA. Pp. 1-7. ISBN: 0-8493-5111-1.). Existen diferentes criterios para la clasificación de los fructanos. De acuerdo con lo planteado por Waterhouse y Chatterton (1993)Waterhouse, A.L. & Chatterton, N.J. 1993. Glossary of fructan terms. In: Michio Suzuki, N. y J. Chatterton (eds.). Science and technology of fructans. CRC Press. Boca Raton, USA. Pp. 1-7. ISBN: 0-8493-5111-1., su agrupación se fundamenta en tres criterios esenciales: el tipo de enlace predominante entre los residuos de fructosa, el grado de polimerización (GP) de la molécula y su procedencia. De acuerdo con esto, los términos que aparecen en la bibliografía con más frecuencia son: kestosas, inulina, levana, fleína y graminana, cada uno descrito con sus estructuras características. Los fructanos oligoméricos, que contienen una sacarosa unida a uno o varios residuos de fructosa, reciben el nombre de fructooligosacáridos (FOS) y pueden ser de origen microbiano o vegetal.

Van den Ende (2013)Van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4: 1-11, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2013.00247. y Franco-Robles y López (2015)Franco-Robles, E. & López, M. 2015. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 2015: 15, ISSN: 2356-6140. http://dx.doi.org/10.1155/2015/289267. establecieron un criterio de clasificación a partir del tipo de enlace glicosídico presente. Estos autores agrupan los fructanos en inulinas, levanas, graminanas y neofructanos (neoinulinas o inulinas neoseries y neolevanas o levanas neoseries). Existe un tipo específico de fructano, que se caracteriza por una estructura compleja muy ramificada, con una glucosa externa en las graminanas y una interna en los neofructanos. Estos compuestos se producen en los agaves, razón por la cual reciben el nombre de agavinas (Mancilla y López 2006Mancilla-Margalli, N.A. & López, M.G. 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry, 54(20): 7832-7839, ISSN: 1520-5118. https://doi.org/10.1021/jf060354v.).

En el reino vegetal Plantae, aproximadamente 15 % de las plantas con flores son capaces de sintetizar y almacenar este compuesto en hojas, tallos y raíces, fundamentalmente en órganos de almacenamiento, como bulbos, tubérculos y rizomas (Hendry 1993Hendry, G. 1993. Evolutionary origins and natural functions of fructans a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123(1): 3-14, ISSN: 1469-8137. https://doi.org/10.1111/j.1469-8137.1993.tb04525.x.). Estas plantas se encuentran en un pequeño grupo de familias mono y dicotiledóneas: Amaryllidaceae, Poaceae, Asteraceae, Nolinaceae y Asparagaceae (Franco-Robles y López 2015Franco-Robles, E. & López, M. 2015. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms. The Scientific World Journal, 2015: 15, ISSN: 2356-6140. http://dx.doi.org/10.1155/2015/289267.).

La propiedad medicinal más estudiada de los fructanos es su acción prebiótica (Ayala et al. 2018Ayala, M.M.A., Hernández, S.D., Pinto, R.R., González, M.S.S., Bárcena, G.J.R., Hernández, M.O. & Torres, S.N. 2018. Prebiotic effect of two sources of inulin on in vitro growth of Lactobacillus salivarius and Enterococcus faecium. Revista Mexicana de Ciencias Pecuarias, 9(2): 346-361, ISSN: 2448-6698. http://dx.doi.org/10.22319/rmcp.v9i2.4488., Guillot 2018Guillot, C.C. 2018. Update in prebiotics. Revista Cubana de Pediatría, 90(4): 648, ISSN: 1561-3119. y Armas et al. 2019Armas, R.R.A., Martínez, G.D. & Pérez, C.E.R. 2019. Inulin-typefructans: effect on gut microbiota, obesity and satiety. Gaceta Médica Espirituana, 21(2): 134-145, ISSN: 1608-8921.). Además, intervienen en la disminución del índice de masa corporal, la reducción de la grasa corporal total y los triglicéridos en individuos obesos (Padilla-Camberos et al. 2018Padilla-Camberos, E., Barragán-Álvarez, C.P., Díaz-Martínez, N.E., Rathod, V. & Flores-Fernández, J.M. 2018. Effects of Agave fructans (Agave tequilana Weber var. azul) on body fat and serum lipids in obesity. Plant Foods for Human Nutrition, 73: 34-39, ISSN: 1573-9104. https://doi.org/10.1007/s11130-018-0654-5. ). También reducen los indicadores glucémicos en individuos con prediabetes y diabetes mellitus, prevén el cáncer colorrectal, la osteoporosis y tienen propiedades de protección cerebral (Wang et al. 2019Wang, L., Yang, H., Huang, H., Zhang, C., Zuo, H.X., Xu, P., Niu, Y.M. & Wu, S.S. 2019. Inulin‑type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE‑assessed systematic review and dose-response meta‑analysis of 33 randomized controlled trials. Journal of Translational Medicine, 17(410): 1-19, ISSN: 1479-5876. https://doi.org/10.1186/s12967-019-02159-0. y Espinosa-Andrews et al. 2021Espinosa-Andrews, H., Urias-Silvas, J.E. & Morales-Hernández, N. 2021. The role of agave fructans in health and food applications: A review. Trends in Food Science & Technology, 114: 585-598, ISSN: 0924-2244. https://doi.org/10.1016/j.tifs.2021.06.022.). Los fructanos se incorporan a los alimentos por sus propiedades tecnológicas: emulsionantes, estabilizantes, gelificantes y edulcorantes (Verma et al. 2021Verma, D.K., Patel, A.R., Thakur, M., Singh, S., Tripathy, S., Srivastav, P.P. & Aguilar, C.N. 2021. A review of the composition and toxicology of fructans, and their applications in foods and health. Journal of Food Composition and Analysis, 99: 103884, ISSN: 1096-0481. https://doi.org/10.1016/j.jfca.2021.103884. ). Además, las agavinas de Agave tequilana se utilizan en la producción industrial de bebidas, como el tequila y el mezcal (Hernández 2018Hernández, J. de J. 2018. El mezcal como patrimonio social: de indicaciones geográficas genéricas a denominaciones de origen regional. EmQuestão, 24(2): 404-433, ISSN: 1808-5245. http://dx.doi.org/10.19132/1808-5245242.404-433.).

En la actualidad, se incrementa el uso de los fructanos como aditivos prebióticos en la producción animal (de Lange et al. 2010de Lange, C.F.M., Pluske, J., Gong, J. & Nyachoti, C.M. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134(1-3): 124-134, ISSN: 1871-1413. https://doi:10.1016/j.livsci.2010.06.117.). García-Curbelo et al. (2018)García-Curbelo, Y., Ayala, L., Bocourt, R., Albelo, N., Nuñez, O., Rodríguez, Y. & López, M.G. 2018. Agavinas como prebióticos: su influencia en el metabolismo lipídico de cerdos. Cuban Journal of Agricultural Science, 52(4): 395-400, ISSN: 2079-3480. incluyeron agavinas de Agave fourcroydes L. en la dieta de cerdos y obtuvieron modificaciones en el metabolismo lipídico, relacionadas con la disminución del colesterol total, lipoproteínas de baja densidad y lípidos totales. Alvarado-Loza et al. (2017)Alvarado-Loza, E., Orozco-Hernández, R., Ruíz-García, I., Paredes-Ibarra, F. & Fuentes-Hernández, V. 2017. The 2% of Agave inulin level in the rabbit feed affect spositively the digestibility and gutmicrobia. Abanico Veterinario, 7(3): 55-62, ISSN: 2448-6132. http://dx.doi.org/10.21929/abavet2017.73.6., al suministrar 2 % de inulina de Agave en el alimento de conejos informaron su influencia positiva en la digestibilidad y microbiota intestinal. Además, Chávez-Mora et al. (2019)Chávez-Mora, I., Sánchez-Chiprés, D., Galindo-García, J., Ayala-Valdovinos, M.A., Duifhuis-Rivera, T. & Ly-Carmenatti, J. 2019. Efecto de oligofructosa de agave en dietas de gallinas ponedoras en la producción de huevos. Revista MVZ Córdoba, 24(1): 7108-7112, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.1522. presenciaron incremento en el porcentaje de postura y peso del huevo, así como en índices de su calidad, a favor de tratamientos con oligofructosa de Agave.

El género Agave se considera originario de México, donde se encuentran 272 especies de las 310 informadas. De estas, 135 son endémicas (Mancilla y López 2006Mancilla-Margalli, N.A. & López, M.G. 2006. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. Journal of Agricultural and Food Chemistry, 54(20): 7832-7839, ISSN: 1520-5118. https://doi.org/10.1021/jf060354v.).

En Cuba, este género incluye 16 especies nativas (Greuter y Rankin 2017Greuter, W. & Rankin, R. 2017. The Spermatophyta of Cuba. A Preliminary Checklist. Second, updated edition of the The Spermatophyta of Cuba with Pteridophyta added. Botanischer Garten and Botanisches Museum Berlin-Dahlem, Berlín.). El Agave offoyana Jacobi se conoce comúnmente como maguey. Es una especie endémica (Romero-Jiménez et al. 2015Romero-Jiménez, M., Castañeda-Noa, I. & de las Mercedes, L. 2015. Origen y estado actual de la flora espermatófita en áreas naturales de cayo Las Brujas, Villa Clara. Revista del Jardín Botánico Nacional, 36: 31-46, ISSN: 2410-5546.) y se encuentra distribuida en la costa norte y algunas regiones interiores (de Zayas 1980de Zayas, A.A. 1980. Agave cajalbanensis: una nueva especie de Cuba occidental. Revista del Jardín Botánico Nacional, 1(2-3): 33-39, ISSN: 2410-5546.). Crece en bosques siempreverdes, micrófilos costeros y subcosteros. Constituye un recurso local, utilizado como planta medicinal, melífera y ornamental (Romero-Jiménez et al. 2015Romero-Jiménez, M., Castañeda-Noa, I. & de las Mercedes, L. 2015. Origen y estado actual de la flora espermatófita en áreas naturales de cayo Las Brujas, Villa Clara. Revista del Jardín Botánico Nacional, 36: 31-46, ISSN: 2410-5546.).

Varias especies de Agave se utilizan en la obtención de productos con aplicación en la salud, la industria y la alimentación humana y animal. Sin embargo, no son cubanas. Entre las 24 especies que crecen en Cuba, A. offoyana se destaca por sus dimensiones y pudiera almacenar fructanos como fuente de carbono, como ocurre en varias especies mexicanas.

El objetivo de este trabajo fue determinar mediante métodos cromatográficos la presencia de fructanos en órganos vegetativos de la especie endémica Agave offoyana (maguey).

Materiales y Métodos

 

Material vegetal

 

Los ejemplares de Agave offoyana se recolectaron en la reserva florística manejada Tres Ceibas de Clavellina, provincia Matanzas, Cuba (23º05’48.6” N y 81º39’20.5” O). Para la identificación de las plantas, se utilizaron como referencia las características de esta especie, descritas en Flora de Cuba, fascículo primero (León 1946León, H. 1946. Flora de Cuba, Gimnospermas, Monocotiledóneas. Vol. I Contribuciones ocasionales del Museo de Historia Natural del Colegio La Salle No 8. La Habana. 441 pp.).

Se tomaron muestras en dos momentos del año. La primera, en diciembre de 2016, período poco lluvioso, y la segunda, en julio de 2017, época lluviosa. En diciembre, se recolectaron nueve plantas, tres juveniles, tres adultos y tres en florecimiento (etapa temprana), próximas a los cuatro, ocho y diez años de edad, respectivamente. En julio, se estudiaron tres ejemplares adultos cercanos a los diez años de edad.

De cada planta recolectada en diciembre, se tomaron muestras de raíces, tallos y una hoja insertada en la base, medio y ápice del tallo. De las recogidas en julio, solo se tomaron muestras del tallo y la hoja insertada en el medio del tallo (cuarta hoja a partir de la base del tallo) (figura 1). Las muestras se trasladaron por separado en bolsas de plástico al laboratorio de biotecnología vegetal de la facultad de Agronomía, de la Universidad Agraria de La Habana.

Figura 1.  Esquema de recolección de muestras de órganos vegetativos en las plantas de Agave offoyana Jacobi.

Determinación de fructanos mediante cromatografía en capa fina (TLC)

 

Para la extracción de los fructanos, se modificó el protocolo seguido por Wack y Blaschek (2006)Wack, M. & Blaschek, W. 2006. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots. Carbohydrate Research, 341(9): 1147-1153, ISSN: 1873-426X. https://doi.org/10.1016/j.carres.2006.03.034.. Todas las muestras recolectadas se procesaron en el laboratorio, donde se fraccionó, esterilizó y trituró cada órgano por separado. Las hojas se seccionaron en base, medio y extremo (figura 1). Los segmentos de órganos (tallo, hojas y raíces) se pesaron y esterilizaron por separado, con agua, en proporción 1:2 (p/v), en autoclave, a 121°C y 1 atm de presión durante 40 min. Luego, se trituraron por separado en una licuadora hasta obtener una pasta. Se colocaron en tubos de 1.5 mL y se centrifugaron a 9000 r.p.m. en una microcentrífuga para lograr la fase acuosa.

La determinación de la presencia de fructanos se realizó mediante cromatografía en capa fina (TLC), según el método propuesto por Trujillo et al. (2004)Trujillo, T.L.E., Gómez, R.R., Banguela, C.A., Soto, R.M., Arrieta, S.J.G. & Hernández, G.L. 2004. Catalytical properties of N-glycosylated Gluconacetobacterdiazotrophicus levansucrase produced in yeast. Electronic Journal of Biotechnology, 7(2): 115-123, ISSN: 0717-3458. https://doi.org/10.4067/S0717-34582004000200005. . Para ello se aplicó 1.5 μL de la fase acuosa extraída de raíces, tallos y hojas en una placa de TLC (silica gel en láminas de aluminio, Fluka, Alemania) y se introdujo tres veces en una cámara cerrada, que contenía 10 mL de solución de corrida (1-butanol, 2-propanol y agua en proporción 3:12:0.5).

La placa se reveló mediante la aplicación de una solución (butanol saturado 93 mL, ácido ortofosfórico 85 % 7 mL y urea 3 g). Se añadió, además, etanol absoluto hasta obtener la transparencia de la solución y se incubó a 80 °C para acelerar la reacción. La combinación de estos reactivos permitió visualizar los perfiles y la molécula de fructosa. Se utilizó como patrón de peso molecular un extracto acuoso del bulbo de la cebolla (Allium cepa L.), según lo descrito por Vijn et al. (1998)Vijn, I., van Dijken, A., Lüscher, M., Bos, A., Smeets, E., Weisbeek, P., Wiemken, A. & Smeekens, S. 1998. Cloning of sucrose: sucrose 1-fructosyltransferase from onion and synthesis of structurally defined fructan molecules from sucrose. Plant Physiology, 117(4): 1507-1513, ISSN: 1532-2548. https://doi.org/10.1104/pp.117.4.1507. .

Determinación de fructanos mediante cromatografía líquida de alta resolución (HPLC)

 

Para determinar la presencia de fructanos, se utilizó la muestra del tallo de una planta adulta recolectada en diciembre y se analizó por HPLC, según lo descrito por Meyer (2010)Meyer, V.R. 2010. Practical High-Performance Liquid Chromatography. John Wiley and Sons, Ltd, New York, USA. pp. 5-141. ISBN: 978-0-470-68218-0.. Previo a la realización de la HPLC, se realizaron las TLC de los órganos de las plantas recolectadas en diciembre, lo que permitió seleccionar el que se usó como muestra.

La corrida se realizó en una columna (0.8 x 25.0 cm) de Nucleosil NH2 (Sigma, EE.UU.) con la utilización de acetonitrilo en agua al 80 %, como solución de elución, y flujo de 0.4 mL min-1 a 37 ºC. Los azúcares eluidos se hallaron con un refractómetro diferencial (Knauer, Alemania). Para la calibración del equipo, se utilizaron los patrones sacarosa, 1-kestosa y nistosa, preparados a 10 mg mL-1.

Resultados

 

Los perfiles de productos, obtenidos de muestras de órganos de plantas adultas, revelaron que A. offoyana almacena fructanos como fuente de carbono. Estos carbohidratos se acumularon en los tallos, principalmente, y se encuentran, en menor concentración, en las hojas. No se hallaron en las raíces. Se observaron polímeros de bajo y alto peso molecular en ambos órganos de la planta (figura 2a).

A. offoyana contiene fructanos en las hojas de las plantas juveniles, adultas y en florecimiento (figura 2b), aunque en las dos últimas la concentración es mayor que en las plantas jóvenes. En la misma figura, también la TLC dejó ver que el juvenil produce principalmente fructanos de bajo peso molecular en las hojas. Sin embargo, en la planta adulta y en florecimiento, se observaron moléculas de bajo y alto grado de polimerización, lo que se evidenció en la mancha oscura presente en el punto de aplicación.

En las figuras 2c y 2d se muestra que en las hojas insertadas en la base y el medio del tallo de plantas adultas y florecidas hubo mayor presencia de fructanos que en las hojas del ápice caulinar. Además, al fraccionar dichas hojas en base, medio y extremo, se constató que en las zonas de la base y el medio existe mayor concentración de fructanos que en el extremo. Como ilustran las figuras, en la zona basal de las hojas de la base, el medio y el ápice caulinar, existe mayor presencia de moléculas con alto peso molecular que en la parte media. Hubo poca representación de las mismas en el extremo de las hojas.

Las plantas jóvenes, adultas y en florecimiento almacenaron cantidades similares de fructanos en muestras de tallo tomadas en el período poco lluvioso (figura 2e). Además, en esta figura se deja ver la TLC y la presencia de polímeros de bajo y alto peso molecular durante las tres fases de crecimiento de la planta. La concentración de los carbohidratos aumentó ligeramente con el grado de desarrollo de la planta.

a.Raíz, hoja* insertada en la base del tallo y tallo de tres plantas adultasb. Hojas* insertadas en la base, medio y ápice caulinar en plantas juveniles, adultas y en florecimientoc. Hojas de una planta adulta (base, medio y ápice caulinar) seccionadas en base, medio y extremo.d. Hojas de una planta florecida (base, medio y ápice caulinar) seccionadas en base, medio y extremo.e. Tallos de plantas juveniles, adultas y en florecimiento (colectados en diciembre). J (juvenil), A (adulto), F (florecido), HMT (hoja insertada en el medio del tallo), B (base), M (medio), AC (ápice caulinar). E (extremo), C (cebolla), F (fructosa), S (sacarosa), 3GP (trisacárido), GP (grado de polimerización). *Se refiere a la zona basal de la hoja
Figura 2.  Perfiles de productos obtenidos mediante TLC de los extractos de los diferentes órganos de plantas de Agave offoyana Jacobi

El tallo y las hojas insertadas en el medio del tallo de plantas adultas almacenaron fructanos en el período poco lluvioso (diciembre) y lluvioso (julio), aunque hubo ligero aumento en la acumulación en estos órganos durante el período poco lluvioso. Las manchas claras sobre el fondo oscuro en el punto de aplicación de algunas muestras indican la saturación por fructanos de alto peso molecular (figuras 3a y 3b).

a. Tallo de plantas adultas recolectadas en diciembre y julio.b. Hojas* insertadas en el medio del tallo de plantas adultas recolectadas en diciembre y julio. A (adulto), T (tallo), HMT (hoja insertada en el medio del tallo), C (cebolla), F (fructosa), S (sacarosa), 3GP (trisacárido), GP (grado de polimerización). * Se refiere a la zona basal de la hoja
Figura 3.  Perfiles de productos obtenidos mediante TLC de los extractos de los diferentes órganos de plantas de Agave offoyana Jacobi

La cromatografía líquida de alta resolución (HPLC) mostró la presencia de fructanos desde moléculas con GP 3 hasta GP 6. Esta técnica no permite separar moléculas con mayor GP, las que se visualizan agrupadas en un solo pico. El polímero con mayor concentración es el constituido por tres unidades de fructosa (figura 4).

Figura 4.  Perfil cromatográfico obtenido mediante HPLC de los extractos del tallo de Agave offoyana Jacobi. G (glucosa), F (fructosa), S (sacarosa), GP (Grado de Polimerización).

Discusión

 

Los fructanos se encuentran en varias familias de plantas como carbohidratos de reserva. También funcionan como sustancias osmoprotectoras durante la sequía y el estrés por frío (Ritsema y Smeekens 2003Ritsema, T. & Smeekensm, S. 2003. Engineering fructan metabolism in plants. Journal of Plant Physiology, 160: 811-820, ISSN: 1618-1328. https://doi.org/10.1078/0176-1617-01029.). Las plantas estudiadas de A. offoyana contienen más fructanos en los tallos con respecto a las hojas. Estos polímeros son el principal carbohidrato de reserva presente en los tallos de Agave (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). También los fructanos son los carbohidratos más abundantes en plantas adultas de Agave fourcroydes (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485.). De igual forma, Agave tequilana tiene más fructanos en el tallo que en las hojas. En esta especie, la cabeza o piña (tallo y bases foliares), almacena mayor cantidad de azúcares no reductores totales, en los que predomina la inulina y fructooligosacaridos (FOS). Le sigue la base de las hojas, donde prevalecen la inulina y, en menor cantidad, FOS (Montañez-Soto et al. 2011Montañez-Soto, J., Venegas-González, J., Vivar-Vera, M. & Ramos-Ramírez, E. 2011. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber var. Azul. Bioagro, 23(3): 199-206, ISSN: 1316-3361. y Ferrer-Serrano et al. 2023Ferrer-Serrano, C.M., Zumalacárregui-de-Cárdenas, B. & Mazorra-Mestre, M. 2023. Extracción de inulina a partir de piñas de desecho de henequeneras cubanas. Revista Cubana de Química, 35(2): 322-337, ISSN: 2224-5421.).

Las hojas insertadas en la base del tallo de A. offoyana son verdes, sin daños mecánicos. Crecen sobre hojas muertas previas o en fase de senescencia. Representan las más maduras de la planta y poseen la mayor cantidad de fructanos. Sin embargo, en A. fourcroydes, las hojas intermedias almacenan la mayor concentración de fructanos (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485.). En hojas de A. offoyana, ocurrió en la base de este órgano. Esto coincide con lo informado en plantas adultas de A. tequilana, donde el contenido de fructanos equivale a 68.6 % respecto a los de la cabeza o piña. La base de las hojas constituye la segunda fracción con mayor aporte a la biomasa del cultivo de A. tequilana. Lo integran, principalmente, inulina, en menor cantidad FOS, y azúcares reductores (Montañez-Soto et al. 2011Montañez-Soto, J., Venegas-González, J., Vivar-Vera, M. & Ramos-Ramírez, E. 2011. Extracción, caracterización y cuantificación de los fructanos contenidos en la cabeza y en las hojas del Agave tequilana Weber var. Azul. Bioagro, 23(3): 199-206, ISSN: 1316-3361. ). También en las hojas inferiores de Agave mapisaga se encontró 68 % de FOS y 32 % de fructanos con alto peso molecular (Plascencia et al. 2019Plascencia, A., Gutiérrez-Mora, A., Rodríguez-Domínguez, M., Castañeda-Nava, J., Gallardo-Valdez, J. & Camacho-Ruíz, R.M. 2019. Characterization of fructans extracted from Agave mapisaga leaves. In: Gutierrez Mora, A. (ed.). Sustainable and Integrated use of Agave. CONACYT / CIATEJ / Agared, Zapopan, Jalisco, Mexico. Pp. 101-106. ISBN: 978-607-8734-03-0.).

La acumulación de los fructanos en A. offoyana se produce desde la fase juvenil hasta el inicio de la floración. De igual forma, el contenido de carbohidratos está directamente relacionado con la edad y la etapa fisiológica de A. tequilana. Las concentraciones más altas se observaron en las plantas adultas, mientras que en los juveniles se cuantificaron las más bajas (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). En un estudio con plantas de Agave angustifolia Haw. y Agave potatorum Zucc., de uno a seis años de edad, se determinó que la concentración de carbohidratos simples era mayor en las plantas jóvenes y que los fructanos de mayor GP predominan en las plantas adultas para ambas especies (Márquez‐López et al. 2022Márquez-López, R.E., Santiago-García, P.A. & López, M.G. 2022. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants, 11(14): 1834, ISSN: 2223-7747. https://doi.org/10.3390/plants11141834.).

Los ejemplares de A. offoyana se recolectaron en un área natural. Los tallos y hojas de plantas juveniles (cuatro años, aproximadamente) mostraron menor acumulación de fructanos, de bajo y alto GP, con respecto a las adultas y en inicio de la floración. En los tallos y la base de las hojas de diferentes especies de Agave, las plantas de dos a cuatro años exhibieron las mayores concentraciones de azúcares libres y fructanos con bajo GP. Por el contrario, las plantas de 10 a 12, mostraron baja concentración de fructanos con mayor GP (Aldrete-Herrera et al. 2019Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M. & Ortiz-Basurto, R.I. 2019. Physicochemical composition and apparent degree of polymerization of fructans in five wild Agave varieties: potential industrial use. Foods, 8(9): 404, ISSN: 2304-8158. https://doi.org/10.3390/foods8090404.). Opuesto al resultado anterior, en piñas de A. fourcroydes se obtuvo mayor cantidad de azúcares en plantas de 12 años de edad, con respecto a las de siete (Ferrer-Serrano et al. 2023Ferrer-Serrano, C.M., Zumalacárregui-de-Cárdenas, B. & Mazorra-Mestre, M. 2023. Extracción de inulina a partir de piñas de desecho de henequeneras cubanas. Revista Cubana de Química, 35(2): 322-337, ISSN: 2224-5421.). De igual forma, en A. tequilana, de cuatro años de edad, se muestran menores concentraciones de fructanos con respecto a las de seis y ocho años. Las correspondientes a los diez años hidrolizan la fructosa para abastecer la demanda energética de la etapa de florecimiento (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ).

Las plantas almacenan polisacáridos durante el período vegetativo para aportar la energía necesaria durante la etapa reproductiva (Pérez y Martínez-Laborde 1994Pérez, F. & Martínez-Laborde, J.B. 1994. Utilización y transporte de los fotoasimilados. In: Pérez García, F. y J. B. Martínez-Laborde (eds.). Introducción a la Fisiología Vegetal. Ediciones Mundi-Prensa. Madrid, España. Pp. 87-94. ISBN: 84-7114-471-9.). Sin embargo, A. offoyana acumula estos carbohidratos aún durante el inicio de la floración de forma similar a la fase adulta, lo que se pudiera deber al mecanismo de reproducción asexual que prosigue al sexual, y que tiene lugar en la misma inflorescencia (García-Beltrán et al. 2017García-Beltrán, J.A., Granado, P.L. & Bécquer, E.R. 2017. Las familias de las angiospermas de la flora de Cuba: visión diagnóstica desde los sistemas filogenéticos. Revista del Jardín Botánico Nacional, 38: 65-117, ISSN: 2410-5546.). A diferencia de A. offoyana, las concentraciones de este carbohidrato disminuyeron en plantas de A. tequilana que se encontraban en la etapa de florecimiento (Mellado-Mojica et al. 2009Mellado-Mojica, E., López-Medina, T.L. & López-Pérez, M.G. 2009. Developmental Variation in Agave tequilana Weber var. Azul Stem Carbohydrates. Journal of Agricultural and Food Chemistry, 3(1): 34-39, ISSN: 1749-0626. ). En la mayoría de los trabajos realizados en especies del género Agave, las plantas se cosecharon antes de la floración, debido a que la función principal del almacenamiento de los polímeros de fructosa es su utilización durante la floración y fructificación (García-Curbelo et al. 2009García-Curbelo, Y., López, M.G. & Bocourt, R. 2009. Fructanos en Agave fourcroydes, potencialidades para su utilización en la alimentación animal. Revista Cubana de Ciencia Agrícola, 43(2): 175-177, ISSN: 0034-7485., Arrizon et al. 2010Arrizon, J., Morel, S., Gschaedler, A. & Monsan, P. 2010. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chemistry, 122(1): 123-130, ISSN: 2590-1575. http://doi:10.1016/j.foodchem.2010.02.028., García-Curbelo et al. 2015García-Curbelo, Y., López, M. G., Bocourt, R., Collado, E., Albelo, N. & Nuñez, O. 2015. Structural characterization of fructans from Agave fourcroydes (Lem.) with potential as prebiotic. Cuban Journal of Agricultural Science, 49(1): 75-80, ISSN: 2079-3480. y Godínez-Hernández et al. 2016Godínez-Hernández, C.I., Aguirre-Rivera, J.R., Juárez-Flores, B.I., Ortiz-Pérez, M.D. & Becerra-Jiménez, J. 2016. Extraction and characterization of Agave salmiana Otto ex Salm-Dyckfructans. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(1): 59-72, ISSN: 2007-3828. https://doi:10.5154/r.rchscfa.2015.02.007.). A medida que se inicia la etapa reproductiva, se suprime el desarrollo de hojas fotosintéticamente activas y las hojas y tallos envejecen, lo que indica que las reservas de carbohidrato se utilizaron para la fase reproductiva (Delgado et al. 2012Delgado, S.S.D.C., Abraham, J.M.J. & Simpson, J. 2012. Agave tequilana MADS genes show novel expression patterns in meristems, developing bulbils and floral organs. Sexual Plant Reproduction, 25(1): 11-26, ISSN: 0934-0882. https://doi.org/10.1007/s00497-011-0176-x.).

El tallo y las hojas de las plantas adultas de A. offoyana almacenaron fructanos en ambos períodos del año, aunque en el poco lluvioso se evidenció ligero aumento de su acumulación (figuras 3a y 3b). En Cuba existen dos períodos estacionales (lluvioso y poco lluvioso) con características específicas. En el lluvioso se acumula más de 80 % de la precipitación anual (ONEI 2021ONEI. 2021. Anuario estadístico de Cuba 2020. Medio Ambiente. Oficina Nacional de Estadística e Información. Cuba. 60 pp.). El poco lluvioso no favorece el desarrollo vegetativo de las plantas por la escasez de agua. La tasa de acumulación diaria aumenta cuando se alternan altas temperaturas durante el día y bajas por la noche (Taiz y Zeiger 2002Taiz, L. & Zeiger, E. 2002. Respiration and Lipid Metabolism. In: Taiz, L. y E. Zeiger (eds.). Plant physiology. Sinauer Associates Inc. Sunderland, Massachusetts, USA. Pp. 245-247. ISBN: 0-87893-823-0.). Estos resultados coinciden con los obtenidos en A. tequilana, en México, donde se informaron valores de azúcares reductores totales (23.68 a 30.80 %) en el período poco lluvioso y lluvioso (27.08 a 32.69 %). Las piñas del Agave tienen mayor contenido de fructanos en la época seca, debido a que el jugo contiene menos agua, por lo que los azúcares se concentran. En el período húmedo, el contenido disminuye producto del aumento de la cantidad de agua del jugo (Bautista-Justo et al. 2001Bautista-Justo, M., García-Oropeza, L., Salcedo-Hernández, R. & Parra-Negrete, L.A. 2001. Azúcares en agaves (Agave tequilana Weber) cultivados en el estado de Guanajuato. Acta Universitaria, 11(1): 33-38, ISSN: 2007-9621. https://doi.org/10.15174/au.2001.325.).

Los fructanos de Agave son una mezcla compleja de FOS y fructanos de alto GP (Márquez‐López et al. 2022Márquez-López, R.E., Santiago-García, P.A. & López, M.G. 2022. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants, 11(14): 1834, ISSN: 2223-7747. https://doi.org/10.3390/plants11141834.). De esta forma, la cromatografía líquida de alta resolución mostró polímeros de tres y hasta seis unidades de fructosa en A. offoyana, aunque esta técnica no permitió separar moléculas con GP mayor a siete. Resultados similares se encontraron en la cabeza o piña de plantas adultas de Agave salmiana y A. tequilana, donde se identificaron fructanos superiores a cuatro GP (Pérez-López et al. 2021Pérez-López, A.V., Simpson, J., Clench, M.R., Gomez-Vargas, A.D. & Ordaz-Ortiz, J.J. 2021. Localization and Composition of Fructans in Stem and Rhizome of Agave tequilana Weber var. Azul. Frontiers in Plant Science, 11: 1-16, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2020.608850. y Regalado et al. 2021Regalado, E., Godínez-Hernández, C.I., Aguirre Rivera, J.R., Camacho, R.M. & Juárez, B.I. 2021. Characterization of fructans from stems of Agave salmiana Otto ex Salm-Dyck and A. tequilana F.A.C. Weber at full physiological maturity. Botanical Sciences, 9(2): 388-397, ISSN: 2007-4476. https://doi.org/10.17129/botsci.2641.). En un estudio para buscar fructanos de estructuras moleculares diferentes, se registraron plantas mutantes de A. tequilana, que almacenaron en el tallo el trisacárido neokestosa, el cual posee mayor valor nutricional con respecto a la 1-kestosa (Ángeles-Espino et al. 2020Ángeles-Espino, A., Dimas-Estrada, H.E., Ramírez-Alvarado, D., Cruz-Rubio, J.M., Palmeros-Suárez, P.A. & Gómez-Leyva, J.F. 2020. Molecular characterization of Agave tequilana mutants induced with gamma radiation Co60 and its effect in the fructooligosaccharides accumulation. Acta Universitaria, 30: 1-11, ISSN: 2007-9621. http://doi.org/10.15174/au.2020.2696.).

En el tallo y las hojas de los Agaves se generan otros importantes metabolitos, como la inulina, saponinas y flavonoides, que son de gran interés para la industria alimentaria y farmacéutica (Trujillo-Ramírez et al. 2023Trujillo-Ramírez, D., Bustos-Vázquez, M.G., Martínez-Velasco, A. & Torres-de los Santos, R. 2023. Integral use of Henequen (Agave fourcroydes): applications and trends-a review. Tropical and Subtropical Agroecosystems, 26(2): 1-18, ISSN: 1870-0462. http://doi.org/10.56369/tsaes.4619. ). La especie A. offoyana produce, además, otros metabolitos secundarios, como las saponinas, que se hallaron en la inflorescencia y en las hojas (Pérez et al. 2013Pérez, A.J., Calle, J.M., Simonet, A.M., Guerra, J.O., Stochmal, A. & Macías, F.A. 2013. Bioactive steroidal saponins from Agave offoyana flowers. Phytochemistry, 95: 298-307, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2013.06.020. y Pérez et al. 2014Pérez, A.J., Simonet, A.M., Calle, J.M., Pecio, L., Guerra, J.O., Stochmal, A. & Macías, F.A. 2014. Phytotoxic steroidal saponins from Agave offoyana leaves. Phytochemistry, 105: 92-100, ISSN: 0031-9422. https://doi.org/10.1016/j.phytochem.2014.05.014. ).

Se concluye que la especie endémica de Cuba A. offoyana almacena fructanos como fuente de carbono. Estos carbohidratos están presentes en el tallo y las hojas, pero no en las raíces de la planta. Las plantas adultas y al inicio de la floración acumulan mayor cantidad de fructanos en el tallo. Esta especie almacena fructanos en el tallo y los sintetiza en las hojas, principalmente en las insertadas en la base del tallo y en la zona más cercana a este órgano. Estos carbohidratos se acumulan durante todo el año, aunque se halló aumento ligero en el período poco lluvioso. El polímero con mayor presencia en tallos de plantas adultas está constituido por tres unidades de fructosa. La planta se puede utilizar para la obtención de fructanos con posibles usos como prebiótico en la alimentación y la salud humana y animal.

Agradecimientos

 

Se agradece a todo el personal del laboratorio de biotecnología vegetal de la facultad de Agronomía de la Universidad Agraria de La Habana por su sabiduría y experiencia profesional. Se expresa también gratitud a Carlos González, especialista de la reserva florística manejada Tres Ceibas de Clavellina, a Andrés Hernández Rego, por el apoyo logístico para el desarrollo de las recolectas, y a Lázaro Hernández, investigador del Centro de Ingeniería Genética y Biotecnología, por sus recomendaciones en la aplicación de las técnicas cromatográficas.