Cuban Journal of Agricultural Science Vol. 58, january-december 2024, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v58e08
Animal Science
Review Article

Glycerol in the diet of ruminant animals: advantages of its use

 

iDA. Delgado*✉:alvaro85.del@gmail.com

iDJuana L. Galindo


Instituto de Ciencia Animal, C. Central, km 47 ½, San José de las Lajas, Mayabeque, Cuba

 

*Email:alvaro85.del@gmail.com

Abstract

This study delves into some topics related to the use of glycerol in ruminant feeding. The main ways to obtain glycerol are discussed and its properties are characterized. Its energetic value is highlighted due to the importance of its inclusion in diets for animals. Some studies are analyzed in which the use of glycerol in dairy and beef cattle was evaluated, as well as its effect on intake and productive indicators. In addition, general aspects related to metabolism are emphasized and the limitations related to its use are exposed. It is concluded that glycerol, which is obtained as a by-product in the manufacture of biofuels, can be included as an energy concentrate in diets intended for ruminants, as long as its methanol level is considered.

Keywords: 
glycerol, methanol, ruminants, energy value

Received: 20/9/2023; Accepted: 26/1/2024

Conflict of interest: There is not conflict of interest among the authors.

CRediT authorship contribution statement: A. Delgado: Conceptualization, Writing-original draft. Juana L. Galindo: Conceptualization, Writing-original draft

CONTENT

Introduction

 

The rising cost of fossil fuels (Benoit and Mottet 2023Benoit, M. & Mottet, A. 2023. Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agricultural Systems, 205: 103585, ISSN: 0308-521X. https://doi.org/10.1016/j.agsy.2022.103585) and their capacity to generate polluting gases have motivated the interest for searching alternative energy sources, especially renewable ones. In this regard, biodiesel has an important place as a biofuel produced from vegetable oils or animal fats (Kumar Singh et al. 2024Kumar Singh, Sh., Chauhan, A. & Sarkar, B. 2024. Resilience of sustainability for a smart production system to produce biodiesel from waste animal fat. Journal of Cleaner Production, 452: 142047, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2024.142047. ) through transesterification (Tang et al. 2024Tang, H., Luo, C., Lu, H., Wu, K., Liu, Y., Zhu, Y., Wang, B. & Liang, B. 2024. Readily available, biocompatible sodium citrate catalyst for efficient glycerol carbonate production through transesterification of glycerol and ethylene carbonate. Chemical Engineering Journal, 481: 148552, ISSN: 1385-8947. https://doi.org/10.1016/j.cej.2024.148552 ). Glycerin is the main byproduct resulting from biodiesel production (Bansod et al. 2024Bansod, Y., Crabbe, B., Forster, L., Ghasemzadeh, K. & D'Agostino, C. 2024. Evaluating the environmental impact of crude glycerol purification derived from biodiesel production: A comparative life cycle assessment study. Journal of Cleaner Production, 437: 140485, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2023.140485), so the development of biofuel producing industries has generated considerable volumes of glycerol, which can be used as an ingredient in diets for ruminants (Madrid et al. 2019Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.) and non-ruminants, including pigs, laying hens and broilers (Tavernari et al. 2022Tavernari, F.C., Vieira de Souza, A.R.S., Feddern, V., dos Santos Lopes, L., de Sousa Teixeira, C.J., Muller, J.A., Surek, D., Paiano, D., Goulart Petrolli, T. & Manente Boiago, M. 2022. Metabolizable energy value of crude glycerin and effects on broiler performance and carcass yield. Livestock Science, 263: 105017, ISSN: 1878-0490. https://doi.org/10.1016/j.livsci.2022.105017. ). This contributes to improving economic sustainability of biodiesel industry and reducing the environmental impact caused by the generated waste (Garlapati et al. 2016Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002. and Abdul et al. 2019Abdul Raman, A.A., Tan, H.W. & Buthiyappan, A. 2019. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Frontiers in Chemistry, 7: 774, ISSN: 2296-2646. https://doi.org/10.3389/fchem.2019.00774.).

Initially, glycerol was used in the treatment of bovine ketosis or pregnancy toxemia in sheep. However, its availability and the high price of cereals led to studies in which its effect as an energy component of the diet was evaluated. Generally, glycerol is used to replace corn grain, since both provide similar amounts of energy, so it can be an economically viable alternative in the formulation of rations for ruminants, especially when the price of corn increases.

Glycerol can be used pure or with a medium level of purity. With the latter, more discreet results are achieved, but without incurring the expense that the refining process entails. However, when using raw glycerol, the existence of some impurities must be considered, which can reduce the beneficial effects of the product and even compromise animal health. The objective of this review is to delve into some topics related to the use of glycerol in ruminant feeding.

Obtaining, properties and uses of glycerol

 

Glycerol can be obtained from complex lipids, by organic synthesis, through the fermentation of carbohydrates or from synthetic derivatives resulting from petroleum refining. Initially, the main way to obtain glycerol was saponification of fats in the soap manufacturing process, until the development of biofuel production companies began. According to Badia-Fabregat et al. (2019)Badia-Fabregat, M., Rago, L., Baeza, J.A. & Guisasola, A. 2019. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. International Journal of Hydrogen Energy, 44: 17204–17213, ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2019.03.193., for every 10 kg of biodiesel, approximately 1 kg of crude glycerol are produced through the transesterification of fats from vegetable or animal origin with methanol.

Small amounts of glycerol can also be obtained from marine microalgae, such as Dunaliella salina (Celente et al. 2022Celente, G.S., Medianeira Rizzetti, T., Sui, Y., Schneider, R.C.S. 2022. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass and Bioenergy, 167: 106647. https://doi.org/10.1016/j.biombioe.2022.106647.). Animals have an endogenous source from lipolysis of adipose tissue or hydrolysis of triglycerides from blood lipoproteins. Glycerol resulting from lipolysis follows the hepatic gluconeogenesis pathway and can provide up to 15-20 % of total glucose demands (Jeon et al. 2023Jeon, Y.G., Kim, Y.Y., Lee, G., & Kim, J.B. 2023. Physiological and pathological roles of lipogenesis. Nature Metabolism, 5(5): 735-759, ISSN: 2522-5812. https://doi.org/10.1038/s42255-023-00786-y.).

Glycerol is a colorless, viscous, almost odorless liquid. It is soluble in water and alcohol and insoluble in ether and chloroform. Currently, it is used in the chemical industry for the synthesis of resins and esters (18 %), pharmaceutical industry (7 %), production of cosmetics (40 %), as a humectant and food preservative, in the preparation of dressings for salads, sweet toppings and frozen desserts (24 %) and others (11 %) (Cardoso et al. 2015Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.). It has also been used in the manufacture of explosives (dynamite and nitroglycerin) (Wu et al. 2023Wu, S., Li, X., Geand, Zh. & Luo, Y. 2023. Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application. Polymers, 15(6): 1538, ISSN: 2073-4360. https://doi.org/10.3390/polym15061538. ). Its contribution to the pharmaceutical industry corresponds to its use as a component of capsules, anesthetics, syrups and antiseptics (Wan Azelee et al. 2019Wan Azelee, N.I., Mazila Ramli, A.N., Manas, N.H.A., Salamun, N., Man, R.Ch. & El Enshasy, H. 2019. Glycerol In Food, Cosmetics And Pharmaceutical Industries: Basics And New Applications. International Journal of Scientific & Technology Research, 8(12): 553-558, ISSN: 2277-8616.), while in the production of cosmetics, it improves softness, provides lubrication and has moisturizing properties.

Its gluconeogenic and antiketotic effect explains its use in the treatment of bovine ketosis (Mammi et al. 2021Mammi, L.M.E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. 2021. The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7): 1988, ISSN: 2076-2615. https://doi.org/10.3390/ani11071988 ) and to prevent fatty liver syndrome (Zhang et al. 2023Zhang, C., Shao, Q., Liu, M., Wang, X., Loor, J.J., Jiang, Q., Cuan, Sh., Li, X., Wang, J., Li, Y., He, L., Huang, Y., Liu, G. & Lei, L. 2023. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver disease. Journal of Dairy Science, 106(5): 2878-2891, ISSN: 1525-3198. https://doi.org/10.3168/jds.2022-22636. ). It can be used in the treatment of pregnancy toxemia in sheep (Cal-Pereyra et al. 2015Cal-Pereyra, L., González-Montaña, J.R., Benech, A., Acosta-Dibarrat, J., Martín, M.J., Perini, S., Abreu, M.C., Da Silva, S. & Rodríguez, P. 2015. Evaluation of three therapeutic alternatives for the early treatment of ovine pregnancy toxaemia. Irish Veterinary Journal, 68: 25, ISSN: 2046-0481. https://doi.org/10.1186/s13620-015-0053-2.). It can be used as raw material for biopolymers, polyunsaturated fatty acids, production of ethanol, hydrogen and n-butanol (Garlapati et al. 2016Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002.), as well as in the production of biosurfactants (Trentini Volpato et al. 2022Trentini Volpato, C.P., Heck, M.C., Gigliolli, A.A.S., Yoshioto-Higaki, M., Godoy, M.A.F. de, Magnoni, D.M. Vicentini, V.E.P. 2022. Utilization of glycerol as substrate in the production of biosurfactant. Research, Society and Development, 11(6): e474111638391, ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i16.38391. ) and solketal (Kowalska-Kuś et al. 2020Kowalska-Kuś, J., Held, A. & Nowińska, K. 2020. A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journal, 401: 126143, ISSN: 1873-3212. https://doi.org/10.1016/j.cej.2020.126143. ).

Most studies with glycerol are based on small proportions added to the diet, due to its gluconeogenic characteristics (Neiva et al. 2012Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. and Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). However, higher quantities have been used as another component of the diet, because production volumes have exceeded utilization capacity (Donkin 2008Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032.). This can constitute a way to increase the biological and financial efficiency of biodiesel production and, at the same time, prevent it from being discharged into the environment, becoming another pollutant.

The increase in production volumes suggests a decrease in its price, which strengthens the idea of using it as a substitute for energy concentrates in the diet of ruminants (Khalid and Al-Anbari 2024Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966). There are other properties described by Schröder and Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]., who refer to its easy absorption in the rumen and intestinal mucosa, as well as its antiseptic power, capable of sanitizing the ration, and its high palatability, which responds to its sweet flavor and its agglomerating effect because it is hygroscopic. It is a normal compound in the metabolism of ruminants, which is found in the blood as well as in the cells.

Metabolism of glycerol

 

The glycerol that reaches rumen can follow three destinations. It is estimated that 44 % of glycerol that reaches the organ is fermented, 43 % is absorbed through the rumen wall and 13 % passes to the digestive compartments after the rumen, although these proportions can vary (Krehbiel 2008Krehbiel, C.R. 2008. Ruminal and physiological metabolism of glycerin. Journal of Animal Science, 86(E-suppl. 2): 392, ISSN: 1525-3163. https://www.adsa.org/Portals/0/SiteContent/Docs/Meetings/PastMeetings/Annual/2008/0392.PDF. ). Excess glycerol can be absorbed by the ruminal and intestinal mucosa, which constitutes a direct gluconeogenic source for the ruminant (Ortega-Cerrilla et al. 2018Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272. ). According to Hejna et al. (2016)Hejna, A., Kosmela, P., Formela, K., Piszczyk, Ł. & Haponiuk, J.T. 2016. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66: 449–475, ISSN: 2377-8342. http://dx.doi.org/10.1016/j.rser.2016.08.020., as a result of the microbial fermentation of glycerol, several chemical compounds could be obtained, such as propionic acid, succinic acid, butanol, propanediol, dihydroxyacetone, among many others.

According to Cabrera-Cruz (2019)Cabrera-Cruz, M.A. 2019. Metabolismo del glicerol en rumiantes. AgroProductividad, 12(4): 81-85, ISSN: 2594-0252. https://doi.org/10.32854/agrop.v0i0.306., replacing glycerol with corn in the diet does not generate a negative effect on the ecology of the rumen, even when there is a modification in the synthesis of volatile fatty acids. Glycerol is capable of increasing total production of volatile fatty acids, in vivo (Rémond et al. 1993Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4. and Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. ) and in vitro (Trabue et al. 2007Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i. ). In addition to increasing, fundamentally, the production of propionic acid (Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. and Chanjula et al. 2016Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.). It can enter the glycolytic pathway and it transform into pyruvate, which generates propionate via two different routes: succinate or acrylate. This justifies the increase in propionate, by adding glycerol to the ruminant diet (Cardoso et al. 2015Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.).

The inclusion of glycerol to the diet can also increase the production of butyric acid (Kupczyński et al. 2020Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379. ), and propionic and butyric acid (Van Cleef et al. 2016Van Cleef, E.H.C.B., Sancanari, J.B.D., Silva, Z.F., D’Aurea, A.P., Favaro, V.R., van Cleef, F.O.S., Homem Júnior, A.C. &. Ezequiel. J.M.B. 2016. High concentrations of crude glycerin on ruminal parameters, microbial yield, and in vitro greenhouse gases production in dairy cows. Canadian Journal of Animal Science, 96(4): 461-465, ISSN: 1918-1825. https://doi.org/10.1139/cjas-2015-0170. and Madrid et al. 2019Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.) with decrease in acetic acid (Chanjula et al. 2016Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.), which contributes to the decrease in the acetic:propionic ratio (Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. ). The majority of glycerol is fermented to volatile fatty acids through the glycolytic pathway, with little production of lactic acid (Trabue et al. 2007Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i. ).

Considering that propionic acid and glycerol itself are potent neoglycogenic agents (McWilliams 2023McWilliams, C. 2023. Effect of glycerol supplementation in early lactation on metabolic health, milking activity, and production of dairy cows housed in automated milking system herds (Doctoral dissertation, University of Guelph).), it is reasonable to use glycerol as an energy supplement for milk production in the transition period. It could even be more recommended than other energy sources because it has a metabolic advantage over its traditional counterparts, especially propionate and propylene glycol, because it enters gluconeogenesis at the level of phosphate-isomerase, metabolically closer to glucose (Wang et al. 2021Wang, K., Nan, X.M., Zhao, Y.G., Tong, J.J., Jiang, L.S., & Xiong, B.H. 2021. Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure. Journal of Dairy Science, 104(3): 2924-2934, ISSN: 1525-3198. https://doi.org/10.3168/jds.2020-18974. ).

Propionic acid and glycerol are absorbed and reach the liver via the portal vein for subsequent conversion to glucose (Arias-Islas et al. 2020Arias-Islas, E., Morales-Barrera, J., Prado-Rebolledo, O., & García-Casillas, A. 2020. Metabolism in ruminants and its association with blood biochemical analytes. Abanico Veterinario, 10(1), ISSN: 2007-428X.). According to Lei and Simões (2021)Lei, M.A.C., & Simões, J. 2021. Invited review: ketosis diagnosis and monitoring in high-producing dairy cows. Dairy, 2(2): 303-325, ISSN: 2624-862X. https://doi.org/10.3390/dairy2020025. , propionic acid produced by ruminal fermentation is the main substrate for gluconeogenesis in high-producing dairy cows. Between 50 and 60 % of the total glucose required is obtained in this way. Propionic acid production in the rumen is greater in animals that consume concentrate than in those that consume forage. Therefore, in grazing animals, glycerol supplementation could increase energy efficiency (Huerta-Jiménez et al. 2018Huerta-Jiménez, M., Ortega-Cerrilla, M.E., Herrera-Haro, J.G., Kawas-Garza, J.R., Díaz-Cruz, A., Nava, C., Hernández-Sánchez, D., Ortega-Jiménez, E. & Alarcón-Rojo, A.D. 2018. Relationship between glycerol administration to livestock 24 h before sacrifice and indicators of physiological and oxidative stress. Journal of Animal Behavior and Biometeorology, 6: 116-123, ISSN: 2318-1265. https://doi.org/10.31893/2318-1265jabb.v6n4p116-123).

According to studies carried out by Rémond et al. (1993)Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4. , the maximum disappearance rates of glycerol in the rumen, determined by in vitro fermenters, is 0.52 to 0.62 g.h-1. Other data suggest that, with a dose of 240 g of glycerol, disappearance rates in the rumen are between 1.20 and 2.40 g.h-1. In studies where levels between 15 and 25 % of glycerol were supplemented, most of it disappeared within six hours (Bergner et al. 1995Bergner, H., Kijora, Claudia., Ceresnakova, Zusana. & Szakacs, J. 1995. In vitro investigation on the glycerol transformation Rumen Microbes. Archiv für Tierernaehrung, 48(3): 245-256, ISSN: 1477-2817. https://doi.org/10.1080/17450399509381845.). According to Donkin (2008)Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032., between 50 and 70 % of the glycerol disappears from the rumen within four hours.

On the other hand, the studies carried out by Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. reduced ammoniacal nitrogen levels in the rumen by including 6 % of glycerol in the diet. However, Correa and Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91. did not modify blood urea nitrogen content.

Effect of the use of glycerol on dry matter intake

 

Studies in which glycerol was used showed variable results in relation to dry matter intake (DMI). In some other, this indicator was not modified with the inclusion of glycerol in the diet (Moriel et al. 2011Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. and Van Cleef et al. 2014Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. ). However, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. reported increases in intake by approximately 2 kg of DM at 70 d, while Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p. observed a depressive effect in the postpartum stage, Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. in young bulls when they used 18 %, and Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. used 6 % in goats.

DM intake was also modified in the work carried out by Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. when using glycerol. In addition, they obtained an effect of the inclusion levels of the product, with the highest values of 5 % (28.40 kg. d-1). Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. did not modify this indicator within the same category (cows and steers), but when comparing cows with steers they observed a reduction in intake for the latter, when glycerol was used at a rate of 6 and 12 % of the DM.

Use of glycerol in animal diet as energy additive

 

According to Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. the energy provided by glycerol is similar to that of corn starch, when used in dairy cows. Nevertheless, the energy value of glycerol depends on its purity degree, on the percentage it represents regarding total dry matter (DM) and on the starch content of the used concentrate. Schröder and Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. determined net energy of lactation of glycerol and obtained values of 2.30 Mcal.kg-1, when it is offered in diets with low starch content, and between 1.91 and 2.03 Mcal.kg-1 in diets with high starch content.

The production of biodiesel generates byproducts with potential use in animal feed (de Souza et al. 2014De Souza, A., Ribeiro, J., Lopes, M., Moletta, J.L., Los, S. & Breno, V. 2014. Glycerol inclusion levels in corn and sunflower silages. Ciência e Agrotecnologia, 38(5): 497-505, ISSN: 1981-1829. https://doi.org/10.1590/S1413-70542014000500009.). In this group, glycerol stands out, which can be used as an energy source (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). It has been used in diets for pigs (Martínez-Miró et al. 2021Martínez-Miró, S., Madrid, J., López, M.J., Orengo, J., Sánchez, C.J. & Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181, ISSN: 2076-2615. https://doi.org/10.3390/ani11082181., Dahmer et al. 2022Dahmer, P.L., Harrison, O.L., & Jones, C.K. 2022. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Translational Animal Science, 6(4): txac145, ISSN: 2573-2102. https://doi.org/10.1093/tas/txac145. and Li et al. 2022Li, L., Wang, H., Zhang, N., Zhang, T., & Ma, Y. 2022. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. Journal of Animal Science, 100(3): skac046. https://doi.org/10.1093/jas/skac046. ) and for broilers (Liu et al. 2020Liu, T., Tang, J., & Feng, F. 2020. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Applied Microbiology and Biotechnology, 104(23): 1-13, ISSN: 1432-0614. https://doi.org/10.1007/s00253-020-10919-y. ).

However, most of the studies carried out are aimed at feeding ruminant animals. Sotgiu et al. (2021)Sotgiu, F.D., Porcu, C., Pasciu, V., Dattena, M. & Gallus, M. 2021. Towards a sustainable reproduction management of dairy sheep: glycerol-based formulations as alternative to eCG in milked ewes mated at the end of anoestrus period. Animals, 11(4): 922, ISSN: 2076-2615. https://doi.org/10.3390/ani11040922. used it in sheep and Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. in goats. Prado et al. (2015)Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661. and Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. used it in bulls. Likewise, Moriel et al. (2011)Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. applied it to the feeding of replacement heifers in breeds intended for meat production. Correa and Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91. studied its effect in Holstein cows.

There are several studies that include glycerol in the diet of high-producing dairy cows in the transition period (Bodarski et al. 2005Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this., Chung et al. 2007Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426. and Wang et al. 2009bWang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009.). Some studies refer to its use with a high level of purity (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. and Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.) or raw (Neiva et al. 2012Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. ). In other research carried out with Holando bulls, glycerol was used as a substitute for corn grain in the ration for dairy cows (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. and Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.) and in fattening (Mach et al. 2009Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. ). It was also used in the production of rumen activators for the production of beef in feeding systems with fibrous materials (Iriñiz et al. 2011Iriñiz, J., Elias, A., Michelena, J.B., Galindo, J. & Chilibroste, P. 2011. Uso de activadores ruminales con glicerol en el comportamiento productivo de novillos Hereford alimentados con paja de arroz. Alpa. Montevideo, Uruguay.).

De Frain et al. (2004) studied different levels of glycerol inclusion in the diet, at a rate of 430 and 860 g.cow-1d-1. Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. did it in doses of 300 and 500 mL, while Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p. included 504 g.cow-1d-1. Chung et al. (2007)Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426. evaluated lower amounts, by supplying 250 g.cow-1d-1. Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. introduced 100 and 300 g.cow-1d-1, and Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. worked with 150 and 300 g.cow-1d-1.

Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. used glycerol levels between 5 and 15 % of DM. Carvalho et al. (2011)Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. included it at 11.50 and 10.80 % for prepartum and postpartum, respectively. Similar levels, 0 to 12 %, were used by Mach et al. (2009)Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. in the diet. However, other studies surpassed them. D'Aurea et al. (2017)D'Aurea, A.P., Ezequiel, J.M.B., D'Aurea, E.M.O., Santos, V.C., Fávaro, V.R., Homem Júnior, A.C., Almeida, M.T.C. & Perez, H.L. 2017. Glicerina bruta associada à ureia na terminação de bovinos: consumo, desempenho e características da carne. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 69(1): 165-172, ISSN: 1678-4162. https://doi.org/10.1590/1678-4162-8895. applied up to 20 % in combination with urea to evaluate some rumen parameters and the performance of the microbial mass.

Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. added up to 24 % in diets for dairy breed steers and cows. Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. included up to 30 % in the feeding of confined Nelore bulls.

According to Ortega-Cerrilla et al. (2018)Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272. , the results obtained with the use of glycerol depend on base diet quality, purity degree and inclusion level. Precisely, the latter is one of the main questions generated by the use of said product. Generally, it is used in quantities close to 10 %. According to Donkin (2008)Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032., glycerol should be used at least 10 % of DM in diets for dairy cows. Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. stated that they were successful in using diets for dairy cows, whose glycerol content was between 5 and 15 % of the total DM. However, the use of 15 % glycerol in dairy cows in mid-lactation may be accompanied by a temporary decrease in food intake (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201.).

Effect of glycerol on diet digestibility

 

Studies of Schröder and Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. demonstrated that the effect of glycerol on diet digestibility is determined by the amount of starch contained in it. Generally, when high starch diets are used, cell wall digestibility is reduced.

Other studies report that there was no modification in fiber digestibility (Hess et al. 2008Hess, B.W., Lake, S.L. & Gunter, S.A. 2008. Using glycerin as a supplement for forage-fed ruminants. In: Symposium Ruminant Nutrition Glycerin as Feed for Ruminants (19th). Available at: http://www.adsa.asas.org/meetings/2008/abstracts/0392.pdf [Consulted: January 10, 2022].) with the use of glycerol. Wang et al. (2009a)Wang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. managed to increase the digestibility of organic matter and crude protein with the increase in glycerol supplementation up to an average level of 200 g.animal-1d-1, but with the increase of glycerol levels, digestibility decreased slightly. In studies conducted by Van-Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. also demonstrated an increase in the digestibility of crude protein with a reduction in the digestibility of neutral detergent fiber, as a result of a decrease in the digestibility of hemicellulose, when using 30 % of glycerol in the diet. Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. reduced diet digestibility by using 6 % of glycerol.

Effect of glycerol on live weight and body condition

 

Several authors found no differences in live weight and body condition (Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581., Moriel et al. 2011Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. and Shin et al. 2012Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. ). However, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. observed a positive effect of glycerol on body condition at the end of the evaluation period. Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. reported its effect on live weight gain, as do Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. by providing 10 and 15 % of glycerol in the diet. Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. , Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. , Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. and Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. did not modify weight gain with the use of glycerol.

Effect of glycerol on meat quality

 

In the studies carried out by Lammer et al. (2015), carcass quality was not affected when using glycerol in pigs. However, the level of monounsaturated fatty acids in adipose tissue increased by increasing the content of this product in the diet.

There were no major changes when including glycerol in cattle. Elam et al. (2008)Elam, N.A., Eng, K.S., Bechtel, B., Harris, J.M. & Crocker, R. 2008. Glycerol from biodiesel production: considerations for feedlot diets. Proceedings of the Southwest Nutrition Conference. 21 February 2008. Tempe, AZ, USA. 2-6 p. verified that the addition of up to 15 % in crossbred heifers does not affect intramuscular fat deposition and meat yield. The area of Longissimus dorsi (LD) muscle and its fat content were not modified in the studies carried out by Mach et al. (2009)Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. , who used 12.1 %. Similarly, Prado et al. (2015)Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661. reported no damage on the area and composition of the LD, the same with the thickness of the back fat and some indicators of meat quality (marbling, texture and color).

Nevertheless, Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. increased fat levels in carcass and Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. favored the marbling of meat with the use of glycerol.

Effect of glycerol on milk production

 

According to Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p., the effects of glycerol on milk production are observed when levels higher than 6 % are used. This may explain why this indicator is not modified in the studies carried out by Chung et al. (2007)Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426. and Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. . However, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. increased milk production with small doses of glycerol, which could be related to the increase of DM intake, although Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. increased dry matter intake, without modifying milk production.

Milk production was also increased in experiments carried out by Khalid and Al-Anbari (2024)Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966 and Correa and Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.. Meanwhile, Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201., Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. and Carvalho et al. (2011)Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. did not report modifications.

Bonis et al. (2022)Bonis, R., Sotolongo, J.A., Galindo, J., García López, R. & Ortiz, A. 2022. Utilización del glicerol como aditivo en la dieta de vacas lecheras Siboney. VII Congreso Internacional de Producción Animal. AGROPAT 2022. obtained an increment in milk production of 155.91 % in multiparous Siboney cows from Cuba, which were grazing pitilla grass (Sporobolus indicus (L.) R. Br) when they used glycerol, obtained from the Jatropha curcas biodiesel manufacturing process.

Effect of glycerol on milk composition

 

Milk components are generally not affected by the use of glycerol (Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. and Kupczyński et al. 2020Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379. ). However, there may be some modifications in fat and protein. Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. obtained increases in protein with the increase of glycerol in the diet, while Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. recorded a decrease.

Another indicator that can vary is fat content. Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. confirmed the higher values of fat quantity and concentration, when using 5 % of glycerol. The same occurred in the studies carried out by Correa and Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.. However, the incorporation of glycerol in the diet reduced the proportion of fat in milk, as reported by Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. . In studies by Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201., a decrease in urea content was recorded.

Main limitations of the use of glycerol

 

The main limitation of glycerol derived from biodiesel industry is its methanol content. Other impurities, such as soaps, sodium and diethylene glycol, can also have a negative influence. Methanol and diethylene glycol are potent tissue toxicants. However, a dairy cow of 600 kg live weight is capable of consuming 7.44 mg of methanol, that is, 1.24 % for each kg of live weight and converting it into H2O and CO2. This is because, under normal conditions, methanogenic bacteria in the rumen transform it into methane (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). The toxic and limiting effect of methanol intake is more frequently verified in monogastric or pre-ruminant animals (calves).

There are limits for the proportion of methanol in glycerol, which will be used in animal feed. Studies carried out by the US Food and Drug Administration (FDA - USA) indicate that methanol levels greater than 150 p.p.m. can be considered unsuitable for animal feeding. Higher levels have been established in Germany, where a maximum limit of 5,000 p.p.m was defined (Sellers 2008Sellers, R.S. 2008. Glycerin as a feed ingredient, official definition(s) and approvals. Journal of Dairy Science, 91(1): 392, ISSN: 1525-3198. https://doi.org/10.2903/j.efsa.2022.7353. ).

Methanol is metabolized in the liver, transforms into formaldehyde, formic acid and finally CO2 and water. The metabolism of formic acid is slow, so it accumulates in the body and produces metabolic acidosis (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). The effects related to methanol poisoning manifest themselves with damage to the optic nerve, neurological and renal disturbances, as well as degeneration of liver fat.

According to Soares et al. (2012)Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil., heavy metals and sodium level could also limit its use in the diet. Excess sodium reduces intake and animal yield. In addition, the incidence and severity of udder edema increases, mainly in prepartum heifers.

To avoid the harmful effects of impurities, some authors recommend purification of the product. However, this process has a high cost (Chol et al. 2018Chol, Ch.G., Dhabhai, R., Dalai, A. & Reaney, K.M. 2018. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Processing Technology, 178: 78-87, ISSN: 0378-3820. https://doi.org/10.1016/j.fuproc.2018.05.023), so it is necessary to assess whether it is profitable and to what extent it is more feasible to purify. Evaluations of this glycerin, tested by Schröder and Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. and Thompson and He (2006)Thompson, J.C. & He, B.B. 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2): 261–265, ISSN: 1943-7838. https://doi.org/10.13031/2013.20272. indicated contents in the order of 63 to 76 % of glycerol in crude glycerin of low purification. The glycerol content increases to 85 % in medium purifications, with a significant reduction in the methanol content, which ends up being less than 0.50 % and can reach 99 % of glycerol, when the purification process continues (Schröder and Südekum 1999Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022].).

General considerations

 

Currently, biofuel production companies are the main source of glycerol. Its low cost, high palatability, gluconeogenic effect and energy content are some of the properties that support its use as animal feed. Several researches demonstrate promising results with the use of this by-product as an alternative energy source for feeding ruminants.

The inclusion of glycerol in ruminant diet could improve the value of meat and milk fat by increasing the anti-cancer, anti-diabetogenic and anti-dipogenic properties due to the presence of conjugated linoleic acid. These reasons place it as a product with functional characteristics. The development of future research that demonstrates this will allow the diversification of its use and commercialization.

References

 

Abdul Raman, A.A., Tan, H.W. & Buthiyappan, A. 2019. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Frontiers in Chemistry, 7: 774, ISSN: 2296-2646. https://doi.org/10.3389/fchem.2019.00774.

Arias-Islas, E., Morales-Barrera, J., Prado-Rebolledo, O., & García-Casillas, A. 2020. Metabolism in ruminants and its association with blood biochemical analytes. Abanico Veterinario, 10(1), ISSN: 2007-428X.

Badia-Fabregat, M., Rago, L., Baeza, J.A. & Guisasola, A. 2019. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. International Journal of Hydrogen Energy, 44: 17204–17213, ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2019.03.193.

Bansod, Y., Crabbe, B., Forster, L., Ghasemzadeh, K. & D'Agostino, C. 2024. Evaluating the environmental impact of crude glycerol purification derived from biodiesel production: A comparative life cycle assessment study. Journal of Cleaner Production, 437: 140485, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2023.140485

Benoit, M. & Mottet, A. 2023. Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agricultural Systems, 205: 103585, ISSN: 0308-521X. https://doi.org/10.1016/j.agsy.2022.103585

Bergner, H., Kijora, Claudia., Ceresnakova, Zusana. & Szakacs, J. 1995. In vitro investigation on the glycerol transformation Rumen Microbes. Archiv für Tierernaehrung, 48(3): 245-256, ISSN: 1477-2817. https://doi.org/10.1080/17450399509381845.

Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this.

Bonis, R., Sotolongo, J.A., Galindo, J., García López, R. & Ortiz, A. 2022. Utilización del glicerol como aditivo en la dieta de vacas lecheras Siboney. VII Congreso Internacional de Producción Animal. AGROPAT 2022.

Cabrera-Cruz, M.A. 2019. Metabolismo del glicerol en rumiantes. AgroProductividad, 12(4): 81-85, ISSN: 2594-0252. https://doi.org/10.32854/agrop.v0i0.306.

Cal-Pereyra, L., González-Montaña, J.R., Benech, A., Acosta-Dibarrat, J., Martín, M.J., Perini, S., Abreu, M.C., Da Silva, S. & Rodríguez, P. 2015. Evaluation of three therapeutic alternatives for the early treatment of ovine pregnancy toxaemia. Irish Veterinary Journal, 68: 25, ISSN: 2046-0481. https://doi.org/10.1186/s13620-015-0053-2.

Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.

Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.

Celente, G.S., Medianeira Rizzetti, T., Sui, Y., Schneider, R.C.S. 2022. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass and Bioenergy, 167: 106647. https://doi.org/10.1016/j.biombioe.2022.106647.

Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.

Chol, Ch.G., Dhabhai, R., Dalai, A. & Reaney, K.M. 2018. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Processing Technology, 178: 78-87, ISSN: 0378-3820. https://doi.org/10.1016/j.fuproc.2018.05.023

Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426.

Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.

Dahmer, P.L., Harrison, O.L., & Jones, C.K. 2022. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Translational Animal Science, 6(4): txac145, ISSN: 2573-2102. https://doi.org/10.1093/tas/txac145.

D'Aurea, A.P., Ezequiel, J.M.B., D'Aurea, E.M.O., Santos, V.C., Fávaro, V.R., Homem Júnior, A.C., Almeida, M.T.C. & Perez, H.L. 2017. Glicerina bruta associada à ureia na terminação de bovinos: consumo, desempenho e características da carne. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 69(1): 165-172, ISSN: 1678-4162. https://doi.org/10.1590/1678-4162-8895.

De Souza, A., Ribeiro, J., Lopes, M., Moletta, J.L., Los, S. & Breno, V. 2014. Glycerol inclusion levels in corn and sunflower silages. Ciência e Agrotecnologia, 38(5): 497-505, ISSN: 1981-1829. https://doi.org/10.1590/S1413-70542014000500009.

Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032.

Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201.

Elam, N.A., Eng, K.S., Bechtel, B., Harris, J.M. & Crocker, R. 2008. Glycerol from biodiesel production: considerations for feedlot diets. Proceedings of the Southwest Nutrition Conference. 21 February 2008. Tempe, AZ, USA. 2-6 p.

Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002.

Hejna, A., Kosmela, P., Formela, K., Piszczyk, Ł. & Haponiuk, J.T. 2016. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66: 449–475, ISSN: 2377-8342. http://dx.doi.org/10.1016/j.rser.2016.08.020.

Hess, B.W., Lake, S.L. & Gunter, S.A. 2008. Using glycerin as a supplement for forage-fed ruminants. In: Symposium Ruminant Nutrition Glycerin as Feed for Ruminants (19th). Available at: http://www.adsa.asas.org/meetings/2008/abstracts/0392.pdf [Consulted: January 10, 2022].

Huerta-Jiménez, M., Ortega-Cerrilla, M.E., Herrera-Haro, J.G., Kawas-Garza, J.R., Díaz-Cruz, A., Nava, C., Hernández-Sánchez, D., Ortega-Jiménez, E. & Alarcón-Rojo, A.D. 2018. Relationship between glycerol administration to livestock 24 h before sacrifice and indicators of physiological and oxidative stress. Journal of Animal Behavior and Biometeorology, 6: 116-123, ISSN: 2318-1265. https://doi.org/10.31893/2318-1265jabb.v6n4p116-123

Iriñiz, J., Elias, A., Michelena, J.B., Galindo, J. & Chilibroste, P. 2011. Uso de activadores ruminales con glicerol en el comportamiento productivo de novillos Hereford alimentados con paja de arroz. Alpa. Montevideo, Uruguay.

Jeon, Y.G., Kim, Y.Y., Lee, G., & Kim, J.B. 2023. Physiological and pathological roles of lipogenesis. Nature Metabolism, 5(5): 735-759, ISSN: 2522-5812. https://doi.org/10.1038/s42255-023-00786-y.

Johnson, R.B. 1957. The effect of glycerol on carbohydrate metabolism: The rate of absorption and conversion to glucose and glycogen. Journal of Biological Chemistry, 200(1): 1-8. https://doi.org/10.1016/S0021-9258(18)64723-4.

Kowalska-Kuś, J., Held, A. & Nowińska, K. 2020. A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journal, 401: 126143, ISSN: 1873-3212. https://doi.org/10.1016/j.cej.2020.126143.

Krehbiel, C.R. 2008. Ruminal and physiological metabolism of glycerin. Journal of Animal Science, 86(E-suppl. 2): 392, ISSN: 1525-3163. https://www.adsa.org/Portals/0/SiteContent/Docs/Meetings/PastMeetings/Annual/2008/0392.PDF.

Kumar Singh, Sh., Chauhan, A. & Sarkar, B. 2024. Resilience of sustainability for a smart production system to produce biodiesel from waste animal fat. Journal of Cleaner Production, 452: 142047, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2024.142047.

Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966

Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379.

Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010.

Lei, M.A.C., & Simões, J. 2021. Invited review: ketosis diagnosis and monitoring in high-producing dairy cows. Dairy, 2(2): 303-325, ISSN: 2624-862X. https://doi.org/10.3390/dairy2020025.

Li, L., Wang, H., Zhang, N., Zhang, T., & Ma, Y. 2022. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. Journal of Animal Science, 100(3): skac046. https://doi.org/10.1093/jas/skac046.

Liu, T., Tang, J., & Feng, F. 2020. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Applied Microbiology and Biotechnology, 104(23): 1-13, ISSN: 1432-0614. https://doi.org/10.1007/s00253-020-10919-y.

Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000.

Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987.

Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.

Mammi, L.M.E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. 2021. The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7): 1988, ISSN: 2076-2615. https://doi.org/10.3390/ani11071988

Martínez-Miró, S., Madrid, J., López, M.J., Orengo, J., Sánchez, C.J. & Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181, ISSN: 2076-2615. https://doi.org/10.3390/ani11082181.

McWilliams, C. 2023. Effect of glycerol supplementation in early lactation on metabolic health, milking activity, and production of dairy cows housed in automated milking system herds (Doctoral dissertation, University of Guelph).

Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630.

Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629.

Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p.

Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272.

Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661.

Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4.

Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022].

Sellers, R.S. 2008. Glycerin as a feed ingredient, official definition(s) and approvals. Journal of Dairy Science, 91(1): 392, ISSN: 1525-3198. https://doi.org/10.2903/j.efsa.2022.7353.

Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121.

Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.

Sotgiu, F.D., Porcu, C., Pasciu, V., Dattena, M. & Gallus, M. 2021. Towards a sustainable reproduction management of dairy sheep: glycerol-based formulations as alternative to eCG in milked ewes mated at the end of anoestrus period. Animals, 11(4): 922, ISSN: 2076-2615. https://doi.org/10.3390/ani11040922.

Tang, H., Luo, C., Lu, H., Wu, K., Liu, Y., Zhu, Y., Wang, B. & Liang, B. 2024. Readily available, biocompatible sodium citrate catalyst for efficient glycerol carbonate production through transesterification of glycerol and ethylene carbonate. Chemical Engineering Journal, 481: 148552, ISSN: 1385-8947. https://doi.org/10.1016/j.cej.2024.148552

Tavernari, F.C., Vieira de Souza, A.R.S., Feddern, V., dos Santos Lopes, L., de Sousa Teixeira, C.J., Muller, J.A., Surek, D., Paiano, D., Goulart Petrolli, T. & Manente Boiago, M. 2022. Metabolizable energy value of crude glycerin and effects on broiler performance and carcass yield. Livestock Science, 263: 105017, ISSN: 1878-0490. https://doi.org/10.1016/j.livsci.2022.105017.

Thompson, J.C. & He, B.B. 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2): 261–265, ISSN: 1943-7838. https://doi.org/10.13031/2013.20272.

Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i.

Trentini Volpato, C.P., Heck, M.C., Gigliolli, A.A.S., Yoshioto-Higaki, M., Godoy, M.A.F. de, Magnoni, D.M. Vicentini, V.E.P. 2022. Utilization of glycerol as substrate in the production of biosurfactant. Research, Society and Development, 11(6): e474111638391, ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i16.38391.

Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006.

Van Cleef, E.H.C.B., Sancanari, J.B.D., Silva, Z.F., D’Aurea, A.P., Favaro, V.R., van Cleef, F.O.S., Homem Júnior, A.C. &. Ezequiel. J.M.B. 2016. High concentrations of crude glycerin on ruminal parameters, microbial yield, and in vitro greenhouse gases production in dairy cows. Canadian Journal of Animal Science, 96(4): 461-465, ISSN: 1918-1825. https://doi.org/10.1139/cjas-2015-0170.

Wan Azelee, N.I., Mazila Ramli, A.N., Manas, N.H.A., Salamun, N., Man, R.Ch. & El Enshasy, H. 2019. Glycerol In Food, Cosmetics And Pharmaceutical Industries: Basics And New Applications. International Journal of Scientific & Technology Research, 8(12): 553-558, ISSN: 2277-8616.

Wang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010.

Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009.

Wang, K., Nan, X.M., Zhao, Y.G., Tong, J.J., Jiang, L.S., & Xiong, B.H. 2021. Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure. Journal of Dairy Science, 104(3): 2924-2934, ISSN: 1525-3198. https://doi.org/10.3168/jds.2020-18974.

Wu, S., Li, X., Geand, Zh. & Luo, Y. 2023. Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application. Polymers, 15(6): 1538, ISSN: 2073-4360. https://doi.org/10.3390/polym15061538.

Zhang, C., Shao, Q., Liu, M., Wang, X., Loor, J.J., Jiang, Q., Cuan, Sh., Li, X., Wang, J., Li, Y., He, L., Huang, Y., Liu, G. & Lei, L. 2023. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver disease. Journal of Dairy Science, 106(5): 2878-2891, ISSN: 1525-3198. https://doi.org/10.3168/jds.2022-22636.


 
Ciencia Animal
Artículo de Revisión

El glicerol en la alimentación de animales rumiantes: ventajas de su utilización

 

iDA. Delgado*✉:alvaro85.del@gmail.com

iDJuana L. Galindo


Instituto de Ciencia Animal, C. Central, km 47 ½, San José de las Lajas, Mayabeque, Cuba

 

*Email:alvaro85.del@gmail.com

Resumen

Se profundiza en algunos temas relacionados con el uso de glicerol en la alimentación de rumiantes. Se tratan las vías principales para la obtención del glicerol y se caracterizan sus propiedades. Se resalta su valor energético por la importancia que tiene su inclusión en las dietas destinadas a animales. Se refieren algunos trabajos en los que se evaluó la utilización del glicerol en bovinos de leche y de carne, así como su efecto en el consumo y los indicadores productivos. Además, se enfatiza en aspectos generales vinculados al metabolismo y se exponen las limitaciones relacionadas con su uso. Se concluye que el glicerol, que se obtiene como subproducto en la fabricación de biocombustibles, se puede incluir como concentrado energético en las dietas destinadas a rumiantes, siempre que se considere su nivel de metanol. Se recomienda el desarrollo de investigaciones futuras para demostrar sus características funcionales que permitirá la diversificación de su utilización y comercialización.

Palabras clave: 
glicerol, metanol, rumiantes, valor energético

Introducción

 

El encarecimiento de los combustibles fósiles (Benoit and Mottet 2023Benoit, M. & Mottet, A. 2023. Energy scarcity and rising cost: Towards a paradigm shift for livestock. Agricultural Systems, 205: 103585, ISSN: 0308-521X. https://doi.org/10.1016/j.agsy.2022.103585) y la capacidad de estos para generar gases contaminantes han motivado el interés para la búsqueda de fuentes de energía alternativa, sobre todo renovable. Al respecto, el biodiesel desempeña una función importante como un biocombustible producido a partir de aceites vegetales o grasas animales (Kumar Singh et al. 2024Kumar Singh, Sh., Chauhan, A. & Sarkar, B. 2024. Resilience of sustainability for a smart production system to produce biodiesel from waste animal fat. Journal of Cleaner Production, 452: 142047, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2024.142047. ) mediante la transesterificación (Tang et al. 2024Tang, H., Luo, C., Lu, H., Wu, K., Liu, Y., Zhu, Y., Wang, B. & Liang, B. 2024. Readily available, biocompatible sodium citrate catalyst for efficient glycerol carbonate production through transesterification of glycerol and ethylene carbonate. Chemical Engineering Journal, 481: 148552, ISSN: 1385-8947. https://doi.org/10.1016/j.cej.2024.148552 ). La glicerina es el subproducto principal resultante de la producción de biodiesel (Bansod et al. 2024Bansod, Y., Crabbe, B., Forster, L., Ghasemzadeh, K. & D'Agostino, C. 2024. Evaluating the environmental impact of crude glycerol purification derived from biodiesel production: A comparative life cycle assessment study. Journal of Cleaner Production, 437: 140485, ISSN: 1879-1786. https://doi.org/10.1016/j.jclepro.2023.140485), por lo que el desarrollo de las industrias productoras de biocombustibles ha generado volúmenes considerables de glicerol, que se puede utilizar como ingrediente en las dietas destinadas a rumiantes (Madrid et al. 2019Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.) y no rumiantes, entre los que se encuentran cerdos, gallinas ponedoras y pollos de engorde (Tavernari et al. 2022Tavernari, F.C., Vieira de Souza, A.R.S., Feddern, V., dos Santos Lopes, L., de Sousa Teixeira, C.J., Muller, J.A., Surek, D., Paiano, D., Goulart Petrolli, T. & Manente Boiago, M. 2022. Metabolizable energy value of crude glycerin and effects on broiler performance and carcass yield. Livestock Science, 263: 105017, ISSN: 1878-0490. https://doi.org/10.1016/j.livsci.2022.105017. ). Esto contribuye a mejorar la sostenibilidad económica de la industria del biodiesel y a reducir el impacto ambiental que causan los residuos generados (Garlapati et al. 2016Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002. and Abdul et al. 2019Abdul Raman, A.A., Tan, H.W. & Buthiyappan, A. 2019. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Frontiers in Chemistry, 7: 774, ISSN: 2296-2646. https://doi.org/10.3389/fchem.2019.00774.).

En un inicio, el glicerol se utilizó en el tratamiento de la cetosis bovina o de la toxemia de la preñez en ovejas. Sin embargo, su disponibilidad y el alto precio de los cereales condujeron a realizar estudios en los que se evaluó su efecto como componente energético de la dieta. Generalmente, el glicerol se utiliza en sustitución del grano de maíz, ya que ambos aportan cantidades similares de energía, por lo que puede ser una alternativa económicamente viable en la formulación de raciones para los rumiantes, especialmente cuando el precio del maíz se incrementa.

El glicerol se puede usar puro o con nivel medio de pureza. Con este último se logran resultados más discretos, pero sin incurrir en el gasto que conlleva el proceso de refinado. Sin embargo, cuando se utiliza el glicerol crudo hay que tomar en cuenta la existencia de algunas impurezas que pueden reducir los efectos beneficiosos del producto e, incluso, comprometer la salud de los animales. El objetivo de esta reseña es profundizar en algunos temas relacionados con el uso del glicerol en la alimentación de rumiantes.

Obtención, propiedades y usos del glicerol

 

El glicerol se puede obtener de los lípidos complejos, por síntesis orgánica, mediante la fermentación de los carbohidratos o a partir de derivados sintéticos, resultantes de la refinación del petróleo. En un inicio, la vía principal de obtención de glicerol fue la saponificación de las grasas en el proceso de fabricación de jabones, hasta que comenzó el desarrollo de las empresas productoras de biocombustibles. Según Badia-Fabregat et al. (2019)Badia-Fabregat, M., Rago, L., Baeza, J.A. & Guisasola, A. 2019. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. International Journal of Hydrogen Energy, 44: 17204–17213, ISSN: 0360-3199. https://doi.org/10.1016/j.ijhydene.2019.03.193., por cada 10 kg de biodiesel se produce aproximadamente 1 kg de glicerol crudo, por medio de la esterificación de las grasas de origen vegetal o animal con el metanol.

También se pueden obtener pequeñas cantidades de glicerol a partir de las microalgas marinas, como la Dunaliella salina (Celente et al. 2022Celente, G.S., Medianeira Rizzetti, T., Sui, Y., Schneider, R.C.S. 2022. Potential use of microalga Dunaliella salina for bioproducts with industrial relevance. Biomass and Bioenergy, 167: 106647. https://doi.org/10.1016/j.biombioe.2022.106647.). Los animales tienen una fuente endógena a partir de la lipólisis del tejido adiposo o la hidrólisis de los triglicéridos de las lipoproteínas de la sangre. El glicerol resultante de la lipólisis sigue la vía de gluconeogénesis hepática y puede aportar hasta 15-20 % de las demandas totales de glucosa (Jeon et al. 2023Jeon, Y.G., Kim, Y.Y., Lee, G., & Kim, J.B. 2023. Physiological and pathological roles of lipogenesis. Nature Metabolism, 5(5): 735-759, ISSN: 2522-5812. https://doi.org/10.1038/s42255-023-00786-y.).

El glicerol es un líquido incoloro, viscoso y casi inodoro. Es soluble en agua y alcohol e insoluble en éter y cloroformo. Actualmente, se utiliza en la industria química para la síntesis de resinas y ésteres (18 %), la industria farmacéutica (7 %), la elaboración de cosméticos (40 %), como humectante y conservante de alimentos, en la preparación de aderezos para ensaladas, coberturas de dulces y postres helados (24 %) y otros (11 %) (Cardoso et al. 2015Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.). También se ha utilizado en la fabricacion de explosivos (dinamita y nitroglicerina) (Wu et al. 2023Wu, S., Li, X., Geand, Zh. & Luo, Y. 2023. Study on GAP Adhesive-Based Polymer Films, Energetic Polymer Composites and Application. Polymers, 15(6): 1538, ISSN: 2073-4360. https://doi.org/10.3390/polym15061538. ). La contribución a la industria farmacéutica se corresponde con su empleo como componente de cápsulas, anestésicos, jarabes y antisépticos (Wan Azelee et al. 2019Wan Azelee, N.I., Mazila Ramli, A.N., Manas, N.H.A., Salamun, N., Man, R.Ch. & El Enshasy, H. 2019. Glycerol In Food, Cosmetics And Pharmaceutical Industries: Basics And New Applications. International Journal of Scientific & Technology Research, 8(12): 553-558, ISSN: 2277-8616.), mientras que en la elaboración de cosmeticos mejora la suavidad, proporciona lubricación y tiene propiedad humectante.

Su efecto gluconeogénico y anticetósico explica su uso en el tratamiento de cetosis bovina (Mammi et al. 2021Mammi, L.M.E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. 2021. The use of monensin for ketosis prevention in dairy cows during the transition period: a systematic review. Animals, 11(7): 1988, ISSN: 2076-2615. https://doi.org/10.3390/ani11071988 ) y para prevenir el síndrome de hígado graso (Zhang et al. 2023Zhang, C., Shao, Q., Liu, M., Wang, X., Loor, J.J., Jiang, Q., Cuan, Sh., Li, X., Wang, J., Li, Y., He, L., Huang, Y., Liu, G. & Lei, L. 2023. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver disease. Journal of Dairy Science, 106(5): 2878-2891, ISSN: 1525-3198. https://doi.org/10.3168/jds.2022-22636. ). Se puede utilizar en el tratamiento de la toxemia de gestación en ovinos (Cal-Pereyra et al. 2015Cal-Pereyra, L., González-Montaña, J.R., Benech, A., Acosta-Dibarrat, J., Martín, M.J., Perini, S., Abreu, M.C., Da Silva, S. & Rodríguez, P. 2015. Evaluation of three therapeutic alternatives for the early treatment of ovine pregnancy toxaemia. Irish Veterinary Journal, 68: 25, ISSN: 2046-0481. https://doi.org/10.1186/s13620-015-0053-2.). Puede servir como materia prima para biopolímeros, ácidos grasos poliinsaturados, producción de etanol, hidrógeno y n-butanol (Garlapati et al. 2016Garlapati, V.K., Shankar, U. & Budhiraja, A. 2016. Bioconversion technologies of crude glycerol to value added industrial products. Biotechnology Reports, 9: 9–14, ISSN: 2215-017X. http://dx.doi.org/10.1016/j.btre.2015.11.002.), así como en la elaboración de biosurfactantes (Trentini Volpato et al. 2022Trentini Volpato, C.P., Heck, M.C., Gigliolli, A.A.S., Yoshioto-Higaki, M., Godoy, M.A.F. de, Magnoni, D.M. Vicentini, V.E.P. 2022. Utilization of glycerol as substrate in the production of biosurfactant. Research, Society and Development, 11(6): e474111638391, ISSN: 2525-3409. https://doi.org/10.33448/rsd-v11i16.38391. ) y solcetal (Kowalska-Kuś et al. 2020Kowalska-Kuś, J., Held, A. & Nowińska, K. 2020. A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journal, 401: 126143, ISSN: 1873-3212. https://doi.org/10.1016/j.cej.2020.126143. ).

La mayoría de los estudios con glicerol se basan en pequeñas proporciones añadidas a la dieta, debido a sus características gluconeogénicas (Neiva et al. 2012Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. y Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). Sin embargo, en los últimos años se han empleado cantidades superiores como un componente más de la dieta, debido a que los volúmenes de producción han excedido la capacidad de utilización (Donkin 2008Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032.). Esto puede constituir una vía de aumentar la eficacia biológica y financiera de la producción de biodiesel y, a la vez, se evita que pueda ser vertido al medio, convirtiéndose en otro contaminante.

El incremento en los volúmenes de producción sugiere la disminución de su precio, lo que fortalece la idea de emplearlo como sustituto de concentrados energéticos en la dieta de rumiantes (Khalid and Al-Anbari 2024Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966). A esto se le suman otras propiedades descritas por Schröder y Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]., quienes se refieren a su fácil absorción en las mucosas ruminal e intestinal; además de su poder antiséptico, capaz de higienizar la ración, y su alta palatabilidad, que responde a su sabor dulce y su efecto aglomerante por ser higroscópico. Se trata de un compuesto normal del metabolismo de los rumiantes, que se encuentra en la sangre como en las células.

Metabolismo del glicerol

 

El glicerol que llega al rumen puede seguir tres destinos. Se estima que 44 % de glicerol que llega al órgano se fermenta, 43 % se absorbe a través de la pared ruminal y 13 % pasa a los compartimentos digestivos posteriores al rumen, aunque estas proporciones pueden variar (Krehbiel 2008Krehbiel, C.R. 2008. Ruminal and physiological metabolism of glycerin. Journal of Animal Science, 86(E-suppl. 2): 392, ISSN: 1525-3163. https://www.adsa.org/Portals/0/SiteContent/Docs/Meetings/PastMeetings/Annual/2008/0392.PDF. ). El exceso de glicerol se puede absorber por las mucosas ruminal e intestinal, lo que constituye una fuente gluconeogénica directa para el rumiante (Ortega-Cerrilla et al. 2018Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272. ). Según Hejna et al. (2016)Hejna, A., Kosmela, P., Formela, K., Piszczyk, Ł. & Haponiuk, J.T. 2016. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 66: 449–475, ISSN: 2377-8342. http://dx.doi.org/10.1016/j.rser.2016.08.020., como resultado de la fermentación microbiana de glicerol, se podrían obtener varios compuestos químicos, como ácido propiónico, ácido succínico, butanol, propanodiol, dihidroxiacetona, entre muchos otros.

Según Cabrera-Cruz (2019)Cabrera-Cruz, M.A. 2019. Metabolismo del glicerol en rumiantes. AgroProductividad, 12(4): 81-85, ISSN: 2594-0252. https://doi.org/10.32854/agrop.v0i0.306., la sustitución del glicerol por maíz en la dieta no genera efecto negativo en la ecología del rumen, aun cuando existe una modificación en la síntesis de ácidos grasos volátiles. El glicerol es capaz de aumentar la producción total de los ácidos grasos volátiles, in vivo (Rémond et al. 1993Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4. y Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. ) y también in vitro (Trabue et al. 2007Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i. ). Además de que aumenta, fundamentalmente, la producción de ácido propiónico (Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. y Chanjula et al. 2016Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.). Puede entrar en la vía glucolítica y se convierte en piruvato, que genera propionato por dos rutas diferentes: el succinato o el acrilato. Esto justifica el aumento de propionato, al añadir glicerol a la dieta de rumiantes (Cardoso et al. 2015Cardoso, Elizângela O., de Santana, H.A., Fernandes, Zeliana., Carvalho, A.H., dos Santos, Marilene., Lucas, M.E., Borges, C. & Souza, M. 2015. Utilização da glicerina na dieta de vacas lactantes em pastagens. Revista Eletrônica Ntritime, 12(1): 3857-3878, ISSN: 1983-9006.).

La incorporación de glicerol a la dieta también puede aumentar la producción de ácido butírico (Kupczyński et al. 2020Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379. ), y de propiónico y butírico (Van Cleef et al. 2016Van Cleef, E.H.C.B., Sancanari, J.B.D., Silva, Z.F., D’Aurea, A.P., Favaro, V.R., van Cleef, F.O.S., Homem Júnior, A.C. &. Ezequiel. J.M.B. 2016. High concentrations of crude glycerin on ruminal parameters, microbial yield, and in vitro greenhouse gases production in dairy cows. Canadian Journal of Animal Science, 96(4): 461-465, ISSN: 1918-1825. https://doi.org/10.1139/cjas-2015-0170. and Madrid et al. 2019Madrid, J., Martínez, S., Villodre, C., López, M.J., Alcázar, J., Orengo, J., Ramis, G. & Hernández, F. 2019. Effect of Feeding Glycerin on Ruminal Environment and In situ Degradability of Feedstuffs in Young Bulls. Animals, 9(6): 359, ISSN: 2076-2615. https://doi.org/10.3390/ani9060359.) con disminución en el acético (Chanjula et al. 2016Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0.), lo que contribuye a la disminución en la relación acético: propiónico (Wang et al. 2009aWang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. ). La mayoría del glicerol se fermenta a ácidos grasos volátiles a través de la vía glucolítica, con una pequeña producción de ácido láctico (Trabue et al. 2007Trabue, S., Scoggin, K., Tjandrakusuma, S., Rasmussen, M.A. & Reilly, P.J. 2007. Ruminal Fermentation of Propylene Glycol and Glycerol. Journal of Agricultural and Food Chemistry, 55(17): 7043−7051, ISSN: 1520-5118. https://doi.org/10.1021/jf071076i. ).

Si se tiene en cuenta que el propiónico como el propio glicerol son potentes agentes neoglucogénicos (McWilliams 2023McWilliams, C. 2023. Effect of glycerol supplementation in early lactation on metabolic health, milking activity, and production of dairy cows housed in automated milking system herds (Doctoral dissertation, University of Guelph).), es razonable emplear el glicerol como suplemento energético para la producción de leche en el período de transición. Incluso, podría ser hasta más recomendable que otras fuentes energéticas porque está en ventaja metabólica con respecto a sus contrapartes tradicionales, sobre todo propionato y propilenglicol, debido a que entra en la gluconeogénesis a nivel de la fosfato-isomerasa, metabólicamente más cerca de la glucosa (Wang et al. 2021Wang, K., Nan, X.M., Zhao, Y.G., Tong, J.J., Jiang, L.S., & Xiong, B.H. 2021. Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure. Journal of Dairy Science, 104(3): 2924-2934, ISSN: 1525-3198. https://doi.org/10.3168/jds.2020-18974. ).

El propiónico y el glicerol se absorben y llegan al hígado por la vena porta para su posterior conversión a glucosa (Arias-Islas et al. 2020Arias-Islas, E., Morales-Barrera, J., Prado-Rebolledo, O., & García-Casillas, A. 2020. Metabolism in ruminants and its association with blood biochemical analytes. Abanico Veterinario, 10(1), ISSN: 2007-428X.). Según Lei and Simões (2021)Lei, M.A.C., & Simões, J. 2021. Invited review: ketosis diagnosis and monitoring in high-producing dairy cows. Dairy, 2(2): 303-325, ISSN: 2624-862X. https://doi.org/10.3390/dairy2020025. , el propiónico que se produce por la fermentación ruminal, es el principal sustrato para la gluconeogénesis, en vacas lecheras de alta producción. Por esta vía se llega a obtener entre el 50 y 60 % del total de glucosa que se requiere. La producción de propiónico en el rumen es mayor en los animales que consumen concentrado, que en los que consumen forraje. Por lo que, en animales en pastoreo la suplementación con glicerol podría aumentar la eficiencia energética (Huerta-Jiménez et al. 2018Huerta-Jiménez, M., Ortega-Cerrilla, M.E., Herrera-Haro, J.G., Kawas-Garza, J.R., Díaz-Cruz, A., Nava, C., Hernández-Sánchez, D., Ortega-Jiménez, E. & Alarcón-Rojo, A.D. 2018. Relationship between glycerol administration to livestock 24 h before sacrifice and indicators of physiological and oxidative stress. Journal of Animal Behavior and Biometeorology, 6: 116-123, ISSN: 2318-1265. https://doi.org/10.31893/2318-1265jabb.v6n4p116-123).

Según estudios realizados por Rémond et al. (1993)Rémond, B., Souday, E. & Jouany, J.P. 1993. In vitro and in vivo fermentation of glycerol by rumen microbes. Animal Feed Science and Technology, 41(2): 121-132, ISSN: 0377-8401. https://doi.org/10.1016/0377-8401(93)90118-4. , los índices máximos de desaparición del glicerol en rumen, determinados por fermentadores in vitro es de 0.52 a 0.62 g.h-1. Otros datos sugieren que, con una dosis de 240 g de glicerol, las tasas de desaparición en el rumen se encuentran entre 1.20 y 2.40 g.h-1. En estudios donde se suplementó con niveles entre 15 y 25 % de glicerol, la mayoría desapareció en seis horas (Bergner et al. 1995Bergner, H., Kijora, Claudia., Ceresnakova, Zusana. & Szakacs, J. 1995. In vitro investigation on the glycerol transformation Rumen Microbes. Archiv für Tierernaehrung, 48(3): 245-256, ISSN: 1477-2817. https://doi.org/10.1080/17450399509381845.). Según Donkin (2008)Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032., entre el 50 y el 70 % del glicerol desaparece del rumen a las cuatro horas.

Por otro lado, los estudios realizados por Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0., redujeron los niveles de nitrógeno amoniacal en rumen al incorporar 6 % de glicerol en la dieta. Sin embargo, Correa y Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91. no modificaron el contenido de nitrógeno ureico en sangre.

Efecto del empleo de glicerol en la ingestión de materia seca

 

Los trabajos donde se empleó el glicerol, mostraron resultados variables en relación a la ingestión de materia seca (IMS). En algunos estudios no se modificó este indicador con la inclusión de glicerol en la dieta (Moriel et al. 2011Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. and Van Cleef et al. 2014Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. ). Sin embargo, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. informaron incrementos del consumo en aproximadamente 2 kg de MS a los 70 d, mientras que Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p. observó un efecto depresivo en la etapa de posparto, Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. en toros jóvenes cuando utilizó 18 % y Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. usó 6 % en cabras.

El consumo de MS, también se modificó en los trabajos realizados por Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. al emplear el glicerol. Además, obtuvieron un efecto de los niveles de incorporación del producto, con los valores más elevados del 5 % (28.40 kg.d-1). Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. tampoco modificaron este indicador dentro de la misma categoría (vacas y novillos), pero al comparar las vacas con los novillos observaron una reducción en el consumo para estos últimos, cuando se utilizó el glicerol a razón de 6 y 12 % de la MS.

Utilización del glicerol en la dieta animal como aditivo energético

 

Según Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. la energía que aporta el glicerol es similar a la del almidón del maíz, cuando se emplea en vacas lecheras. No obstante, el valor energético del glicerol, depende de su grado de pureza, del porcentaje que representa con relación al total de materia seca (MS) y del contenido de almidón del concentrado que se emplea. Schröder y Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. determinaron la energía neta de lactancia del glicerol y obtuvieron valores de 2.30 Mcal.kg-1 cuando se ofrece en las dietas bajas en almidón, y entre 1.91 y 2.03 Mcal.kg-1 cuando se incorporan a dietas ricas en almidón.

La producción de biodiesel genera subproductos con uso potencial en la alimentación animal (de Souza et al. 2014De Souza, A., Ribeiro, J., Lopes, M., Moletta, J.L., Los, S. & Breno, V. 2014. Glycerol inclusion levels in corn and sunflower silages. Ciência e Agrotecnologia, 38(5): 497-505, ISSN: 1981-1829. https://doi.org/10.1590/S1413-70542014000500009.). En este grupo se destaca el glicerol, que se puede utilizar como fuente de energía (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). Se ha utilizado en dietas destinadas a cerdos (Martínez-Miró et al. 2021Martínez-Miró, S., Madrid, J., López, M.J., Orengo, J., Sánchez, C.J. & Hernández, F. 2021. Feeding Crude Glycerin to Finishing Iberian Crossbred Pigs: Effects on Growth Performance, Nutrient Digestibility, and Blood Parameters. Animals, 11(8): 2181, ISSN: 2076-2615. https://doi.org/10.3390/ani11082181., Dahmer et al. 2022Dahmer, P.L., Harrison, O.L., & Jones, C.K. 2022. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Translational Animal Science, 6(4): txac145, ISSN: 2573-2102. https://doi.org/10.1093/tas/txac145. and Li et al. 2022Li, L., Wang, H., Zhang, N., Zhang, T., & Ma, Y. 2022. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. Journal of Animal Science, 100(3): skac046. https://doi.org/10.1093/jas/skac046. ) y a pollos de engorde (Liu et al. 2020Liu, T., Tang, J., & Feng, F. 2020. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Applied Microbiology and Biotechnology, 104(23): 1-13, ISSN: 1432-0614. https://doi.org/10.1007/s00253-020-10919-y. ).

No obstante, la mayor parte de los estudios realizados va encaminada a la alimentación de animales rumiantes. Sotgiu et al. (2021)Sotgiu, F.D., Porcu, C., Pasciu, V., Dattena, M. & Gallus, M. 2021. Towards a sustainable reproduction management of dairy sheep: glycerol-based formulations as alternative to eCG in milked ewes mated at the end of anoestrus period. Animals, 11(4): 922, ISSN: 2076-2615. https://doi.org/10.3390/ani11040922. lo emplearon en ovinos y Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. en cabras. Prado et al. (2015)Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661. y Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. lo utilizaron en toros. Asimismo, Moriel et al. (2011)Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. lo aplicaron en la alimentación de novillas de reemplazo en razas destinadas a la producción de carne. Correa y Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91. estudiaron su efecto en vacas Holstein.

Son varios los trabajos que incluyen el glicerol en la dieta de vacas lecheras altas productoras en el período de transición (Bodarski et al. 2005Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this., Chung et al. 2007Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426. and Wang et al. 2009bWang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009.). Algunos estudios refieren su uso con alto nivel de pureza (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. y Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.) o crudo (Neiva et al. 2012Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. ). En otros trabajos realizados con toros Holando, el glicerol se utilizó como sustituto del grano de maíz en la ración de vacas lecheras (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. y Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581.) y en engorde (Mach et al. 2009Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. ). También se empleó en la elaboración de activadores ruminales para la producción de carne vacuna en sistemas de alimentación con materiales fibrosos (Iriñiz et al. 2011Iriñiz, J., Elias, A., Michelena, J.B., Galindo, J. & Chilibroste, P. 2011. Uso de activadores ruminales con glicerol en el comportamiento productivo de novillos Hereford alimentados con paja de arroz. Alpa. Montevideo, Uruguay.).

De Frain et al. (2004) estudiaron diferentes niveles de inclusión de glicerol en la dieta, a razón de 430 y 860 g. vaca-1. d-1. Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. lo hicieron en dosis de 300 y 500 mL, mientras que Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p. incluyó 504 g.vaca-1.d-1. Cantidades inferiores evaluaron Chung et al. (2007)Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426., al suministrar 250 g.vaca-1.d-1. Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. introdujeron 100 y 300 g.vaca-1.d-1, y Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. trabajaron con 150 y 300 g.vaca-1.d-1.

Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. utilizaron niveles de glicerol entre 5 y 15 % de la MS. Carvalho et al. (2011)Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. lo incluyeron en 11.50 y 10.80 % para el preparto y postparto, respectivamente. Niveles similares, de 0 a 12 %, utilizaron Mach et al. (2009)Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. en la dieta. Sin embargo, otros estudios los superaron. D´Aurea et al. (2017)D'Aurea, A.P., Ezequiel, J.M.B., D'Aurea, E.M.O., Santos, V.C., Fávaro, V.R., Homem Júnior, A.C., Almeida, M.T.C. & Perez, H.L. 2017. Glicerina bruta associada à ureia na terminação de bovinos: consumo, desempenho e características da carne. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 69(1): 165-172, ISSN: 1678-4162. https://doi.org/10.1590/1678-4162-8895. aplicaron hasta 20 % en combinación con urea para evaluar algunos parámetros ruminales y el comportamiento de la masa microbiana,

Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. adicionaron hasta 24 % en dietas para novillos y vacas de razas lecheras. Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. incluyó hasta 30 % en la alimentación de toros Nelore confinados.

Según Ortega-Cerrilla et al. (2018)Ortega-Cerrilla, M.E., Hidalgo-Hernández, U., Herrera-Haro, J.G., Ramírez-Mella, M. & Zetina-Córdoba, P. 2018. Glicerol, una alternativa para la alimentación de rumiantes. Agroproductividad, 11: 124-129, ISSN: 2594-0252. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386/272. , los resultados que se obtuvieron con el empleo de glicerol dependen de la calidad de la dieta base, del grado de pureza y el nivel de inclusión. Precisamente, esta última es una de las principales interrogantes que genera la utilización de dicho producto. Por lo general, se emplea en cantidades próximas al 10 %. Según Donkin (2008)Donkin, S.S. 2008. Glycerol from biodiesel production: the new corn for dairy cattle. Revista Brasileira de Zootecnia, 37(spe): 280-286, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982008001300032., el glicerol se debe utilizar por lo menos en 10 % de la MS en las dietas para vacas lecheras. Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. plantearon que obtuvieron éxito en el empleo de dietas para vacas lecheras, cuyo contenido de glicerol fue entre 5 y 15 % de la MS total. Sin embargo, el empleo de 15 % de glicerol en vacas lecheras en mitad de la lactancia puede ir acompañado de la disminución transitoria en el consumo de alimento (Donkin et al. 2009Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201.).

Efecto del glicerol en la digestibilidad de la dieta

 

Los estudios realizados por Schröder y Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. demostraron que el efecto del glicerol en la digestibilidad de la dieta está determinado por la cantidad de almidón contenido en la misma. Por lo general, cuando se utilizan dietas con alto contenido de almidón se reduce la digestibilidad de la pared celular.

Otros estudios informan que no hubo modificación en la digestibilidad de la fibra (Hess et al. 2008Hess, B.W., Lake, S.L. & Gunter, S.A. 2008. Using glycerin as a supplement for forage-fed ruminants. In: Symposium Ruminant Nutrition Glycerin as Feed for Ruminants (19th). Available at: http://www.adsa.asas.org/meetings/2008/abstracts/0392.pdf [Consulted: January 10, 2022].) con el uso de glicerol. Wang et al. (2009a)Wang, C., Liu, Q., Huo, W.J., Yang, W.Z., Dong, K.H., Huang, Y.X. & Guo, G. 2009a. Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science, 121(1): 15-20, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2008.05.010. lograron aumentar la digestibilidad de la materia orgánica y proteína bruta con el incremento en la suplementación del glicerol hasta un nivel medio de 200 g.animal-1.d-1, pero al continuar con el incremento en los niveles de glicerol, las digestibilidades disminuyeron levemente. En estudios realizados por van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. también se demostró incremento de la digestibilidad de la proteína bruta con reducción en la digestibilidad de la fibra neutro detergente, como resultado de una disminución en la digestibilidad de la hemicelulosa, al utilizar 30 % de glicerol en la dieta. Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. redujeron la digestibilidad de la dieta al utilizar 6 % de glicerol.

Efecto del glicerol en el peso vivo y condición corporal

 

Son varios los autores que refieren no haber encontrado diferencias en el peso vivo y la condición corporal (Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581., Moriel et al. 2011Moriel, P., Nayigihugu, V., Cappellozza. B.I., Gonçalves, E.P., Krall, J.M., Foulke, T., Cammack, K.M. & Hess, B.W. 2011. Camelina meal and crude glycerin as feed supplements for developing replacement beef heifers1. Journal of Animal Science, 89(12): 4314–4324, ISSN: 1525-3163. https://doi.org/10.2527/jas.2010-3630. and Shin et al. 2012Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. ). Sin embargo, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. apreciaron efecto positivo del glicerol en la condición corporal al final del período de evaluación. Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. informan su efecto en la ganancia de peso vivo, al igual que Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. al suministrar 10 y 15 % de glicerol en la dieta. Neiva et al. (2012)Neiva, J. N. M., Leão, J.P., Restle, J., Rodrigues, P.V., Machado, Aline E., Chaves, Fabricia R. & Missio, R.L. 2012. Consumo e desempenho de bovinos de aptidão leiteira em confinamento alimentados com glicerol. Brazilian Animal Science, 13(4): 421-428, ISSN: 1809-6891. https://doi.org/10.5216/cab.v13i4.18629. , Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. , Chanjula et al. (2016)Chanjula, P., Pongprayoon, S., Kongpan, S. & Cherdthong, A. 2016. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats. Tropical Animal Health and Production, 48(5): 995–1004, ISSN: 1573-7438. https://doi.org/10.1007/s11250-016-1047-0. y Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. no modificaron la ganancia de peso con el empleo de glicerol.

Efecto del glicerol en la calidad de la carne

 

En los estudios realizados por Lammer et al. (2015), la calidad de la canal no se afectó al utilizar glicerol en cerdos. Sin embargo, se incrementó el nivel de ácidos grasos monoinsaturados en el tejido adiposo, al aumentar el contenido de este producto en la dieta.

En vacunos tampoco hubo grandes modificaciones al incluir el glicerol. Elam et al. (2008)Elam, N.A., Eng, K.S., Bechtel, B., Harris, J.M. & Crocker, R. 2008. Glycerol from biodiesel production: considerations for feedlot diets. Proceedings of the Southwest Nutrition Conference. 21 February 2008. Tempe, AZ, USA. 2-6 p. verificaron que la adición de hasta 15 % en novillas cruzadas no afecta la deposición de grasa intramuscular y el rendimiento de carne. No se modificaron el área del músculo Longissimus dorsi (LD) y su contenido de grasa en los estudios realizados por Mach et al. (2009)Mach, N., Bach, A. & Devant, M. 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science, 87(2): 632-638, ISSN: 1525-3163. https://doi.org/10.2527/jas.2008-0987. , quienes utilizaron 12.1 %. De igual manera, Prado et al. (2015)Prado, I.N., Cruz, O.T.B., Valero, M.V., Zawadzki, F., Eiras, C.E., Rivaroli, D.C., Prado, R.M. & Visentainer, J.V. 2015. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Animal Production Science, 56(12): 2105-2114, ISSN: 1836-5787. https://doi.org/10.1071/an14661. no refirieron afectaciones en el área y la composición del LD, lo mismo con el espesor de la grasa dorsal y algunos indicadores de la calidad de la carne (marmoleo, textura y color).

No obstante a lo anterior, Van Cleef et al. (2014)Van Cleef, E.H.C.B., Bertocco, J.M., Pastori, A., Ruiz, V. & Dourado, J.B. 2014. Crude glycerin in diets for feedlot Nellore cattle. Revista Brasileira de Zootecnia, 43(2): 86-91, ISSN: 1806-9290. https://doi.org/10.1590/S1516-35982014000200006. incrementaron los niveles de grasa en la canal y Ladeira et al. (2016)Ladeira, M.M., Carvalho, J.R.R., Chizzotti, M.L., Teixeira, P.D., Dias, J.C.O., Gionbelli, T.R.S., Rodrigues, A.C. & Oliveira, D.M. 2016. Effect of increasing levels of glycerin on growth rate, carcass traits and liver gluconeogenesis in young bulls. Animal Feed Science and Technology, 219: 241–248, ISSN: 0377-8401. http://dx.doi.org/10.1016/j.anifeedsci.2016.06.010. favorecieron el veteado de la carne con el empleo de glicerol.

Efecto del glicerol en la producción de leche

 

Según Ogborn (2006)Ogborn, K.L. 2006. Effects of method of delivery of glycerol on performance and metabolism of dairy cows during the transition period. MS Thesis (Animal Science). Cornell University, Ithaca, NY. 154p., los efectos del glicerol en la producción de leche se observan cuando se emplean niveles superiores al 6 %. Esto puede explicar que no se modifique este indicador en los trabajos realizados por Chung et al. (2007)Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A. & Varga, G.A. 2007. Effects of Feeding Dry Glycerin to Early Postpartum Holstein Dairy Cows on Lactational Performance and Metabolic Profiles. Journal of Dairy Science, 90(12): 5682-5691, ISSN: 1525-3198. https://doi.org/10.3168/jds.2007-0426. y Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. . Sin embargo, Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. incrementaron la producción de leche con pequeñas dosis de glicerol, lo que pudo estar relacionado con el aumento en el consumo de MS, aunque Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. aumentaron el consumo de materia seca, sin modificar la producción de leche.

También se incrementó la producción de leche en experimentos realizados por Khalid and Al-Anbari (2024)Khalid, W.A. & Al-Anbari, N.N. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1): 382-391, ISSN: 2410-0862. https://doi.org/10.36103/731zw966 y Correa y Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.. En tanto, Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201., Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. y Carvalho et al. (2011)Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. no informan modificaciones.

Bonis et al. (2022)Bonis, R., Sotolongo, J.A., Galindo, J., García López, R. & Ortiz, A. 2022. Utilización del glicerol como aditivo en la dieta de vacas lecheras Siboney. VII Congreso Internacional de Producción Animal. AGROPAT 2022. obtuvieron incremento en la producción de leche de 155.91 % en vacas multíparas Siboney de Cuba, que estuvieron en pastoreo de pasto pitilla (Sporobolus indicus (L.) R. Br) cuando emplearon el glicerol, obtenido del proceso de fabricación del biodiesel de Jatropha curcas.

Efecto del glicerol en la composición de la leche

 

Los componentes de la leche, por lo general, no se afectan con la utilización del glicerol (Carvalho et al. 2011Carvalho, E.R., Schmelz-Roberts, N.S., White, H.M., Doane, P.H. & Donkin, S.S. 2011. Replacing corn with glycerol in diets for transition dairy cows. Journal of Dairy Science, 94(2): 908-916, ISSN: 1525-3198. https://doi.org/10.3168/jds.2010-3581. and Kupczyński et al. 2020Kupczyński, R., Szumny, A., Wujcikowska, K., & Pachura, N. 2020. Metabolism, ketosis treatment and milk production after using glycerol in dairy cows: A review. Animals, 10(8): 1379, ISSN: 2076-2615. https://doi.org/10.3390/ani10081379. ). No obstante, pueden existir algunas modificaciones en la grasa y la proteína. Bodarski et al. (2005)Bodarski, R., Wertelecki, T., Bommer, F. & Gosiewski, S. 2005. The changes of metabolic status and lactation performance in dairy cows under feeding tmr with glycerin (glycerol) supplement at periparturient period. Electronic Journal of Polish Agricultural Universities, 8(4): 22, ISSN: 1505-0297. http://www.ejpau.media.pl/volume8/issue4/art-22.html#:~:text=In%20presented%20conditions%20a%20glycerin,fat%20tissue%20lipolysis%20in%20this. obtuvieron incrementos en la proteína con el aumento del glicerol en la dieta, mientras que Wang et al. (2009b)Wang, C., Liu, Q., Yang, W.Z., Huo, W.J., Dong, K.H., Huang, Y.X., Yang, X.M. & He, D.C. 2009b. Effects of glycerol on lactation performance, energy balance and metabolites in early lactation Holstein dairy cows. Animal Feed Science and Technology, 151(1-2): 12-20, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2008.10.009. registraron disminución.

Otro indicador que puede variar es el contenido de grasa. Shin et al. (2012)Shin, J.H., Wang, D., Kim, S.C., Adesogan, A.T. & Staples, C. 2012. Effects of feeding crude glycerin on performance and ruminal kinetics of lactating Holstein cows fed corn silage- or cottonseed hull-based, low-fiber diets. Journal of Dairy Science, 95(7): 4006-4016, ISSN: 1525-3198. http://dx.doi.org/10.3168/jds.2011-5121. constataron los valores superiores de cantidad y concentración de grasa, al emplear 5 % de glicerol. Lo mismo ocurrió en los estudios realizados por Correa y Moreno (2019)Correa, C. & Moreno, L. 2019. Evaluación de la producción de leche, nitrógeno ureico en sangre y algunos componentes de la leche en vacas holstein suplementadas con glicerol y palmiste en la dieta. Revista colombiana de zootecnia, 5(10), ISSN: 2462-8050. https://anzoo.org/publicaciones/index.php/anzoo/article/view/95/91.. Sin embargo, la incorporación de glicerol en la dieta redujo la proporción de grasa en la leche, según refieren Lounglawan et al. (2011)Lounglawan, P., Lounglawan, W. & Wisitiporm, S. 2011. Effects of feeding glycerol to lactating dairy cows on milk production and composition. World Academy of Science, Engineering and Technology, 5(8): 451-453, ISSN: 1307-6892. https://doi.org/10.5281/zenodo.1055000. . En estudios de Donkin et al. (2009)Donkin, S.S., Koser, S.L., White, H.M., Doane, P.H. & Cecava, M.J. 2009. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. Journal of Dairy Science, 92(10): 5111-5119, ISSN: 1525-3198. https://doi.org/10.3168/jds.2009-2201. se registró disminución del contenido de urea.

Limitaciones principales del uso de glicerol

 

La limitación principal del glicerol derivado de la industria del biodiesel es su contenido de metanol. También pueden influir negativamente otras impurezas, como jabones, sodio y el dietilen-glicol. El metanol y el dietilen-glicol son potentes tóxicos tisulares. Sin embargo, una vaca lechera de 600 kg de peso vivo, es capaz de consumir 7.44 mg de metanol, o sea, 1.24 % por cada kg de peso vivo y convertirlo en H2O y CO2. Esto se debe a que, en condiciones normales, bacterias metanogénicas del rumen lo transforman en metano (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). El efecto tóxico y limitante del consumo del metanol se comprueba con mayor frecuencia en animales monogástricos o pre rumiantes (terneros).

Existen límites para la proporción de metanol en el glicerol, que serán utilizados en la alimentación animal. Estudios realizados por la Food and Drug Administration de los EE.UU. (FDA - EUA) indican que niveles de metanol superiores a 150 p.p.m. se pueden considerar no aptos para la alimentación animal. Niveles más altos se han establecido en Alemania, donde se definió un límite máximo de 5 000 p.p.m. (Sellers 2008Sellers, R.S. 2008. Glycerin as a feed ingredient, official definition(s) and approvals. Journal of Dairy Science, 91(1): 392, ISSN: 1525-3198. https://doi.org/10.2903/j.efsa.2022.7353. ).

El metanol se metaboliza en el hígado, pasa a formaldehido, ácido fórmico y finalmente CO2 y agua. El metabolismo de ácido fórmico es lento, por lo que se acumula en el cuerpo y produce acidosis metabólica (Soares et al. 2012Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil.). Los efectos relacionados con la intoxicación por metanol se manifiestan con daños en el nervio óptico, perturbaciones neurológicas y a nivel renal, así como degeneración de la grasa del hígado.

Según Soares et al. (2012)Soares, A., Carvalho, M.R., de Souza, M.C., de Moura, D.C. & Gomes, J. 2012. Utilização de coprodutos agroindustriais na alimentação de bovinos. XI Congresso sobre Manejo e Nutrição de Bovinos CBNA. Campinas, Sao Paulo, Brazil., los metales pesados y el nivel de sodio también podrían limitar su uso en la dieta. El exceso de sodio reduce el consumo y el rendimiento animal. Además, aumenta la incidencia y severidad del edema de la ubre, principalmente en novillas de preparto.

Para evitar los efectos perjudiciales de las impurezas, algunos autores recomiendan la purificación del producto. Sin embargo, este proceso tiene un costo elevado (Chol et al. 2018Chol, Ch.G., Dhabhai, R., Dalai, A. & Reaney, K.M. 2018. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Processing Technology, 178: 78-87, ISSN: 0378-3820. https://doi.org/10.1016/j.fuproc.2018.05.023), por lo que hay que valorar si resulta rentable y hasta qué punto es más factible purificar. Evaluaciones de esta glicerina, probadas por Schröder y Südekum (1999)Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022]. y Thompson y He (2006)Thompson, J.C. & He, B.B. 2006. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22(2): 261–265, ISSN: 1943-7838. https://doi.org/10.13031/2013.20272. indicaron contenidos en el orden de 63 a 76 % de glicerol en glicerina bruta de baja purificación. El contenido de glicerol aumenta a 85 % en purificaciones medias, con importante reducción de los contenidos de metanol, que termina por ser menor al 0.50 % y puede llegar a 99 % de glicerol, cuando se continúa el proceso de purificación (Schröder y Südekum 1999Schröder, A. & Südekum, K. 1999. Glycerol as a by-product of biodiesel production in diets for ruminants. En: 10º Rapeseed Cogress, Canberra, Australia. Available at: http://www.regional.org.au/au/gcirc/1/241.htm [Consulted: May 28, 2022].).

Consideraciones generales

 

En la actualidad, las empresas productoras de biocombustibles constituyen la fuente principal de glicerol. Su bajo costo, alta palatabilidad, efecto gluconeogénico y contenido energético son algunas de las propiedades que avalan su utilización como alimento animal. Varias investigaciones demuestran resultados prometedores con la utilización de este subproducto como fuente energética alternativa en la alimentación de rumiantes.

La inclusión del glicerol en la dieta de animales rumiantes pudiera mejorar el valor de la carne y la grasa de la leche al incrementar las propiedades anti-cancerígenas, anti-diabetogénicas y anti-dipogénicas por la presencia del ácido linoleico conjugado. Estas razones lo ubican como un producto con características funcionales. El desarrollo de investigaciones futuras que lo demuestren permitirá la diversificación de su utilización y comercialización.