Cuban Journal of Agricultural Science Vol. 58, January-December 2024, ISSN: 2079-3480
Código QR
Cu-ID: https://cu-id.com/1996/v58e19
Animal Science

Stability and preservation of the probiotic additive with Lactobacillus pentosus LB-31 for animal production

 

iDDailyn Sosa Cossio1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDYaneisy García Hernández1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.*✉:yaneisyg@gmail.com

iDJulio C. Dustet Mendoza2Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), Facultad de Ingeniería Química. Ave. 114 No. 11901 entre Ciclovía y Rotonda, Marianao, La Habana, Cuba

iDAreadne Sosa Ceijas1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDYanelys García Curbelo1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDYoleisy García Hernández1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDNereyda Albelo Dorta1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.


1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

2Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), Facultad de Ingeniería Química. Ave. 114 No. 11901 entre Ciclovía y Rotonda, Marianao, La Habana, Cuba

 

*Email: yaneisyg@gmail.com

The stability time and storage conditions of the probiotic additive with Lactobacillus pentosus LB-31 for animal production were determined. Completely random designs with six repetitions were used to monitor microbial viability for a month (0, 7, 14, 21 and 30 days) when the additive was stored under ambient conditions (24 ±2 ºC) and for six months (0, 30, 60, 90, 120 and 180 days) when stored under refrigeration (4±2 ºC). Cell concentration, pH and purity of the culture were also determined. The results showed that the lactic acid bacteria maintained its viability during the first 14 days of storage at room temperature. After this time, the microbial concentration decreased from 7.64 to 7.02 log cfu/mL (p=0.0028) and remained at 91 % viability until 30 days. Under refrigeration conditions, LB-31 was stably up to 60 days of storage with a concentration of 3.74x107 cfu/mL, and subsequently decreased to 106 cfu/mL (p<0.0001) with a viability of 78 % at the end of the study. Under both conditions, the pH decreased and the colonies maintain their morphological and cultural characteristics. It is concluded that the probiotic additive with Lactobacillus pentosus LB-31 without preservatives is stable for 14 days at room temperature (24±2 ºC), and for 60 days under refrigerated conditions (4±2 ºC).

Key words: 
animal feeding, bacteria, preservation

Received: 21/12/2023; Accepted: 20/2/2024

Conflict of interests: The authors declare that there is no conflict of interest between them.

CRediT Authorship Contribution Statement: Dailyn Sosa Cossio: Conceptualization, Investigation, Methodology, Writing- original draft. Yaneisy García Hernández: Conceptualization, Investigation, Methodology, Writing-review and editing. J.C. Dustet Mendoza: Conceptualization, Methodology, Writing-review and editing. Areadne Sosa Ceijas: Conceptualization, Investigation, Methodology. Yanelys García Curbelo: Conceptualization, Methodology. Yoleisy García Hernández: Methodology, Formal analysis. Nereyda Albelo Dorta: Investigation, Data curation.

CONTENT

Introduction

 

The use of microbial additives, such as probiotics, in animal feeding contributes to improved health and greater use of foods (Rondón et al. 2020Rondón, A. J., Socorro, M., Beruvides, A., Milián, G., Rodríguez, M., Arteaga, F. & Vera, R. 2020. Probiotic effect of PROBIOLACTlL®, SUBTILPROBIO® and their mixture on productive and health indicators of growing pigs. Cuban Journal of Agricultural Science, 54 (3): 1-10, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/972. and Milián et al. 2022Milián, G., Rondón, A.J., Rodríguez, M., Beruvides, A. & Pérez, M. L. 2022. Endospores of Bacillus subtilis with probiotic potential in animals of zootechnical interest. Cuban Journal of Agricultural Science, 56(3): 145-153, ISSN: 2079-3480. https://cjascience.com/index.php/CJAS/article/view/1052. ), which allows increasing production yields and, consequently, the availability and quality of milk, meat and eggs for the population (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.). Animal studies use laboratory-grown microorganisms or commercial probiotics. The most important aspects for its production are the adequate selection of the strain or strains, the culture medium and the fermentation conditions that allow obtaining a high level of microbial viability during the process (FAO 2016FAO (Food and Agriculture Organization of the United Nations). 2016. Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. Rome, ISSN: 0254-6019. http://www.fao.org/3/a-i5933e.pdf. and Fenster et al. 2019Fenster, K., Freeburg, B., Hollard, C., Wong, C., Laursen, R.R. & Ouwehand, A.C. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms, 83: 1-17, ISSN: 2076-2607. http://dx.doi.org/10.3390/microorganisms7030083.). The stability of the probiotic additive during formulation and storage is an indispensable requirement for a successful commercial production (Ramlucken et al. 2021Ramlucken, U, Ramchurana, S.O., Moonsamya, G., Jansen van Rensburgc, C., Thantshab, M.S. & Lallooa, R. 2021. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnology Reports, 29: e00575, ISSN: 2215-017X. https://doi.org/10.1016/j.btre.2020.e00575.).

The selection of the microbial strain or strains is the first step in the design of a probiotic product. These should be generally recognized as safe (GRAS) microorganisms, able of surviving in the gastrointestinal tract and tolerating low pH and high concentrations of bile salts (Vinderola et al. 2017Vinderola, G., Gueimonde, M., Gomez-Gallego, C., Delfederico, L. & Salminen, S. 2017. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 68: 83-90, ISSN: 1879-3053. http://dx.doi.org/10.1016/j.tifs.2017.08.005.). Other desired characteristics are the ability of probiotic strains to adhere to the intestinal epithelium for subsequent colonization (Endo and Gueimonde 2016Endo, A. & Gueimonde, M. 2016. Isolation, identification and characterization of potential new probiotics. In: Advances in Probiotic Technology. Foerst, P. & Santivarangkna, C. Taylor & Francis Group, LLC, p. 45. ISBN: 978-1-4987-3458-5. ), being genetically stable microorganisms and having high growth rates. Furthermore, the chosen strain must maintain its viability and probiotic activity during the manufacturing, transportation and storage processes (Molina 2019Molina, A. 2019. Probióticos y su mecanismo de acción en alimentación animal. Agronomía Mesoamericana, 30(2): 601-611, ISSN: 2215-3608. https://doi:10.15517/am.v30i2.34432. and Kieps and Dembczynski 2022Kieps, J. & Dembczynski, R. 2022. Current Trends in the Production of Probiotic Formulations. Foods, 11: 2330, ISSN: 2304-8158. https://doi.org/10.3390/foods11152330.).

In Cuba, the Instituto de Ciencia Animal (ICA) has been developing a research group for several years aimed at obtaining and evaluating probiotics with beneficial effects on the health and productive performance of animals. Based on the main results of these researchers, a group of strains was selected as those of greatest interest for the development of microbial additives and were deposited in the Microorganism Collection, belonging to the Bank of Microorganisms for Animal Production (BAMIAP) from ICA (Sosa et al. 2017Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E., Galindo, J., Sosa, D., Alberto, M., Roque, D., Albelo, N., Colomina, L & Moreira, O. 2017. Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480. http://www.cjascience.com/index.php/CJAS/article/view/759/780.). One of these strains is Lactobacillus pentosus LB-31, of avian origin, isolated from fermented excrement of broilers. The LB-31 strain showed the greatest probiotic potential in in vitro tests. Its beneficial action was confirmed in broilers (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.), rainbow trout (García and Pérez 2015García, Y. & Pérez, T. 2015. Obtención de microorganismos con actividad probiótica para animales monogástricos. Anales de la Academia de Ciencias de Cuba, 5(3): 1-19. http://www.revistaccuba.cu/index.php/revacc/article/download/225/225.), growing pigs (Ayala et al. 2014Ayala, L., García, Y., Savón, L.L., Boucourt, R., Castro, M. & Herrera, M. 2014. Evaluación de la actividad probiótica del Lactobacillus pentosus en indicadores de salud y productivos de cerditos destetados. Revista Computadorizada de Producción Porcina, 21(3): 130-133, ISSN: 1026-9053. http://www.iip.co.cu/RCPP/213/213_artLAyala.pdf.) and pelibuey lambs (Gutiérrez et al. 2020Gutiérrez, D., García, Y. & Sosa, D. 2020. El efecto de Lactobacillus pentosus LB-31 como aditivo microbiano en la alimentación de corderos. Livestock Research for Rural Development, 32(3), Artículo No. 43, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/3/yanei32043.html.).In addition, LB-31 was used as an additive to improve the protein content of mixed silages for ruminant animals (Rodríguez et al. 2020Rodríguez, R., Ontivero, Y., García, Y., Sosa, D. & Gómez, S. 2020. Empleo del tubérculo de boniato (Ipomoea batatas L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development, 32 (7), Artículo No. 117, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/7/rodri32117.html.).

In recent studies, the process of obtaining the liquid probiotic with L. pentosus LB-31 was defined for its future production on an industrial scale (Sosa 2021Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba.). For this purpose, an economical culture medium was selected that can replace the traditional medium De Man-Rogosa-Sharpe (MRS, pH 6.2±0.2), designed by De Man et al. (1960)De Man, J.C., Rogosa, M & Sharpe, M.E. 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology. 23(1): 130-135, ISSN: 1365-2672. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x., which is very expensive for use on an industrial scale. Different operating conditions were also evaluated in laboratory bioreactors and fermentation was scaled up to 30 L. Also, it was found that the new conditions for obtaining the additive did not affect the activity of the probiotic strain in broilers (Sosa et al. 2021Sosa, D., García, Y., Dustet, J.C., García, Y., Martínez, M., Sosa, A. & García, D. 2021. Efecto del aditivo probiótico Lactobacillus pentosus LB-31 en pollos de ceba. Revista MVZ Córdoba, 26(1): e2037, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.2037.). However, it is necessary to carry out stability and conservation studies of the additive to ensure high viability of the microorganisms during the storage process and, consequently, that they can preserve their probiotic effect on the host's gastrointestinal tract. For these reasons, the objective of this researcher was to determine the stability time and storage conditions of the probiotic additive with Lactobacillus pentosus LB-31 for animal production.

Materials and Methods

 

The experiment was conducted at the Food Production Laboratory of Instituto de Ciencia Animal. This center is located at km 47 ½ of the Central Highway, at 22º 53' north latitude, 82º 02' west longitude and 92 m o. s. l, in San José de las Lajas municipality, Mayabeque province, Cuba.

Design and experimental treatments

 

Completely random designs with six repetitions were used to evaluate the stability and conservation of the probiotic additive under ambient conditions (24±2 ºC) for a month (0, 7, 14, 21 and 30 d) and under refrigeration (4±2 ºC) for six months (0, 30, 60, 90, 120 and 180 d). A total of six samples were taken at each time for the analysis that subsequently was eliminated.

Microorganism and preparation of the probiotic additive

 

The Lactobacillus pentosus LB-31 strain was used, belonging to the Bank of Microorganisms for Animal Production (BAMIAP) from Instituto de Ciencia Animal (Mayabeque, Cuba). The LB-31 was identified by sequencing of the 16S ribosomal RNA gene and its sequence is deposited in the GenBank with accession number: FR717464 (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.). The probiotic additive was obtained from three fermentation batches in an 11 L bioreactor (BIONET, Spain) with an effective volume of 8 L of a culture medium designed with sugar cane molasses, urea, sodium acetate and ammonium citrate. The operating conditions of the equipment were established according to the methodology proposed by Sosa (2021)Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba..

Stability and preservation of the probiotic additive

 

A liquid culture from the Lactobacillus pentosus LB-31 strain with a concentration of 4.33x107 cfu/mL was used. The additive was packaged in sterile 100 mL glass bottles with plastic tops and placed at room temperature and in refrigeration. Cell viability, purity and pH were determined. Samples were taken and serial dilutions were made in saline solution (0.85 %, w/v) and the culture was seeded on plates with Rogosa agar. These were incubated for 24-48 h to determine the concentration of viable cells (cfu/mL) by visual counting of colonies. Gram stains were performed to check the purity of the culture and the pH was measured with a digital pH meter (Sartorius, Germany) with a precision of ±0.01 units.

Statistical analysis

 

The experimental data were processed with the Infostat statistical package (Di Rienzo et al. 2012Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. & Robledo C.W. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available in: http://www.infostat.com.ar.). All variables fulfill the theoretical assumptions and followed a lognormal distribution. When necessary, Duncan (1955)Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478. multiple comparison test was used to discriminate differences between means at p<0.05.

Results and Discussion

 

Figure 1 shows the performance of the microbial concentration (A) and pH (B) of the probiotic additive with Lactobacillus pentosus LB-31 during a month of storage at room temperature. There were no differences in the viability of lactic acid bacteria for the first 14 d of storage (figure 1A). After this time, the microbial concentration decreased from 4.33x107 to 1x107 cfu/mL (7.64 to 7.02 log cfu/mL) and remained at 91 % viability until 30 d. Regarding pH (figure 1B), there was a decrease at 7 d and from this moment on it remained stable.

a, b, cDifferent letters per graph differ at p<0.05 (Duncan 1955Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.)
Figure 1.  Stability performance of the probiotic additive with L. pentosus LB-31 for 30 d at room temperature (24±2 ºC): (A) Microbial concentration (SE±0.13, p=0.0028) and (B) pH (SE±0.03, p<0.0001)

Figure 2 shows the stability of the additive during six months of refrigerated storage. There were no differences in the concentration of lactic acid bacteria during the first 60 d of storage (figure 2A), since it maintained values ​​of 4.33x107 cfu/mL (7.64 log cfu/mL) and subsequently decreased to 106 cfu/mL (6.01 log cfu/mL) and reached 78 % viability at the end of the study. The pH decreased at 30 d and remained stable until 180 d (figure 2B).

a, b, c, dDifferent letters per graph differ at p<0.05 (Duncan 1955Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.)
Figure 2.  Stability performance of the probiotic additive with L. pentosus LB-31 for 180 d at 4±2 ºC: (A) Microbial concentration (SE±0.44, p<0.0001) and (B) pH (SE±0.08, p<0.0001)

FAO/WHO (2002)FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canada. (Consulted: October 25). http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. suggested that probiotics should have a minimum concentration of 106-107 cells/mL or g of product to ensure their efficacy. This study shows that the additive with Lactobacillus pentosus LB-31 maintains an adequate concentration to be used as a probiotic and that, in addition, it is stable up to 14 d at room temperature (4.33x107 cfu/mL) and 60 d under refrigerated conditions (3.74x107 cfu/mL).

In both storage conditions, macroscopic and microscopic observations of the culture showed that the colonies maintained their morphological and culture characteristics. In addition, the presence of contaminants was ruled out (figure 3).

Figure 3.  Macroscopic and microscopic observation of the purity of the probiotic culture with L. pentosus LB-31

Brizuela (2003)Brizuela, M.A. 2003. Selección de cepas de bacterias ácido lácticas para la obtención de un preparado con propiedades probióticas y su evaluación en cerdos. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. La Habana, Cuba. and Rondón (2009)Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba. evaluated the stability of probiotic additives with different strains of lactobacilli in glass bottles at room temperature and under refrigeration conditions for 180 d. Both researchers reported that the additives were stable up to 30 days, and that from this moment on the viability of the microorganism decreased under environment and refrigerate conditions.

The international scientific literature reports several stability studies of probiotic microorganisms using different types of substrates and stability times shorter than those of this study. Among them are those of dos Santos et al. (2019)dos Santos Filhoa, A.L., Veloso Freitasa, H., Rodrigues, S., Gonçalves Abreua, V.K., de Oliveira Lemosa, T., Faria Gomesc, W., Naraind, N. & Fernandes Pereira, A.L. 2019. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Science and Technology, 99: 371-378, ISSN: 0023-6438. http://dx.doi.org/10.1016/j.lwt.2018.10.007., who studied the stability of Lactobacillus casei, cultured in cocoa juice for the same time and under the same conditions, and reported that the microbial concentration decreased from 108 to 107 cfu/mL. Fernandes et al. (2019)Fernandes Lemos Junior, W.J., Fioravante Guerra, A., Tarrah, A., da Silva Duarte, V., Giacomini, A., Helena Luchese, R. & Corich, V. 2019. Safety and Stability of Two Potentially Probiotic Lactobacillus Strains After in vitro Gastrointestinal Transit. Probiotics and Antimicrobial Proteins, # Springer Science+Business Media, LLC, part of Springer Nature, ISSN: 1867-1314. https://doi.org/10.1007/s12602-019-09565-2. evaluated the stability of Lactobacillus rhamnosus DTA 79 and Lactobacillus paracasei DTA 83 in skimmed milk at 20 and 40 d of storage under refrigerated conditions (7 °C). The mentioned authors highlighted that, although one of the strains decreased its viability at 40 d, both remained at a concentration higher than 108 cfu/mL. Likewise, Tavares et al. (2018)Tavares A.G., Lacerda, C., Ribeiro, D. & Freitas, R. 2018. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Research International, 111: 187-197, ISSN: 1873-7145. https://doi.org/10.1016/j.foodres.2018.04.065. showed that a probiotic drink based on fermented corn with the commercial probiotic Lactobacillus paracasei LBC-81, individually and in co-culture with several yeast strains, maintained its viability for 28 d under refrigeration conditions (4 °C) and that the concentration was within the recommended range for its use as a probiotic.

International patent databases also protect stability studies of some liquid probiotic products. Patent ES2674353 T3 (2018), for example, deal with a method for preparing liquid starter cultures with high stability and fermentative activity. These cultures reach concentrations higher than 109 cfu/mL and are only stable for 6 d between 3 and 5 °C.

The results of this study are encouraging and comparable with other probiotic products preserved under refrigeration, which have shorter stability times than the additive with LB-31. It should also highlight that no preservatives were added to the probiotic additive that could improve the survival of LB-31. However, despite these advantages and the container-closure system used (glass bottles with plastic tops) is the most commonly used for laboratory studies (Rondón 2009Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba., García et al. 2013García, M., Vidal Fonteles, T., Tibério de Jesus, A.L. & Rodrigues, S. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139: 261-266, ISSN: 0308-8146. http://dx.doi.org/10.1016/j.foodchem.2013.01.059. and Freire et al. 2017Freire, A.L., Ramos, C.L. & Schwan, R.F. 2017. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Research International, 100: 698-707, ISSN: 0963-9969. http://dx.doi.org/10.1016/j.foodres.2017.07.070.), it is necessary to evaluate other types of packaging that facilitate the transport and storage processes when this type of product is industrially produced. Another aspect to take into account is the storage temperature, since the average ambient value in Cuba is 30±2 °C and this study was carried out at lower temperatures, mainly due to the season of year and the climatic conditions where it took place. It should also be considered that several researchers show that fermentation conditions can affect the viability, stability and functionality of the strain (Farnworth and Champagne 2016Farnworth, E.R. & Champagne, C.P. 2016. Production of Probiotic Cultures and Their Incorporation into Foods. In: Probiotics, Prebiotics, and Synbiotics. PART II: Probiotics in Food, Chapter 20. Elsevier Inc, ISBN: 978-0-12-802189-7. http://dx.doi.org/10.1016/B978-0-12-802189-7.00020-4. and Aragón et al. 2018Aragón, S., Ruiz, R.Y., Hernández, H. & Quintanilla, M.X. 2018. Optimization of the production and stress resistance of the probiotic Lactobacillus fermentum K73 in a submerged bioreactor using a whey-based culture medium. Journal of Food, 16(1): 1064-1070, ISSN: 1947-6345. https://doi.org/10.1080/19476337.2018.1527785.), so all these parameters must be checked at each stage of the scaling process.

Conclusions

 

The probiotic with Lactobacillus pentosus LB-31, without preservatives, is stable in glass bottles for 14 d at room temperature and for 60 d under refrigerated conditions.

References

 

Aragón, S., Ruiz, R.Y., Hernández, H. & Quintanilla, M.X. 2018. Optimization of the production and stress resistance of the probiotic Lactobacillus fermentum K73 in a submerged bioreactor using a whey-based culture medium. Journal of Food, 16(1): 1064-1070, ISSN: 1947-6345. https://doi.org/10.1080/19476337.2018.1527785.

Ayala, L., García, Y., Savón, L.L., Boucourt, R., Castro, M. & Herrera, M. 2014. Evaluación de la actividad probiótica del Lactobacillus pentosus en indicadores de salud y productivos de cerditos destetados. Revista Computadorizada de Producción Porcina, 21(3): 130-133, ISSN: 1026-9053. http://www.iip.co.cu/RCPP/213/213_artLAyala.pdf.

Brizuela, M.A. 2003. Selección de cepas de bacterias ácido lácticas para la obtención de un preparado con propiedades probióticas y su evaluación en cerdos. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. La Habana, Cuba.

De Man, J.C., Rogosa, M & Sharpe, M.E. 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology. 23(1): 130-135, ISSN: 1365-2672. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x.

Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. & Robledo C.W. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available in: http://www.infostat.com.ar.

dos Santos Filhoa, A.L., Veloso Freitasa, H., Rodrigues, S., Gonçalves Abreua, V.K., de Oliveira Lemosa, T., Faria Gomesc, W., Naraind, N. & Fernandes Pereira, A.L. 2019. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Science and Technology, 99: 371-378, ISSN: 0023-6438. http://dx.doi.org/10.1016/j.lwt.2018.10.007.

Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.

Endo, A. & Gueimonde, M. 2016. Isolation, identification and characterization of potential new probiotics. In: Advances in Probiotic Technology. Foerst, P. & Santivarangkna, C. Taylor & Francis Group, LLC, p. 45. ISBN: 978-1-4987-3458-5.

FAO (Food and Agriculture Organization of the United Nations). 2016. Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. Rome, ISSN: 0254-6019. http://www.fao.org/3/a-i5933e.pdf.

FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canada. (Consulted: October 25). http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.

Farnworth, E.R. & Champagne, C.P. 2016. Production of Probiotic Cultures and Their Incorporation into Foods. In: Probiotics, Prebiotics, and Synbiotics. PART II: Probiotics in Food, Chapter 20. Elsevier Inc, ISBN: 978-0-12-802189-7. http://dx.doi.org/10.1016/B978-0-12-802189-7.00020-4.

Fenster, K., Freeburg, B., Hollard, C., Wong, C., Laursen, R.R. & Ouwehand, A.C. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms, 83: 1-17, ISSN: 2076-2607. http://dx.doi.org/10.3390/microorganisms7030083.

Fernandes Lemos Junior, W.J., Fioravante Guerra, A., Tarrah, A., da Silva Duarte, V., Giacomini, A., Helena Luchese, R. & Corich, V. 2019. Safety and Stability of Two Potentially Probiotic Lactobacillus Strains After in vitro Gastrointestinal Transit. Probiotics and Antimicrobial Proteins, # Springer Science+Business Media, LLC, part of Springer Nature, ISSN: 1867-1314. https://doi.org/10.1007/s12602-019-09565-2.

Freire, A.L., Ramos, C.L. & Schwan, R.F. 2017. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Research International, 100: 698-707, ISSN: 0963-9969. http://dx.doi.org/10.1016/j.foodres.2017.07.070.

García, M., Vidal Fonteles, T., Tibério de Jesus, A.L. & Rodrigues, S. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139: 261-266, ISSN: 0308-8146. http://dx.doi.org/10.1016/j.foodchem.2013.01.059.

García, Y. & Pérez, T. 2015. Obtención de microorganismos con actividad probiótica para animales monogástricos. Anales de la Academia de Ciencias de Cuba, 5(3): 1-19. http://www.revistaccuba.cu/index.php/revacc/article/download/225/225.

García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.

Gutiérrez, D., García, Y. & Sosa, D. 2020. El efecto de Lactobacillus pentosus LB-31 como aditivo microbiano en la alimentación de corderos. Livestock Research for Rural Development, 32(3), Artículo No. 43, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/3/yanei32043.html.

Kieps, J. & Dembczynski, R. 2022. Current Trends in the Production of Probiotic Formulations. Foods, 11: 2330, ISSN: 2304-8158. https://doi.org/10.3390/foods11152330.

Milián, G., Rondón, A.J., Rodríguez, M., Beruvides, A. & Pérez, M. L. 2022. Endospores of Bacillus subtilis with probiotic potential in animals of zootechnical interest. Cuban Journal of Agricultural Science, 56(3): 145-153, ISSN: 2079-3480. https://cjascience.com/index.php/CJAS/article/view/1052.

Molina, A. 2019. Probióticos y su mecanismo de acción en alimentación animal. Agronomía Mesoamericana, 30(2): 601-611, ISSN: 2215-3608. https://doi:10.15517/am.v30i2.34432.

Ramlucken, U, Ramchurana, S.O., Moonsamya, G., Jansen van Rensburgc, C., Thantshab, M.S. & Lallooa, R. 2021. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnology Reports, 29: e00575, ISSN: 2215-017X. https://doi.org/10.1016/j.btre.2020.e00575.

Rodríguez, R., Ontivero, Y., García, Y., Sosa, D. & Gómez, S. 2020. Empleo del tubérculo de boniato (Ipomoea batatas L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development, 32 (7), Artículo No. 117, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/7/rodri32117.html.

Rondón, A. J., Socorro, M., Beruvides, A., Milián, G., Rodríguez, M., Arteaga, F. & Vera, R. 2020. Probiotic effect of PROBIOLACTlL®, SUBTILPROBIO® and their mixture on productive and health indicators of growing pigs. Cuban Journal of Agricultural Science, 54 (3): 1-10, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/972.

Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba.

Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba.

Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E., Galindo, J., Sosa, D., Alberto, M., Roque, D., Albelo, N., Colomina, L & Moreira, O. 2017. Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480. http://www.cjascience.com/index.php/CJAS/article/view/759/780.

Sosa, D., García, Y., Dustet, J.C., García, Y., Martínez, M., Sosa, A. & García, D. 2021. Efecto del aditivo probiótico Lactobacillus pentosus LB-31 en pollos de ceba. Revista MVZ Córdoba, 26(1): e2037, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.2037.

Tavares A.G., Lacerda, C., Ribeiro, D. & Freitas, R. 2018. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Research International, 111: 187-197, ISSN: 1873-7145. https://doi.org/10.1016/j.foodres.2018.04.065.

Vinderola, G., Gueimonde, M., Gomez-Gallego, C., Delfederico, L. & Salminen, S. 2017. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 68: 83-90, ISSN: 1879-3053. http://dx.doi.org/10.1016/j.tifs.2017.08.005.


 
Ciencia Animal

Estabilidad y conservación del aditivo probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal

 

iDDailyn Sosa Cossio1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.*✉:dailyn.sosa@gmail.com

iDYaneisy García Hernández1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDJulio C. Dustet Mendoza2Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), Facultad de Ingeniería Química. Ave. 114 No. 11901 entre Ciclovía y Rotonda, Marianao, La Habana, Cuba

iDAreadne Sosa Ceijas1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDYanelys García Curbelo1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDYoleisy García Hernández1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

iDNereyda Albelo Dorta1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.


1Instituto de Ciencia Animal (ICA), C. Central, km 47½, San José de las Lajas, Mayabeque, Cuba.

2Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE), Facultad de Ingeniería Química. Ave. 114 No. 11901 entre Ciclovía y Rotonda, Marianao, La Habana, Cuba

 

*Email: dailyn.sosa@gmail.com

Se determinó el tiempo de estabilidad y condiciones de almacenamiento del aditivo probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Se utilizaron diseños completamente aleatorizados con seis repeticiones para monitorear la viabilidad microbiana durante un mes (0, 7, 14, 21 y 30 días) al conservar el aditivo en condiciones ambientales (24 ±2 ºC) y durante seis meses (0, 30, 60, 90, 120 y 180 días) cuando se almacenó en refrigeración (4±2 ºC). Se determinó, además, la concentración celular, el pH y la pureza del cultivo. Los resultados mostraron que la bacteria ácido láctica mantuvo su viabilidad durante los primeros 14 días de conservación a temperatura ambiente. Después de este tiempo, la concentración microbiana disminuyó de 7.64 a 7.02 log ufc/mL (p=0.0028) y se mantuvo en 91 % de viabilidad hasta los 30 días. En condiciones de refrigeración, LB-31 se comportó estable hasta los 60 días de conservación con una concentración de 3.74x107 ufc/mL, y posteriormente disminuyó a 106 ufc/mL (p<0.0001) con una viabilidad de 78 % al finalizar el estudio. En ambas condiciones, el pH disminuyó y se comprobó que las colonias mantenían sus características morfológicas y culturales. Se concluye que el aditivo probiótico con Lactobacillus pentosus LB-31 sin conservantes es estable durante 14 días a temperatura ambiente (24±2 ºC), y por 60 días en condiciones refrigeradas (4±2 ºC).

Palabras clave: 
alimentación animal, bacteria, preservación

Introducción

 

El uso de aditivos microbianos, como los probióticos, en la alimentación animal contribuye a la mejora de la salud y mayor aprovechamiento de los alimentos (Rondón et al. 2020Rondón, A. J., Socorro, M., Beruvides, A., Milián, G., Rodríguez, M., Arteaga, F. & Vera, R. 2020. Probiotic effect of PROBIOLACTlL®, SUBTILPROBIO® and their mixture on productive and health indicators of growing pigs. Cuban Journal of Agricultural Science, 54 (3): 1-10, ISSN: 2079-3480. https://www.cjascience.com/index.php/CJAS/article/view/972. y Milián et al. 2022Milián, G., Rondón, A.J., Rodríguez, M., Beruvides, A. & Pérez, M. L. 2022. Endospores of Bacillus subtilis with probiotic potential in animals of zootechnical interest. Cuban Journal of Agricultural Science, 56(3): 145-153, ISSN: 2079-3480. https://cjascience.com/index.php/CJAS/article/view/1052. ), lo que permite incrementar los rendimientos productivos y, en consecuencia, la disponibilidad y calidad de leche, carne y huevos destinados a la población (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.). En los estudios con animales se utilizan microorganismos cultivados en el laboratorio o probióticos comerciales. Los aspectos de mayor importancia para su producción son la selección adecuada de la cepa o cepas, el medio de cultivo y las condiciones fermentativas que permitan obtener un alto nivel de viabilidad microbiana durante el proceso (FAO 2016FAO (Food and Agriculture Organization of the United Nations). 2016. Probiotics in animal nutrition-Production, impact and regulation by Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Editor Harinder P.S. Makkar. FAO Animal Production and Health Paper No. 179. Rome, ISSN: 0254-6019. http://www.fao.org/3/a-i5933e.pdf. y Fenster et al. 2019Fenster, K., Freeburg, B., Hollard, C., Wong, C., Laursen, R.R. & Ouwehand, A.C. 2019. The production and delivery of probiotics: A review of a practical approach. Microorganisms, 83: 1-17, ISSN: 2076-2607. http://dx.doi.org/10.3390/microorganisms7030083.). La estabilidad del aditivo probiótico durante la formulación y el almacenamiento es un requisito indispensable para una producción comercial exitosa (Ramlucken et al. 2021Ramlucken, U, Ramchurana, S.O., Moonsamya, G., Jansen van Rensburgc, C., Thantshab, M.S. & Lallooa, R. 2021. Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry. Biotechnology Reports, 29: e00575, ISSN: 2215-017X. https://doi.org/10.1016/j.btre.2020.e00575.).

La selección de la cepa o cepas microbianas es el primer paso para la concepción de un producto probiótico. Estos deben ser microorganismos generalmente reconocidos como seguros (GRAS, por sus siglas en inglés), capaces de sobrevivir en el tracto gastrointestinal y tolerar pH bajos y altas concentraciones de sales biliares (Vinderola et al. 2017Vinderola, G., Gueimonde, M., Gomez-Gallego, C., Delfederico, L. & Salminen, S. 2017. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 68: 83-90, ISSN: 1879-3053. http://dx.doi.org/10.1016/j.tifs.2017.08.005.). Otras características deseadas son la capacidad de adherencia de las cepas probióticas al epitelio intestinal para su posterior colonización (Endo y Gueimonde 2016Endo, A. & Gueimonde, M. 2016. Isolation, identification and characterization of potential new probiotics. In: Advances in Probiotic Technology. Foerst, P. & Santivarangkna, C. Taylor & Francis Group, LLC, p. 45. ISBN: 978-1-4987-3458-5. ), ser microorganismos estables genéticamente y poseer altas velocidades de crecimiento. Además, la cepa elegida debe mantener su viabilidad y actividad probiótica durante los procesos de fabricación, transporte y almacenamiento (Molina 2019Molina, A. 2019. Probióticos y su mecanismo de acción en alimentación animal. Agronomía Mesoamericana, 30(2): 601-611, ISSN: 2215-3608. https://doi:10.15517/am.v30i2.34432. y Kieps y Dembczynski 2022Kieps, J. & Dembczynski, R. 2022. Current Trends in the Production of Probiotic Formulations. Foods, 11: 2330, ISSN: 2304-8158. https://doi.org/10.3390/foods11152330.).

En Cuba, el Instituto de Ciencia Animal (ICA) desarrolló durante varios años un grupo de investigaciones encaminadas a la obtención y evaluación de probióticos con efectos benéficos en la salud y comportamiento productivo de los animales. A partir de los principales resultados de estas investigaciones, se seleccionó un grupo de cepas como las de mayor interés para el desarrollo de aditivos microbianos y se depositaron en la Colección de Microorganismos, perteneciente al Banco de Microorganismos para la Producción Animal (BAMIPA) del ICA (Sosa et al. 2017Sosa, A., González, N., García, Y., Marrero, Y., Valiño, E., Galindo, J., Sosa, D., Alberto, M., Roque, D., Albelo, N., Colomina, L & Moreira, O. 2017. Collection of microorganisms with potential as additives for animal nutrition at the Institute of Animal Science. Cuban Journal of Agricultural Science, 51(3): 311-319, ISSN: 2079-3480. http://www.cjascience.com/index.php/CJAS/article/view/759/780.). Una de estas cepas es Lactobacillus pentosus LB-31, de origen aviar, aislada de excretas fermentadas de pollos de ceba. La cepa LB-31en ensayos in vitro mostró las mayores potencialidades probióticas. Su acción benéfica se confirmó en pollos de ceba (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.), truchas arco iris (García y Pérez 2015García, Y. & Pérez, T. 2015. Obtención de microorganismos con actividad probiótica para animales monogástricos. Anales de la Academia de Ciencias de Cuba, 5(3): 1-19. http://www.revistaccuba.cu/index.php/revacc/article/download/225/225.), cerdos en crecimiento (Ayala et al. 2014Ayala, L., García, Y., Savón, L.L., Boucourt, R., Castro, M. & Herrera, M. 2014. Evaluación de la actividad probiótica del Lactobacillus pentosus en indicadores de salud y productivos de cerditos destetados. Revista Computadorizada de Producción Porcina, 21(3): 130-133, ISSN: 1026-9053. http://www.iip.co.cu/RCPP/213/213_artLAyala.pdf.) y corderos pelibuey (Gutiérrez et al. 2020Gutiérrez, D., García, Y. & Sosa, D. 2020. El efecto de Lactobacillus pentosus LB-31 como aditivo microbiano en la alimentación de corderos. Livestock Research for Rural Development, 32(3), Artículo No. 43, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/3/yanei32043.html.). Además, LB-31 se utilizó como aditivo para mejorar el contenido proteico de ensilajes mixtos destinados a animales rumiantes (Rodríguez et al. 2020Rodríguez, R., Ontivero, Y., García, Y., Sosa, D. & Gómez, S. 2020. Empleo del tubérculo de boniato (Ipomoea batatas L.) y la cepa Lactobacillus pentosus LB-31 como aditivos a ensilajes mixtos para rumiantes. Livestock Research for Rural Development, 32 (7), Artículo No. 117, ISSN: 2521-9952. http://www.lrrd.org/lrrd32/7/rodri32117.html.).

En estudios recientes, se definió el proceso de obtención del probiótico líquido con L. pentosus LB-31 para su futura producción a escala industrial (Sosa 2021Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba.). Para ello se seleccionó un medio de cultivo económico que permite sustituir el medio tradicional De Man-Rogosa-Sharpe (MRS, pH 6.2±0.2), diseñado por De Man et al. (1960)De Man, J.C., Rogosa, M & Sharpe, M.E. 1960. A medium for the cultivation of Lactobacilli. Journal of Applied Microbiology. 23(1): 130-135, ISSN: 1365-2672. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x., que es muy costoso para su utilización a escala industrial. También se evaluaron diferentes condiciones de operación en biorreactores de laboratorio y se escaló la fermentación a 30 L. Además, se comprobó que las nuevas condiciones de obtención del aditivo no afectaron la actividad de la cepa probiótica en pollos de ceba (Sosa et al. 2021Sosa, D., García, Y., Dustet, J.C., García, Y., Martínez, M., Sosa, A. & García, D. 2021. Efecto del aditivo probiótico Lactobacillus pentosus LB-31 en pollos de ceba. Revista MVZ Córdoba, 26(1): e2037, ISSN: 0122-0268. https://doi.org/10.21897/rmvz.2037.). Sin embargo, es necesario realizar estudios de estabilidad y conservación del aditivo que permitan garantizar alta viabilidad de los microorganismos durante el proceso de almacenamiento y, consecuentemente, que puedan conservar su efecto probiótico en el tracto gastrointestinal del hospedero. Por estas razones, el objetivo de la presente investigación fue determinar el tiempo de estabilidad y las condiciones de almacenamiento del aditivo probiótico con Lactobacillus pentosus LB-31destinado a la producción animal.

Materiales y Métodos

 

El experimento se realizó en el Laboratorio de Producción de Alimentos del Instituto de Ciencia Animal. Este centro se encuentra situado en el km 47 ½ de la Carretera Central, a 22º 53' de latitud norte, 82º 02' de longitud oeste y 92 m.s.n.m, en el municipio de San José de las Lajas, provincia de Mayabeque, Cuba.

Diseño y tratamientos experimentales

 

Se utilizaron diseños completamente aleatorizados con seis repeticiones para evaluar la estabilidad y conservación del aditivo probiótico en condiciones ambientales (24±2 ºC) por un mes (0, 7, 14, 21 y 30 d) y de refrigeración (4±2 ºC) durante seis meses (0, 30, 60, 90, 120 y 180 d). En cada horario se tomaron seis muestras para los análisis que posteriormente se eliminaron.

Microorganismo y preparación del aditivo probiótico

 

Se utilizó la cepa Lactobacillus pentosus LB-31, perteneciente al Banco de Microorganismos para la Producción Animal (BAMIPA) del Instituto de Ciencia Animal (Mayabeque, Cuba). LB-31 se identificó por secuenciación del gen 16S ARN ribosomal y su secuencia se encuentra depositada en el GenBank con número de acceso: FR717464 (García et al. 2016García, Y., Pérez, T., Boucourt, R., Balcázar, J.L., Nicoli, J.R., Moreira, J., Rodríguez Z., Fuertes H., Núñez O., Albelo N. & Halaihel, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132, ISSN: 1532-2661. http://dx.doi.org/10.1016/j.rvsc.2016.08.009.). El aditivo probiótico se obtuvo de tres lotes de fermentación en un biorreactor (BIONET, España) de 11 L con volumen efectivo de 8 L de un medio de cultivo diseñado con melaza de caña de azúcar, urea, acetato de sodio y citrato de amonio. Las condiciones de operación del equipo se establecieron según metodología propuesta por Sosa (2021)Sosa, D. 2021. Proceso para la obtención de un probiótico con Lactobacillus pentosus LB-31 destinado a la producción animal. Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas. Mayabeque, Cuba..

Estabilidad y conservación del aditivo probiótico

 

Se utilizó un cultivo líquido a partir de la cepa de Lactobacillus pentosus LB-31 con concentración de 4.33x107 ufc/mL. El aditivo se envasó en frascos de cristal estériles de 100 mL con tapas plásticas y se colocaron a temperatura ambiente y en refrigeración. Se determinó la viabilidad celular, pureza y pH. Se tomaron muestras y se realizaron diluciones seriadas en solución salina (0.85 %, p/v) y siembras del cultivo en placas con agar Rogosa. Estas se incubaron de 24-48 h para determinar la concentración de células viables (ufc/mL) por conteo visual de colonias. Se realizaron tinciones de Gram para comprobar la pureza del cultivo y se midió el pH con pHmetro digital (Sartorius, Alemania) de precisión ±0.01 unidades.

Análisis estadístico

 

Los datos experimentales se procesaron con el paquete estadístico Infostat (Di Rienzo et al. 2012Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. & Robledo C.W. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available in: http://www.infostat.com.ar.). Todas las variables cumplieron los supuestos teóricos y siguieron una distribución log normal. En los casos necesarios, se utilizó la dócima de comparación múltiple de Duncan (1955)Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478. para discriminar diferencias entre medias a p<0.05.

Resultados y Discusión

 

En la figura 1 se muestra el comportamiento de la concentración microbiana (A) y el pH (B) del aditivo probiótico con Lactobacillus pentosus LB-31 durante un mes de conservación a temperatura ambiente. No hubo diferencias en la viabilidad de la bacteria ácido láctica para los primeros 14 d de conservación (figura 1A). Después de este tiempo, la concentración microbiana disminuyó de 4.33x107 a 1x107 ufc/mL (7.64 a 7.02 log ufc/mL) y se mantuvo en 91 % de viabilidad hasta los 30 d. En lo que respecta al pH (figura 1B), se observó disminución a los 7 d y a partir de este momento se mantuvo estable.

a, b, cLetras distintas por gráfico difieren a p<0.05 (Duncan 1955Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.)
Figura 1.  Comportamiento de la estabilidad del aditivo probiótico con L. pentosus LB-31 durante 30 d a temperatura ambiente (24±2 ºC): (A) Concentración microbiana (EE±0.13, p=0.0028) y (B) pH (EE±0.03, p<0.0001)

La figura 2 muestra la estabilidad del aditivo durante seis meses de conservación en refrigeración. No hubo diferencias en la concentración de la bacteria ácido láctica durante los primeros 60 d de conservación (figura 2A), ya que mantuvo valores de 4.33x107ufc/mL (7.64 log ufc/mL) y posteriormente disminuyó a 106 ufc/mL (6.01 log ufc/mL) y alcanzó 78 % de viabilidad al finalizar el estudio. El pH disminuyó a los 30 d y se mantuvo estable hasta los 180 d (figura 2B).

a, b, c, dLetras distintas por gráfico difieren a p<0.05 (Duncan 1955Duncan, D.E. 1955. Multiple range and multiple F test. Biometrics, 11: 1-42, ISSN: 0006-341X. http://dx.doi.org/10.2307/3001478.)
Figura 2.  Comportamiento de la estabilidad del aditivo probiótico con L. pentosus LB-31 durante 180 d a 4±2 ºC: (A) Concentración microbiana (EE±0.44, p<0.0001) y (B) pH (EE±0.08, p<0.0001)

La FAO/WHO (2002)FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. April 30 and May 1. London Ontario, Canada. (Consulted: October 25). http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. sugirieron que los probióticos deben tener una concentración mínima de 106-107 células/mL o g de producto para garantizar su eficacia. El presente estudio demuestra que el aditivo con Lactobacillus pentosus LB-31 mantiene una concentración adecuada para que se utilice como probiótico y que, además, es estable hasta los 14 d a temperatura ambiente (4.33x107 ufc/mL) y 60 d en condiciones refrigeradas (3.74x107 ufc/mL).

En ambas condiciones de conservación, con las observaciones macroscópicas y microscópicas del cultivo, se comprobó que las colonias mantenían sus características morfológicas y de cultivo. Además, se descartó la presencia de contaminantes (figura 3).

Figura 3.  Observación macroscópica y microscópica de la pureza del cultivo probiótico con L. pentosus LB-31

Brizuela (2003)Brizuela, M.A. 2003. Selección de cepas de bacterias ácido lácticas para la obtención de un preparado con propiedades probióticas y su evaluación en cerdos. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. La Habana, Cuba. y Rondón (2009)Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba. evaluaron en frascos de cristal la estabilidad de aditivos probióticos con diferentes cepas de lactobacilos a temperatura ambiente y en condiciones de refrigeración durante 180 d. Ambas investigaciones informaron que los aditivos eran estables hasta los 30 d, y que a partir de este momento la viabilidad del microorganismo disminuía en condiciones ambientales como refrigeradas.

La literatura científica internacional informa varios estudios de estabilidad de microorganismos probióticos que utilizan diferentes tipos de sustratos y tiempos de estabilidad inferiores a los del presente estudio. Entre ellos se encuentran los de dos Santos et al. (2019)dos Santos Filhoa, A.L., Veloso Freitasa, H., Rodrigues, S., Gonçalves Abreua, V.K., de Oliveira Lemosa, T., Faria Gomesc, W., Naraind, N. & Fernandes Pereira, A.L. 2019. Production and stability of probiotic cocoa juice with sucralose as sugar substitute during refrigerated storage. LWT-Food Science and Technology, 99: 371-378, ISSN: 0023-6438. http://dx.doi.org/10.1016/j.lwt.2018.10.007., quienes estudiaron la estabilidad de Lactobacillus casei, cultivado en jugo de cocoa durante el mismo tiempo y en iguales condiciones, e informaron que la concentración microbiana disminuía de 108 a 107 ufc/mL. Fernández et al. (2019)Fernandes Lemos Junior, W.J., Fioravante Guerra, A., Tarrah, A., da Silva Duarte, V., Giacomini, A., Helena Luchese, R. & Corich, V. 2019. Safety and Stability of Two Potentially Probiotic Lactobacillus Strains After in vitro Gastrointestinal Transit. Probiotics and Antimicrobial Proteins, # Springer Science+Business Media, LLC, part of Springer Nature, ISSN: 1867-1314. https://doi.org/10.1007/s12602-019-09565-2. evaluaron la estabilidad de Lactobacillus rhamnosus DTA 79 y Lactobacillus paracasei DTA 83 en leche desnatada a los 20 y 40 d de almacenamiento en condiciones de refrigeración (7 °C). Los autores citados destacaron que, aunque una de las cepas disminuyó su viabilidad a los 40 d, ambas se mantuvieron en una concentración superior a 108 ufc/mL. Asimismo, Tavares et al. (2018)Tavares A.G., Lacerda, C., Ribeiro, D. & Freitas, R. 2018. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Research International, 111: 187-197, ISSN: 1873-7145. https://doi.org/10.1016/j.foodres.2018.04.065. demostraron que una bebida probiótica basada en maíz fermentado con el probiótico comercial Lactobacillus paracasei LBC-81, de forma individual y en co-cultivo con varias cepas de levaduras, mantenían su viabilidad durante 28 d en condiciones de refrigeración (4 °C) y que la concentración se encontraba en el intervalo recomendado para su uso como probiótico.

Las bases de datos de patentes internacionales también protegen estudios de estabilidad de algunos productos probióticos líquidos. La patente ES2674353 T3 (2018), por ejemplo, aborda un método para preparar cultivos iniciadores líquidos con alta estabilidad y actividad fermentativa. Estos cultivos alcanzan concentraciones superiores a 109 ufc/mL y son estables solo durante 6 d entre 3 y 5 °C.

Los resultados del presente estudio son alentadores y comparables con otros productos probióticos conservados en refrigeración, que tienen tiempos de estabilidad inferiores al aditivo con LB-31. Se debe destacar, además, que al aditivo probiótico no se le agregó ningún conservante que pudiera mejorar la supervivencia de LB-31. Sin embargo, a pesar de estas ventajas y que el sistema contenedor-cierre utilizado (frascos de cristal con tapa plástica) es el más empleado para los estudios a nivel de laboratorio (Rondón 2009Rondón, A.J. 2009. Obtención de biopreparados a partir de lactobacilos autóctonos del tracto digestivo de pollos y evaluación de su efecto probiótico en estos animales. Tesis presentada en opción al grado científico de Doctor en Ciencias Veterinarias. Matanzas, Cuba., García et al. 2013García, M., Vidal Fonteles, T., Tibério de Jesus, A.L. & Rodrigues, S. 2013. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chemistry, 139: 261-266, ISSN: 0308-8146. http://dx.doi.org/10.1016/j.foodchem.2013.01.059. y Freire et al. 2017Freire, A.L., Ramos, C.L. & Schwan, R.F. 2017. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Research International, 100: 698-707, ISSN: 0963-9969. http://dx.doi.org/10.1016/j.foodres.2017.07.070.), es necesario evaluar otros tipos de envase que faciliten los procesos de transporte y almacenamiento cuando se produce industrialmente este tipo de producto. Otro aspecto a tener en cuenta es la temperatura de almacenamiento, ya que el valor ambiente promedio de Cuba es 30±2 °C y el presente estudio se realizó a temperaturas más bajas, debido, fundamentalmente, a la época del año y a las condiciones climáticas donde tuvo lugar. También se debe considerar que varias investigaciones señalan que las condiciones de fermentación pueden afectar la viabilidad, estabilidad y funcionalidad de la cepa (Farnworth y Champagne 2016Farnworth, E.R. & Champagne, C.P. 2016. Production of Probiotic Cultures and Their Incorporation into Foods. In: Probiotics, Prebiotics, and Synbiotics. PART II: Probiotics in Food, Chapter 20. Elsevier Inc, ISBN: 978-0-12-802189-7. http://dx.doi.org/10.1016/B978-0-12-802189-7.00020-4. y Aragón et al. 2018Aragón, S., Ruiz, R.Y., Hernández, H. & Quintanilla, M.X. 2018. Optimization of the production and stress resistance of the probiotic Lactobacillus fermentum K73 in a submerged bioreactor using a whey-based culture medium. Journal of Food, 16(1): 1064-1070, ISSN: 1947-6345. https://doi.org/10.1080/19476337.2018.1527785.), por lo que en cada etapa del proceso de escalado se deben comprobar todos estos parámetros.

Conclusiones

 

El probiótico con Lactobacillus pentosus LB-31, sin conservantes, es estable en frascos de cristal durante 14 d, a temperatura ambiente, y por 60 d en condiciones refrigeradas.