Cuban Journal of Agricultural Science Vol. 58, january-december 2024, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v58e07
Animal Science

Dietary inclusion of a lipase enzyme in the bioproductive indicators of laying pullets

 

iDS. N. Zúñiga1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

iDJ. A. Vaca1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

iDY. Martínez2Facultad de Medicina Veterinaria, Universidad de Fondwa. Leogane, Haití*✉:ceoyordan@hotmail.com

iDR. Rodríguez3Centro de Estudio de Producción Animal, Facultad de Ciencias Agropecuarias, Universidad de Granma. Granma, Cuba


1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

2Facultad de Medicina Veterinaria, Universidad de Fondwa. Leogane, Haití

3Centro de Estudio de Producción Animal, Facultad de Ciencias Agropecuarias, Universidad de Granma. Granma, Cuba

 

*E-mail:ceoyordan@hotmail.com

A total of 700 one-day-old Dekalb White® birds were randomized into two treatments and seven repetitions to evaluate the inclusion of 0.01 % of a lipase enzyme with an energy contribution of 0.42 MJ/kg during five productive stages: starter 1 (1- 3 weeks) starter 2 (4-6 weeks), grower (7-10 weeks), development (11-15) and pre-lay (16-17). The inclusion of lipase decreased the cost of the diets by 12.21 USD/t in relation to the control treatment. During weeks 1-3, 7-10 and 16-17 no notable changes (P>0.05) were recorded for body weight, feed intake, feed conversion ratio and viability. However, in weeks 4-6, the inclusion of lipase improved (P<0.05) body weight (408.96 vs 449.36 g) and feed conversion ratio (2.32 vs 1.95). However, this treatment (lipase) increased (P<0.05) feed intake and feed conversion ratio in weeks 11-15 (3.24 vs 4.11). In the global period (1-17 weeks), no productive indicator of the pullets changed (P>0.05) due to the effect of the experimental diets. It is recommended to include the lipase enzyme (Lipase AN6) in hypocaloric diets (-0.42 MJ/kg) to reduce its cost, without affecting the bioproductive indicators of laying pullets.

Keywords: 
slow-growing birds, economical diet, exogenous enzyme, productivity

Received: 12/12/2023; Accepted: 26/2/2024

Conflict of interests: The authors declare that there is no conflict of interest between them

CRediT authorship contribution statement: S. N. Zúñiga: Research, Formal analysis, Writing - original draft. J. A. Vaca: Research, Formal analysis, Writing - original draft. Y. Martínez: Conceptualization, Data curation, Research, Formal analysis, Writing - original draft. R. Rodríguez: Formal analysis, Writing - original draft

CONTENT

Currently, exogenous enzymes are commonly used in poultry diets, especially to enhance growth performance, contribute to environmentally friendly production and increase economic feasibility (Aftab and Bedford 2018Aftab, U. & Bedford, M. R. 2018. The use of NSP enzymes in poultry nutrition: myths and realities. World's Poultry Science Journal, 74(2): 277-286. ISSN: 1743-4777. https://doi.org/10.1017/S0043933918000272). Also, exogenous enzymes have been used individually or in combination with various natural alternatives to eliminate and/or restrict the use of antibiotic growth promoters in poultry (Cowieson and Kluenter 2019Cowieson, A.J. & Kluenter, A.M. 2019. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology, 250: 81-92, ISSN: 3778-8401. https://doi.org/10.1016/j.anifeedsci.2018.04.026).

Lipases are enzymes with functional properties applied to animal production and in various fields: agrochemistry, medicine, pharmaceutical and food industry (Cavalcante et al. 2021Cavalcante, F.T.T., Neto, F.S., de Aguiar Falcão, I.R., da Silva Souza, J.E., de Moura Junior, L.S., da Silva Sousa, P. & dos Santos, J.C. 2021. Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288: 119577, ISSN: 0016-2361. https://doi.org/10.1016/j.fuel.2020.119577). Lipases also participate in the hydrolysis of triglycerides into fatty acids and glycerol, which is important for controlling blood lipid levels (Olivecrona 2016Olivecrona, G. 2016. Role of lipoprotein lipase in lipid metabolism. Current Opinion in Lipidology, 27(3): 233-241, ISSN: 1473-6535. https://doi.org/10.3390/biomedicines9070782). Specifically, in poultry, lipid assimilation occurs at the lipid-water interface because this biomolecule (lipids) is insoluble in aqueous medium, contrary to digestive enzymes (Gole et al. 2022Gole, M., Manwar, S., Khose, K., Rathod, P., Kumar, D. & Ganguly, R.K.B. (2022) Efficacy evaluation of a poultry feed emulsifier in broiler chicken. The Pharma Innovation Journal, 11(1): 1119-1123, ISSN: 2349-8242. URL: https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartQ/S-11-1-189-199.pdf). Upadhaya et al. (2019)Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1 reported that birds in the first days of life produce low concentrations of pancreatic lipase, which can provoke poor digestibility of lipids (mainly saturated fatty acids) and also affect feed efficiency.

Castro and Kim et al. (2021)Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117 reported positive results when they used a dietary lipase in the early life stages of broilers. However, Movagharnejad et al. (2020)Movagharnejad, M., Kazemi-Fard, M., Rezaei, M. & Teimuri-Yansari, A. 2020. Effects of lysophospholipid and lipase enzyme supplementation to low metabolizable energy diets on growth performance, intestinal morphology and microbial population and some blood metabolites in broiler chickens. Brazilian Journal of Poultry Science, 22(2): 1-8, ISSN: 1806-9061. https://doi.org/10.1590/1806-9061-2019-1118 did not find improvements in growth performance of chickens when they used a lipase enzyme combined with lysophospholipids in the diets. Few studies have focused on the use of lipase enzymes in low-calorie diets in slow-growing birds such as laying pullets, especially to reduce the use of energy corrector, reduce production costs, maintain and improve the feed efficiency of this poultry category, which affects the productivity of the future laying hen. The objective of the present study was to evaluate the effect of a lipase enzyme (Lipase AN6) on the bioproductive indicators of laying pullets.

Materials and methods

 

Experimental location

 

The experiment was developed at the Poultry Research and Teaching Center of the Pan-American Agricultural School, Zamorano, located 32 km between Tegucigalpa-Danlí, Honduras. The average annual temperature is 26 °C, with average precipitation of 1100 mm and altitude of 800 m a.s.l.

Animals, experimental design and treatments

 

A total of 700 Dekalb White® laying pullets, one day old and sexed, were placed for 17 weeks according to a completely randomized design with two treatments and seven repetitions per treatment. The treatments consisted of basal diets (T1), formulated with corn and soymeal, and the inclusion of 0.01 % lipase in hypocaloric diets (T2) (-0.42 MJ/kg). The lipase enzyme (Lipase AN6) was purchased from company “Enzimas y Productos Químicos S.A. (Enziquim)”, Mexico. Also, the company's recommendation for the inclusion level and energy release (0.42 MJ /kg) of the enzyme was considered.

Five experimental periods were used: 1-3 weeks, 4-6 weeks, 7-10 weeks, 11-15 weeks and 16-17 weeks. The diets were prepared in the feed factory of the Poultry Research and Teaching Center, University of Zamorano. The requirements described in the manual of the genetic line used (Hendrix-Genetics 2020Hendrix-Genetics. 2020. Nutrition Guide. Available at: https://layinghens.hendrix-genetics.com/documents/883/Nutrition_Guide_English_vs4.pdf. Consulted: June 17/2023) were considered. Table 1 shows the ingredients and nutritional contributions of the experimental diets.

Table 1.  Ingredients and nutritional contributions of Dekalb White® pullet diets (1-17 weeks)
Ingredients, % 1-3 weeks 4-6 weeks 7-10 weeks 11-15 weeks 16-17 weeks
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
Cornmeal 55.745 58.255 60.64 61.28 55.82 58.22 53.95 56.42 54.71 57.13
Soymeal 34.11 33.74 29.92 29.37 26.90 26.62 21.86 21.56 26.37 26.07
Premix1 0.50 0.50 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
Common salt 0.28 0.28 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25
Sodium bicarbonate 0.23 0.23 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Palm oil 3.82 1.68 1.60 0.00 4.71 2.6 4.98 2.84 6.08 3.95
Wheat bran 2.00 2.00 3.00 4.50 8.00 8.00 15.00 15.00 4.00 4.00
Choline 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
DL-Methionine 0.20 0.20 0.20 0.20 0.18 0.17 0.13 0.12 0.19 0.19
L-Threonine 0.00 0.00 0.04 0.04 0.03 0.02 0.0 0.00 0.00 0.00
L-Lysine 0.09 0.09 0.11 0.11 0.09 0.09 0.06 0.06 0.02 0.02
Calcium carbonate 1.75 1.75 1.68 1.68 1.61 1.61 1.61 1.61 5.95 5.95
Monocalcium phosphate 1.03 1.02 1.60 1.60 1.45 1.45 1.18 1.15 1.45 1.45
Mycotoxin sequestrant 0.075 0.075 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Exogenous enzymes2 0.07 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Coccidiostat 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Lipase enzyme 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Costs (USD/t) 548.64 536.55 537.04 524.83 537.98 525.57 511.80 499.33 538.6 526.74
Contributions (%)
Metabolizable energy (MJ/kg) 12.34 11.92 11.92 11.51 12.34 11.92 12.13 11.72 12.34 11.92
Crude protein 20 20 18.5 18.5 17.5 17.5 16.00 16.00 16.50 16.50
Ca 1.05 1.05 1.00 1.00 0.95 0.95 0.90 0.90 2.50 2.50
Available P 0.45 0.45 0.47 0.47 0.45 0.45 0.40 0.40 0.43 0.43
Lysine 1.10 1.10 0.96 0.96 0.88 0.88 0.76 0.76 0.78 0.78
Methionine+Cystine 0.80 0.80 0.72 0.72 0.67 0.67 0.59 0.59 0.66 0.66
Threonine 0.70 0.70 0.65 0.65 0.60 0.60 0.52 0.52 0.55 0.55
Na 0.18 0.18 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18
Cl 0.20 0.20 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18

1Each kg contains: vit. A 10 x 106 I.U., D3 1.5x 106 I.U., K3 2100 mg, E 10000 mg, thiamine, 800 mg, riboflavin 2500 mg, pantothenic acid 10000 mg, pyridoxine 2500 mg, folic acid 250 mg, biotin 100 mg, vit. B12 15 mg, manganese 60000 mg, copper 8000 mg, iron 60000 mg, zinc 50000 mg, selenium 200 mg, iodine 800 mg, cobalt 500 mg, antioxidant 125000 mg.

2Lumis Lbzyme X50® multienzyme complex is composed by xylanase (25000 U/g), mannanase (250 IU/g), beta-glucanase (2500 IU/g), cellulase (400000 U/g), pectinase (80 IU/g), galactosidase (100 U/g), protease (2500 Hut/g), amylase (60000 U/g) and phytases (15000 FTU/g).

Experimental conditions

 

Each repetition corresponded to a pen with dimensions of 5.92 m2 each (1.6 × 3.7 m), where 50 pullets/pen were located, at a rate of 10.13 pullets/m2. Feed and water were offered ad libitum in hopper feeders and dual automatic drinkers, respectively. Temperature and ventilation in the house were controlled by gas brooders, curtain management, and fans, respectively. The house was disinfected with quaternary ammonium (5 %) 24 h before the arrival of the batch of pullets. No medications or therapeutic veterinary care were administered throughout the experimental stage.

Productive indicators

 

All bioproductive indicators were determined in periods 1-3 (starter 1), 4-6 (starter 2), 7-10 (grower), 11-15 (development) and 16-17 weeks (pre-lay). Viability was determined by the live animals among those existing at the beginning of the experiment. The initial and final weighing of each stage was carried out individually on a SARTORIUS model BL 1500 digital scale with precision ± 0.1 g. Cumulative feed intake was determined using the offer and rejection method. Feed conversion ratio was calculated as the amount of feed ingested for a gain of 1 g of body weight (BW). At week 17, uniformity was calculated according to the coefficient of variation (CV, %).

Statistical analysis

 

A completely randomized design was used. The Student's t test was performed for two independent samples using the SPSS 1/23/2014 program (SPSS Inc., Chicago, IL, USA). Values ​​of P<0.05 were taken to indicate significant differences. Viability was determined by comparison of proportions using the COMPRAPRO 1.0® program (Font et al. 2007Font, H., Noda, A., Torres, V., Herrera, M., Lizazo, D., Sarduy, L. & Rodríguez, L. 2007. COMPARPRO: Comparación de Proporciones, Versión: 1.0. Mayabeque, Cuba).

Results and discussion

 

Table 2 shows the effect of the inclusion of an exogenous enzyme (lipase) on growth performance of laying pullets fed with low-calorie diets. In the initial stage (starter 1, 1-3 weeks), the diet with the inclusion of lipase did not affect body weight, feed intake, feed conversion ratio and viability. However, in the second stage (starter 2, 4-6 weeks), lipase improved body weight and reduced feed conversion ratio, without modifying feed intake and viability.

Table 2.  Effect of the inclusion of a lipase enzyme on the bioproductive indicators of Dekalb White® laying pullets
Items Experimental treatments SEM ± P value
T1 T2
1-3 weeks
Initial body weight, g 35.71 35.15 0.430 0.3741
Body weight, g 189.50 187.62 1.953 0.5108
Feed intake, g 396.00 394.86 1.063 0.4624
Feed conversion ratio 2.58 2.59 0.028 0.7492
Viability, % 98.00 97.71 0.841 0.8147
4-6 weeks
Body weight, g 408.96 449.36 5.413 0.0010
Feed intake, g 507.23 497.12 8.748 0.4292
Feed conversion ratio 2.32 1.95 0.057 0.0010
Viability, % 99.14 99.12 0.411 0.9764
7-10 weeks
Body weight, g 684.24 687.95 5.388 0.6351
Feed intake, g 892.05 914.56 18.060 0.3954
Feed conversion ratio 3.24 3.73 0.093 0.0524
11-15 weeks
Body weight, g 1064.60 1088.55 9.823 0.1105
Feed intake, g 1561.39 1645.73 33.967 0.0154
Feed conversion ratio 3.24 4.11 0.054 0.0010
Viability, % 99.41 99.71 0.336 0.5367
16-17 weeks
Body weight, g 1190.39 1199.19 8.099 0.4573
Feed intake, g 685.39 652.91 19.455 0.2615
Feed conversion ratio 5.52 5.95 0.288 0.3124
1-17 weeks
Body weight, g 4042.06 4105.17 63.759 0.4974
Feed intake, g 3.50 3.52 0.037 0.6238
Uniformity 2.35 2.20

T1 control diet, T2 inclusion of 0.01 % of a lipase enzyme in hypocaloric diets (-0.42 MJ/kg).

In the grower (7-10 weeks) and pre-lay (16-17) stages, no productive indicator changed due to the effect of the experimental groups. However, in the development stage (11-15 weeks), the hypocaloric diet with lipase increased feed intake and feed conversion ratio; also, uniformity was similar between treatments, according to the coefficient of variation.

One of the aims of the experiment was to verify whether the lipase enzyme, which provides 0.42 MJ/kg of metabolizable energy (according to information from the company Enziquim), reduces the diet cost (table 1), without modifying the growth performance of laying pullets from birth to pre-lay (1-17 weeks), considering that young birds have low enzymatic activity (Temairaev et al. 2020Temiraev, V.H., Baeva, A.A., Vityuk, L.A., Mamukaev, M.N., Yurina, N.A., Ktsoeva, I.I. & Vologirova, F.A. 2020. Effect of probiotics on digestive metabolism in growing and laying poultry birds. Journal of Livestock Science, 11(1): 33-39, ISSN: 2277-6214. https://doi.org/10.33259/JLivestSci.2020.33-39). This is the case of endogenous lipase, which is produced in the pancreas and participates in lipid metabolism to catabolize the hydrolysis of triglycerides to glycerol and free fatty acids (Wickramasuriya et al. 2020Wickramasuriya, S.S., Macelline, S.P., Cho, H.M., Hong, J.S., Park, S.H. & Heo, J.M. 2020. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7: 583998. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2020.583998).

Feed intake of pullets in weeks 1-3 (starter 1) remained unchanged despite the energy reduction (0.42 MJ/kg) in the diet when the lipase enzyme was included (table 2). According to Lamot et al. (2017)Lamot, D.M., Sapkota, D., Wijtten, P.J.A., van den Anker, I., Heetkamp, M.J.W., Kemp, B. & van den Brand, H. 2017. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens. Poultry Science, 96(7): 2294-2300, ISSN: 0032-5791. http://dx.doi.org/10.3382/ps/pex020 and Barzegar et al. (2020)Barzegar, S., Wu, S.B., Choct, M. & Swick, R.A. 2020. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 99(1): 487-498, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez554, the energy concentration in the diet has a direct influence on feed intake in birds, which demonstrates that the diets had a similar contribution of metabolizable energy (table 1). Bakare et al. (2021)Bakare, A.G., Zindove, T.J., Iji, P.A., Stamatopoulos, K. & Cowieson, A.J. 2021. A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 53(4): 1-13, ISSN: 1573-7438. https://doi.org/10.1007/s11250-021-02853-6 reported growing interest in using exogenous enzymes in poultry diets to improve nutrient utilization and decrease diet costs. Apparently, the use of lipase indicated higher availability of nutrients (lipids, fatty acids and glycerol), important to maximize enzymatic activity in young animals (Valentini et al. 2020Valentini, J., Da Silva, A.S., Fortuoso, B.F., Reis, J.H., Gebert, R.R., Griss, L.G. & Tavernari, F.C. 2020. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chemistry, 330: 127187, ISSN: 0308-8146. https://doi.org/10.1016/j.foodchem.2020.127187). Furthermore, oral administration of lipase reduced the diet cost (1-3 weeks) by 12.09 USD/t (table 1).

The use of the lipase enzyme in diets without the energy corrector (African palm oil) decreased the cost of the diets by 12.21 USD/t (table 1) and promoted body weight from weeks 4-6 (table 2). Zhu et al. (2014)Zhu, H.L., Hu, L.L., Hou, Y.Q., Zhang, J. & Ding, B.Y. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poultry Science, 93(7): 1704-1712, ISSN: 1350-4177. https://doi.org/10.3382/ps.2013-03626 reported that the use of a lipase enzyme in hypocaloric diets improved the activity of pancreatic enzymes and pepsin, and also increased the height and surface area of the villi of the jejunum and ileum in poultry. This confirms that, in young birds, the use of lipase favors the digestion and absorption of lipids and directly affects the feeding efficiency of these slow-growing animals. Likewise, Siqueira et al. (2021)Siqueira, L.A., Almeida, L.F., Fernandes, J.P.A., Araújo, M.C.U. & Lima, R.A.C. 2021. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. Ultrasonics Sonochemistry, 79: 105774, ISSN: 1350-4177. https://doi.org/10.1016/j.ultsonch.2021.105774 recommended the use of exogenous lipases in diets, because birds do not produce lingual and gastric lipase. It is in the gizzard and small intestine where lipid emulsification occurs. However, young birds have an immature digestive system, which causes low digestibility of lipids and less use of the metabolizable energy of the diet.

The experimental group with lipase caused better feeding efficiency of the birds in the initial phase 2 (table 2). Although there are still contradictions about the metabolizable energy requirements in the early stages of life in pullets, Savoldi et al. (2012)Savoldi, T.L., Nunes, R.V., Scherer, C., Tsutsumi, C.Y., Scheneiders, J.L., Marques, M.F.G. & Meza, S.K.L. 2012. Níveis de energia metabolizável e lisina digestível para o desempenho de pintos de corte de 1 a 10 dias de idade. Scientia Agraria Paranaensis, 11: 49-58, ISSN: 1983-1471. https://doi.org/10.18188/sap.v11io.7870 stated that diets with high levels of metabolizable energy during the initial phase favor weight gain and feed conversion ratio. Furthermore, Noy and Sklan (1995)Noy, Y. & Sklan, D. 1995. Digestion and absorption in the young chick. Poultry Science, 74(2): 366–373, ISSN: 0032-5791. https://doi.org/10.3382/ps.0740366 found that poultry have fat digestibility of 85 % in the first days after hatching, and only growth factor improves the digestibility of this biomolecule. Thus, the use of lipase enzymes could enhance the absorption of lipids in the early stages of life of birds. Upadhaya et al. (2019)Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1 reported in broilers that lipase supplementation improved pellet durability, endogenous enzyme production, and absorption of lipids and fat-soluble vitamins.

During the growth stage (7-10 weeks), productive indicators were similar in birds fed with the inclusion of 0.01 % lipase in hypocaloric diets (11.92 MJ/kg) and reduction of African palm oil (2.11 %) and of the cost of the diet at 12.41 USD/t (table 1). The results demonstrate that the dietary inclusion of exogenous lipase has a greater growth-promoting effect in the weeks prior (4-6 weeks) to the growth phase (7-10 weeks). de Oliveira et al. (2019)de Oliveira, L.S., Balbino, E.M., Silva, T.N.S., Ily, L., da Rocha, T.C., de Oliveira Strada, E.S. & de Brito, J.A.G. 2019. Use of emulsifier and lipase in feeds for broiler chickens. Semina: Ciências Agrárias, 40(6Supl2): 3181-3196, ISSN: 1679-0359. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3181 found that the use of a dietary lipase changed the feed consumption of birds, with greater effectiveness in the initial stages. Studies with lipase enzymes in fast-growing birds (chickens) are insufficient (Munir and Maqsood 2013Munir, K. & Maqsood, S. 2013. A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1): 66-80, ISSN: 2079-0538. https://doi.org/10.9755/ejfa.v25i1.9138). Al-Marzooqi and Leeson (2000)Al-Marzooqi, W. & Leeson, S. 2000. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Science, 79(7): 956-960. ISSN: 1350-4177. https://doi.org/10.1093/ps/79.7.7.956 reported that increasing levels of a lipase enzyme did not change the growth performance and relative weight of internal organs during 42 d of age. Apparently, in slow-growing birds (such as pullets), the effect is more evident. However, other studies with this lipase enzyme are necessary to verify this hypothesis.

During the development phase (11-15 weeks), the pullets are fed with maintenance diets, low in metabolizable energy and crude protein and rich in fibrous compounds, the body weight of the experimental groups was similar to that reported by the manual of the genetic line (Hendrix-Genetic 2022Hendrix-Genetics. 2022. Management Guide. Available at: https://layinghens.hendrix-genetics.com/en/technical-support/management/. Consulted: June 17/2023). The diets cost with lipase decreased by 12.47 USD/t (table 1, 11-15 weeks). However, this experimental treatment increased feed intake and, therefore, feed conversion ratio (table 2). Nogueira et al. (2013)Nogueira, W.C.L., Velásquez, P.A.T., Furlan, R.L. & Macari, M. 2013. Effect of dietary energy and stocking density on the performance and sensible heat loss of broilers reared under tropical winter conditions. Brazilian Journal of Poultry Science, 15: 53-57, ISSN: 1806-9061. https://doi.org/10.1590/S1516-635X2013000100009 found that soy lecithin supplementation, alone or in combination with a lipase enzyme, decreased production efficiency due to increased feed conversion ratio of broilers. Other studies reported that dietary inclusion with 0.075 % lipase improved lipid absorption. However, feed intake and body weight gain in poultry decreased, due to the high concentration of the exogenous enzyme (lipase) and contamination with cholecystokinin (Al-Marzooqi and Leeson 1999Al-Marzooqi, W. & Leeson, S. 1999. Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poultry Science, 78(11): 1561-1566. ISSN: 0032-5791. https://doi.org/10.1093/ps/78.11.1561). Apparently, the stimulation of voluntary consumption in this productive stage (development) is related to the fact that lipase has less energy release than in initial stages, thus birds consume more feed due to the energy deficit for organic functions. An opposite effect was reported by Wu et al. (2005)Wu, G., Bryant, M.M., Voitle, R.A. & Roland Sr, D.A. 2005. Effect of dietary energy on performance and egg composition of Bovans White and Dekalb White hens during phase I. Poultry Science, 84(10): 1610-1615, ISSN: 1350-4177. https://doi.org/10.1093/ps/84.10.1610, who report that diets with high energy concentration decrease the voluntary consumption of poultry in all productive stages.

In pre-laying (16-17 weeks), the energy requirement is directly related to body weight, ambient temperature, feathering and future egg production (Hadinia et al. 2018Hadinia, S.H., Carneiro, P.R.O., Ouellette, C.A. & Zuidhof, M.J. (2018) Energy partitioning by broiler breeder pullets in skip-a-day and precision feeding systems. Poultry Science, 97(12): 4279-4289, ISSN: 1350-4177. https://doi.org/10.3382/ps/pey283). The inclusion of lipase reduced the use of African palm oil by 2.14 % and the cost of diets by 11.86 USD/t (table 1). Apparently, the enzyme supplied the missing energy in the hypocaloric diet (-0.42 MJ/kg), since the productive performance was similar for both treatments. Although no studies were found on the effect of lipase enzymes in the pre-laying stage, Castro and Kim (2021)Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117 reported that the inclusion of a lipase enzyme in finishing diets (29-42 days) increased body weight gain and decreased the negative effects of diets with low nutrient concentrations in fast-growing birds.

Overall (1-17 weeks), the use of the lipase enzyme (Lipase AN6) maintained the bioproductive indicators of laying pullets fed with low-calorie diets and reduced the use of the energy corrector (African palm oil) between 0 to 2.14 % in the diet. Similar results were noted by Suresh et al. (2014)Suresh, B.N., Reddy, B.S.V., Prabhu, T.M., Manju, G.U. & Suma, N. 2014. Effect of dietary inclusion of lipid utilizing agents and NSP-degrading enzymes on performance of layers. Animal Nutrition and Feed Technology, 14(2): 379-384, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2014.01330.4, who found no changes for feed intake and feed conversion ratio when they used treatments that included lipid emulsifying agents (0.2 g of lipase and 0.2 g/kg of soy lecithin). Furthermore, Lichovníková et al. (2002)Lichovnikova, M., Zeman, L., Klecker, D. & Fialova, M. 2002. The effects of the long-term feeding of dietary lipase on the performance of laying hens. Czech Journal of Animal Science, 47(4): 141-145, ISSN: 1805-9309. URL: https://agris.fao.org/agris-search/search.do?recordID=CZ2002000806 reported that the addition of lipase to hypocaloric diets kept productive indicators unchanged in 72-week-old laying hens. For their part, Meng et al. (2004)Meng, X., Slominski, B.A. & Guenter, W. 2004. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Science, 83(10): 1718-1727, ISSN: 1350-4177. https://doi.org/10.1093/ps/83.10.1718 noted that the productivity and nutrient digestibility of broilers was not affected by the dietary inclusion of exogenous enzymes (including lipase).

Uniformity is one of the most important indicators in the production of pullets, since it evaluates the homogeneity of the batch, which has a direct impact on the future layer (Asensio et al. 2020Asensio, X., Abdelli, N., Piedrafita, J., Soler, M.D. & Barroeta, A.C. 2020. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 99(5): 2633-2644, ISSN: 1350-4177. https://doi.org/10.1016/j.psj.2020.01.015). According to Delgado et al. (2020)Delgado, A., Valdivié, M. & Martínez, Y. 2020. Evaluación del raquis de maíz troceado como cama avícola sobre el desempeño productivo de pollitas ponedoras de reemplazo Dekalb White®. Revista de Producción Animal, 32(2): 14-26; ISSN: 2224-7920. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202020000200014#:~:text=Est%C3%A1%20investigaci%C3%B3n%20confirma%20que%20el,gen%C3%A9tica%20(Dekalb%2C%202014), a CV of 8 % corresponds to very uniform batches. These authors found that the CV increases with the age of the pullets. This demonstrates that both experimental groups had a uniform flock at week 17 of age (table 2) and that lipase did not modify this productive indicator. Sweeney et al. (2022)Sweeney, K.M., Aranibar, C.D., Kim, W.K., Williams, S.M., Avila, L.P., Starkey, J.D. & Wilson, J.L. 2022. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poultry Science, 101959, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2022.101959 reported that the growth of pullets with a similar body weight in the flock influences the age at first egg, laying persistence and egg weight uniformity of laying hens. In this study, regrouping was not necessary to homogenize the flock, which is a common practice in raising pullets and replacing breeders (García et al. 2019García, J., Mandalawi, H.A., Fondevila, G. & Mateos, G.G. (2019) Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight. Poultry Science, 98(9): 3937-3949, ISSN 1350-4177. https://doi.org/10.3382/ps/pez129).

Conclusions

 

Dietary inclusion with 0.01 % of Lipase AN6 with an energy contribution of 0.42 MJ/kg decreased the level of inclusion of the African palm oil and the cost of diets in all productive stages. Likewise, using this lipase enzyme did not affect the productivity and uniformity of Dekalb White® laying pullets (1-17 weeks)

References

 

Aftab, U. & Bedford, M. R. 2018. The use of NSP enzymes in poultry nutrition: myths and realities. World's Poultry Science Journal, 74(2): 277-286. ISSN: 1743-4777. https://doi.org/10.1017/S0043933918000272

Al-Marzooqi, W. & Leeson, S. 1999. Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poultry Science, 78(11): 1561-1566. ISSN: 0032-5791. https://doi.org/10.1093/ps/78.11.1561

Al-Marzooqi, W. & Leeson, S. 2000. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Science, 79(7): 956-960. ISSN: 1350-4177. https://doi.org/10.1093/ps/79.7.7.956

Asensio, X., Abdelli, N., Piedrafita, J., Soler, M.D. & Barroeta, A.C. 2020. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 99(5): 2633-2644, ISSN: 1350-4177. https://doi.org/10.1016/j.psj.2020.01.015

Bakare, A.G., Zindove, T.J., Iji, P.A., Stamatopoulos, K. & Cowieson, A.J. 2021. A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 53(4): 1-13, ISSN: 1573-7438. https://doi.org/10.1007/s11250-021-02853-6

Barzegar, S., Wu, S.B., Choct, M. & Swick, R.A. 2020. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 99(1): 487-498, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez554

Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117

Cavalcante, F.T.T., Neto, F.S., de Aguiar Falcão, I.R., da Silva Souza, J.E., de Moura Junior, L.S., da Silva Sousa, P. & dos Santos, J.C. 2021. Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288: 119577, ISSN: 0016-2361. https://doi.org/10.1016/j.fuel.2020.119577

Cowieson, A.J. & Kluenter, A.M. 2019. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology, 250: 81-92, ISSN: 3778-8401. https://doi.org/10.1016/j.anifeedsci.2018.04.026

de Oliveira, L.S., Balbino, E.M., Silva, T.N.S., Ily, L., da Rocha, T.C., de Oliveira Strada, E.S. & de Brito, J.A.G. 2019. Use of emulsifier and lipase in feeds for broiler chickens. Semina: Ciências Agrárias, 40(6Supl2): 3181-3196, ISSN: 1679-0359. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3181

Delgado, A., Valdivié, M. & Martínez, Y. 2020. Evaluación del raquis de maíz troceado como cama avícola sobre el desempeño productivo de pollitas ponedoras de reemplazo Dekalb White®. Revista de Producción Animal, 32(2): 14-26; ISSN: 2224-7920. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202020000200014#:~:text=Est%C3%A1%20investigaci%C3%B3n%20confirma%20que%20el,gen%C3%A9tica%20(Dekalb%2C%202014)

Font, H., Noda, A., Torres, V., Herrera, M., Lizazo, D., Sarduy, L. & Rodríguez, L. 2007. COMPARPRO: Comparación de Proporciones, Versión: 1.0. Mayabeque, Cuba

García, J., Mandalawi, H.A., Fondevila, G. & Mateos, G.G. (2019) Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight. Poultry Science, 98(9): 3937-3949, ISSN 1350-4177. https://doi.org/10.3382/ps/pez129

Gole, M., Manwar, S., Khose, K., Rathod, P., Kumar, D. & Ganguly, R.K.B. (2022) Efficacy evaluation of a poultry feed emulsifier in broiler chicken. The Pharma Innovation Journal, 11(1): 1119-1123, ISSN: 2349-8242. URL: https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartQ/S-11-1-189-199.pdf

Hadinia, S.H., Carneiro, P.R.O., Ouellette, C.A. & Zuidhof, M.J. (2018) Energy partitioning by broiler breeder pullets in skip-a-day and precision feeding systems. Poultry Science, 97(12): 4279-4289, ISSN: 1350-4177. https://doi.org/10.3382/ps/pey283

Hendrix-Genetics. 2020. Nutrition Guide. Available at: https://layinghens.hendrix-genetics.com/documents/883/Nutrition_Guide_English_vs4.pdf. Consulted: June 17/2023

Hendrix-Genetics. 2022. Management Guide. Available at: https://layinghens.hendrix-genetics.com/en/technical-support/management/. Consulted: June 17/2023

Lamot, D.M., Sapkota, D., Wijtten, P.J.A., van den Anker, I., Heetkamp, M.J.W., Kemp, B. & van den Brand, H. 2017. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens. Poultry Science, 96(7): 2294-2300, ISSN: 0032-5791. http://dx.doi.org/10.3382/ps/pex020

Lichovnikova, M., Zeman, L., Klecker, D. & Fialova, M. 2002. The effects of the long-term feeding of dietary lipase on the performance of laying hens. Czech Journal of Animal Science, 47(4): 141-145, ISSN: 1805-9309. URL: https://agris.fao.org/agris-search/search.do?recordID=CZ2002000806

Meng, X., Slominski, B.A. & Guenter, W. 2004. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Science, 83(10): 1718-1727, ISSN: 1350-4177. https://doi.org/10.1093/ps/83.10.1718

Movagharnejad, M., Kazemi-Fard, M., Rezaei, M. & Teimuri-Yansari, A. 2020. Effects of lysophospholipid and lipase enzyme supplementation to low metabolizable energy diets on growth performance, intestinal morphology and microbial population and some blood metabolites in broiler chickens. Brazilian Journal of Poultry Science, 22(2): 1-8, ISSN: 1806-9061. https://doi.org/10.1590/1806-9061-2019-1118

Munir, K. & Maqsood, S. 2013. A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1): 66-80, ISSN: 2079-0538. https://doi.org/10.9755/ejfa.v25i1.9138

Nogueira, W.C.L., Velásquez, P.A.T., Furlan, R.L. & Macari, M. 2013. Effect of dietary energy and stocking density on the performance and sensible heat loss of broilers reared under tropical winter conditions. Brazilian Journal of Poultry Science, 15: 53-57, ISSN: 1806-9061. https://doi.org/10.1590/S1516-635X2013000100009

Noy, Y. & Sklan, D. 1995. Digestion and absorption in the young chick. Poultry Science, 74(2): 366–373, ISSN: 0032-5791. https://doi.org/10.3382/ps.0740366

Olivecrona, G. 2016. Role of lipoprotein lipase in lipid metabolism. Current Opinion in Lipidology, 27(3): 233-241, ISSN: 1473-6535. https://doi.org/10.3390/biomedicines9070782

Savoldi, T.L., Nunes, R.V., Scherer, C., Tsutsumi, C.Y., Scheneiders, J.L., Marques, M.F.G. & Meza, S.K.L. 2012. Níveis de energia metabolizável e lisina digestível para o desempenho de pintos de corte de 1 a 10 dias de idade. Scientia Agraria Paranaensis, 11: 49-58, ISSN: 1983-1471. https://doi.org/10.18188/sap.v11io.7870

Siqueira, L.A., Almeida, L.F., Fernandes, J.P.A., Araújo, M.C.U. & Lima, R.A.C. 2021. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. Ultrasonics Sonochemistry, 79: 105774, ISSN: 1350-4177. https://doi.org/10.1016/j.ultsonch.2021.105774

Suresh, B.N., Reddy, B.S.V., Prabhu, T.M., Manju, G.U. & Suma, N. 2014. Effect of dietary inclusion of lipid utilizing agents and NSP-degrading enzymes on performance of layers. Animal Nutrition and Feed Technology, 14(2): 379-384, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2014.01330.4

Sweeney, K.M., Aranibar, C.D., Kim, W.K., Williams, S.M., Avila, L.P., Starkey, J.D. & Wilson, J.L. 2022. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poultry Science, 101959, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2022.101959

Temiraev, V.H., Baeva, A.A., Vityuk, L.A., Mamukaev, M.N., Yurina, N.A., Ktsoeva, I.I. & Vologirova, F.A. 2020. Effect of probiotics on digestive metabolism in growing and laying poultry birds. Journal of Livestock Science, 11(1): 33-39, ISSN: 2277-6214. https://doi.org/10.33259/JLivestSci.2020.33-39

Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1

Valentini, J., Da Silva, A.S., Fortuoso, B.F., Reis, J.H., Gebert, R.R., Griss, L.G. & Tavernari, F.C. 2020. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chemistry, 330: 127187, ISSN: 0308-8146. https://doi.org/10.1016/j.foodchem.2020.127187

Wickramasuriya, S.S., Macelline, S.P., Cho, H.M., Hong, J.S., Park, S.H. & Heo, J.M. 2020. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7: 583998. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2020.583998

Wu, G., Bryant, M.M., Voitle, R.A. & Roland Sr, D.A. 2005. Effect of dietary energy on performance and egg composition of Bovans White and Dekalb White hens during phase I. Poultry Science, 84(10): 1610-1615, ISSN: 1350-4177. https://doi.org/10.1093/ps/84.10.1610

Yao, W., Liu, K., Liu, H., Jiang, Y., Wang, R., Wang, W. & Wang, T. 2021. A valuable product of microbial cell factories: Microbial lipase. Frontiers in Microbiology, 12: 743377, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2021.743377

Zhu, H.L., Hu, L.L., Hou, Y.Q., Zhang, J. & Ding, B.Y. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poultry Science, 93(7): 1704-1712, ISSN: 1350-4177. https://doi.org/10.3382/ps.2013-03626


 
Ciencia Animal

Inclusión dietética de una enzima lipasa en los indicadores bioproductivos de pollitas ponedoras

 

iDS. N. Zúñiga1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

iDJ. A. Vaca1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

iDY. Martínez2Facultad de Medicina Veterinaria, Universidad de Fondwa. Leogane, Haití*✉:ceoyordan@hotmail.com

iDR. Rodríguez3Centro de Estudio de Producción Animal, Facultad de Ciencias Agropecuarias, Universidad de Granma. Granma, Cuba


1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana. Zamorano, Honduras

2Facultad de Medicina Veterinaria, Universidad de Fondwa. Leogane, Haití

3Centro de Estudio de Producción Animal, Facultad de Ciencias Agropecuarias, Universidad de Granma. Granma, Cuba

 

*E-mail:ceoyordan@hotmail.com

Un total de 700 aves Dekalb White® de un día de edad se aleatorizaron en dos tratamientos y siete repeticiones para evaluar la inclusión de 0.01 % de una enzima lipasa con aporte energético de 0.42 MJ/kg durante cinco etapas productivas: inicio 1 (1-3 semanas) inicio 2 (4-6 semanas), crecimiento (7-10 semanas), desarrollo (11-15) y prepostura (16-17). La inclusión de la lipasa disminuyó el costo de las dietas en 12.21 USD/t en relación con el al tratamiento control. Durante las semanas de 1-3, 7-10 y 16-17 no se registraron cambios notables (P>0.05) para el peso vivo, consumo de alimento, conversión alimentaria y viabilidad. Sin embargo, en las semanas 4-6, la inclusión de lipasa mejoró (P<0.05) el peso vivo (408.96 vs 449.36 g) y la conversión alimentaria (2.32 vs 1.95). No obstante, este tratamiento (lipasa) incrementó (P<0.05) el consumo de alimento y la conversión alimentaria en las semanas 11-15 (3.24 vs 4.11). En el período global (1-17 semanas), ningún indicador productivo de las pollitas cambió (P>0.05) por efecto de las dietas experimentales. Se recomienda incluir la enzima lipasa (Lipase AN6) en dietas hipocalóricas (-0.42 MJ/kg) para reducir su costo, sin afectar los indicadores bioproductivos de pollitas ponedoras.

Palabras clave: 
aves de crecimiento lento, dieta económica, enzima exógena, productividad

Introducción

 

Actualmente, las enzimas exógenas son usadas comúnmente en las dietas de las aves, sobre todo para potenciar el comportamiento productivo, contribuir con producciones amigables con el medio ambiente e incrementar la factibilidad económica (Aftab y Bedford 2018Aftab, U. & Bedford, M. R. 2018. The use of NSP enzymes in poultry nutrition: myths and realities. World's Poultry Science Journal, 74(2): 277-286. ISSN: 1743-4777. https://doi.org/10.1017/S0043933918000272). Además, las enzimas exógenas se han utilizado de forma individual o combinadas con diversas alternativas naturales para eliminar y/o restringir el uso de los antibióticos promotores de crecimiento en las aves (Cowieson y Kluenter 2019Cowieson, A.J. & Kluenter, A.M. 2019. Contribution of exogenous enzymes to potentiate the removal of antibiotic growth promoters in poultry production. Animal Feed Science and Technology, 250: 81-92, ISSN: 3778-8401. https://doi.org/10.1016/j.anifeedsci.2018.04.026).

Las lipasas son enzimas con propiedades funcionales aplicadas a la producción animal y en diversos campos: agroquímica, medicina, farmacéutica e industria alimentaria (Cavalcante et al. 2021Cavalcante, F.T.T., Neto, F.S., de Aguiar Falcão, I.R., da Silva Souza, J.E., de Moura Junior, L.S., da Silva Sousa, P. & dos Santos, J.C. 2021. Opportunities for improving biodiesel production via lipase catalysis. Fuel, 288: 119577, ISSN: 0016-2361. https://doi.org/10.1016/j.fuel.2020.119577). También las lipasas participan en la hidrólisis de los triglicéridos en ácidos grasos y glicerol, que resulta importante para controlar los niveles de lípidos en sangre (Olivecrona 2016Olivecrona, G. 2016. Role of lipoprotein lipase in lipid metabolism. Current Opinion in Lipidology, 27(3): 233-241, ISSN: 1473-6535. https://doi.org/10.3390/biomedicines9070782). Específicamente, en las aves, la asimilación de los lípidos ocurre en la interfase lípido-agua porque esta biomolécula (lípidos) es insoluble en medio acuoso, contrario a las enzimas digestivas (Gole et al. 2022Gole, M., Manwar, S., Khose, K., Rathod, P., Kumar, D. & Ganguly, R.K.B. (2022) Efficacy evaluation of a poultry feed emulsifier in broiler chicken. The Pharma Innovation Journal, 11(1): 1119-1123, ISSN: 2349-8242. URL: https://www.thepharmajournal.com/archives/2022/vol11issue1S/PartQ/S-11-1-189-199.pdf). Upadhaya et al. (2019)Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1 informaron que las aves en los primeros días de vida producen bajas concentraciones de lipasa pancreática, lo que puede provocar la digestibilidad pobre de los lípidos (principalmente ácidos grasos saturados) y afectar, además, la eficiencia alimentaria.

Castro y Kim et al. (2021)Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117 refirieron resultados positivos cuando utilizaron una lipasa dietética en las primeras etapas de vida de los pollos. Sin embargo, Movagharnejad et al. (2020)Movagharnejad, M., Kazemi-Fard, M., Rezaei, M. & Teimuri-Yansari, A. 2020. Effects of lysophospholipid and lipase enzyme supplementation to low metabolizable energy diets on growth performance, intestinal morphology and microbial population and some blood metabolites in broiler chickens. Brazilian Journal of Poultry Science, 22(2): 1-8, ISSN: 1806-9061. https://doi.org/10.1590/1806-9061-2019-1118 no encontraron mejoras en el comportamiento productivo de pollos, cuando usaron una enzima lipasa combinada con lisofosfolípidos en las dietas. Pocos estudios se han enfocado en la utilización de enzimas lipasas en dietas hipocalóricas en aves de crecimiento lento como pollitas ponedoras, sobre todo para disminuir el uso del corrector energético, reducir los costos de producción, mantener y mejorar la eficiencia alimentaria de esta categoría avícola, lo que repercute en la productividad de la futura gallina ponedora. El objetivo del presente estudio fue evaluar el efecto de una enzima lipasa (Lipase AN6) en los indicadores bioproductivos de pollitas ponedoras.

Materiales y métodos

 

Ubicación experimental

 

El experimento se desarrolló en el Centro de Investigación y Enseñanza Avícola de la Escuela Agrícola Panamericana, Zamorano, ubicada a 32 km entre Tegucigalpa-Danlí, Honduras. La temperatura promedio anual es de 26 °C, con precipitación promedio de 1100 mm y altura de 800 m s.n.m.

Animales, diseño experimental y tratamientos

 

Un total de 700 pollitas ponedoras Dekalb White®, de un día de edad y sexadas, se ubicaron durante 17 semanas según diseño completamente al azar con dos tratamientos y siete repeticiones por tratamiento. Los tratamientos consistieron en dietas basales (T1), formuladas con base de harina de maíz y soya y la inclusión de 0.01% de lipasa en dietas hipocalóricas (T2) (-0.42 MJ/kg). La enzima lipasa (Lipase AN6) se adquirió en la Empresa de Enzimas y Productos Químicos S.A. (Enziquim), México. Además, se consideró la recomendación de la empresa para el nivel de inclusión y la liberación energética (0.42 MJ/kg) de la enzima.

Se utilizaron cinco periodos experimentales: 1-3 semanas, 4-6 semanas, 7-10 semanas, 11-15 semanas y 16-17 semanas. Las dietas se confeccionaron en la fábrica de piensos del Centro de Investigación y Enseñanza Avícola, Universidad de Zamorano. Se tomaron en cuenta los requerimientos descritos en el manual de la línea genética utilizada (Hendrix-Genetics 2020Hendrix-Genetics. 2020. Nutrition Guide. Available at: https://layinghens.hendrix-genetics.com/documents/883/Nutrition_Guide_English_vs4.pdf. Consulted: June 17/2023). En la tabla 1 se muestran los ingredientes y los aportes nutricionales de las dietas experimentales.

Tabla 1.  Ingredientes y aportes nutricionales de las dietas pollitas Dekalb White® (1-17 semanas).
Ingredientes, % 1-3 semanas 4-6 semanas 7-10 semanas 11-15 semanas 16-17 semanas
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
Harina de maíz 55.745 58.255 60.64 61.28 55.82 58.22 53.95 56.42 54.71 57.13
Harina de soya 34.11 33.74 29.92 29.37 26.90 26.62 21.86 21.56 26.37 26.07
Premezcla1 0.50 0.50 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
Sal común 0.28 0.28 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25
Bicarbonato de sodio 0.23 0.23 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
Aceite de palma 3.82 1.68 1.60 0.00 4.71 2.6 4.98 2.84 6.08 3.95
Salvado de trigo 2.00 2.00 3.00 4.50 8.00 8.00 15.00 15.00 4.00 4.00
Colina 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
DL-Metionina 0.20 0.20 0.20 0.20 0.18 0.17 0.13 0.12 0.19 0.19
L-Treonina 0.00 0.00 0.04 0.04 0.03 0.02 0.0 0.00 0.00 0.00
L-Lisina 0.09 0.09 0.11 0.11 0.09 0.09 0.06 0.06 0.02 0.02
Carbonato de calcio 1.75 1.75 1.68 1.68 1.61 1.61 1.61 1.61 5.95 5.95
Fosfato monocálcico 1.03 1.02 1.60 1.60 1.45 1.45 1.18 1.15 1.45 1.45
Secuestrante de micotoxinas 0.075 0.075 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Enzimas exógenas2 0.07 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Coccidiostato 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Enzima lipasa 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
Costo (USD/t) 548.64 536.55 537.04 524.83 537.98 525.57 511.80 499.33 538.6 526.74
Aportes (%)
Energía metabolizable (MJ/kg) 12.34 11.92 11.92 11.51 12.34 11.92 12.13 11.72 12.34 11.92
Proteína bruta 20 20 18.5 18.5 17.5 17.5 16.00 16.00 16.50 16.50
Ca 1.05 1.05 1.00 1.00 0.95 0.95 0.90 0.90 2.50 2.50
P disponible 0.45 0.45 0.47 0.47 0.45 0.45 0.40 0.40 0.43 0.43
Lisina 1.10 1.10 0.96 0.96 0.88 0.88 0.76 0.76 0.78 0.78
Met+Cys 0.80 0.80 0.72 0.72 0.67 0.67 0.59 0.59 0.66 0.66
Thr 0.70 0.70 0.65 0.65 0.60 0.60 0.52 0.52 0.55 0.55
Na 0.18 0.18 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18
Cl 0.20 0.20 0.17 0.17 0.17 0.17 0.18 0.18 0.18 0.18

1Cada kg contiene: vit. A 10 x 106 U.I., D3 1,5x 106 U.I., K3 2100 mg, E 10000 mg, tiamina, 800 mg, riboflavina 2500 mg, ácido pantoténico 10000 mg, piridoxina 2500 mg, ácido fólico 250 mg, biotina 100 mg, vit. B12 15 mg, manganeso 60000 mg, cobre 8000 mg, hierro 60000 mg, zinc 50000 mg, selenio 200 mg, iodo 800 mg, cobalto 500 mg, antioxidante 125000 mg

2El complejo multienzimático Lumis Lbzyme X50® está compuesto por xilanasa (25000 U/g), mananasa (250 UI/g), betaglucanasa (2500 UI/g), celulasa (400000 U/g), pectinasa (80 UI/g), galactosidasa (100 U/g), proteasa (2500 Hut/g), amilasa (60000 U/g) y fitasas (15000 FTU /g)

Condiciones experimentales

 

Cada repetición correspondió a un corral con dimensiones de 5.92 m2 c/u (1.6 × 3.7 m), donde se ubicaron 50 pollitas/corral, a razón de 10.13 aves/m2. El alimento y el agua se ofrecieron ad libitum en comederos tipo tolva y bebederos automático dual, respectivamente. La temperatura y la ventilación en el galpón se controlaron por criadoras de gas, manejo de cortinas y ventiladores, respectivamente. El galpón se desinfectó con amonio cuaternario (5 %) 24 h antes del ingreso del lote de pollitas. No se administraron medicamentos ni cuidados veterinarios terapéuticos durante toda la etapa experimental.

Indicadores productivos

 

Todos los indicadores bioproductivos se determinaron en los períodos de 1-3 (inicio 1), 4-6 (inicio 2), 7-10 (crecimiento), 11-15 (desarrollo) y 16-17 semanas (prepostura). La viabilidad se determinó por los animales vivos entre los existentes al inicio del experimento. El pesaje inicial y final de cada etapa se realizó de forma individual en una balanza digital SARTORIUS modelo BL 1500 con precisión ± 0.1 g. El consumo de alimento acumulado se determinó mediante el método de oferta y rechazo. Se calculó la conversión alimentaria como la cantidad de alimento ingerido para una ganancia de 1 g de peso vivo (PV). En la semana 17 se calculó la uniformidad, según el coeficiente de variación (CV, %).

Análisis estadísticos

 

Se utilizó un diseño completamente aleatorizado. Se realizó la prueba de t de Student para dos muestras independientes con la utilización del programa SPSS 23.1.2014 (SPSS Inc., Chicago, IL, EE.UU.). Se tomaron valores de P<0.05 para indicar diferencias significativas. La viabilidad se determinó por comparación de proporciones mediante el programa COMPRAPRO 1.0® (Font et al. 2007Font, H., Noda, A., Torres, V., Herrera, M., Lizazo, D., Sarduy, L. & Rodríguez, L. 2007. COMPARPRO: Comparación de Proporciones, Versión: 1.0. Mayabeque, Cuba).

Resultados y discusión

 

En la tabla 2 se muestra el efecto de la inclusión de una enzima exógena (lipasa) en el comportamiento productivo de pollitas ponedoras, alimentadas con dietas hipocalóricas. En la etapa inicial (inicio 1, 1-3 semanas), la dieta con la inclusión de la lipasa no afectó el peso vivo, consumo de alimento, conversión alimentaria y viabilidad. Sin embargo, en la segunda etapa (inicio 2, 4-6 semanas), la lipasa mejoró el peso vivo y redujo la conversión alimentaria, sin modificar el consumo de alimento y la viabilidad.

Tabla 2.  Efecto de la inclusión de una enzima lipasa en los indicadores bioproductivos de pollitas ponedoras Dekalb White®
Indicadores Tratamientos experimentales EE ± Valor P
T1 T2
1-3 semanas
Peso vivo inicial, g 35.71 35.15 0.430 0.3741
Peso vivo, g 189.50 187.62 1.953 0.5108
Consumo de alimento, g 396.00 394.86 1.063 0.4624
Conversión alimentaria 2.58 2.59 0.028 0.7492
Viabilidad, % 98.00 97.71 0.841 0.8147
4-6 semanas
Peso vivo, g 408.96 449.36 5.413 0.0010
Consumo de alimento, g 507.23 497.12 8.748 0.4292
Conversión alimentaria 2.32 1.95 0.057 0.0010
Viabilidad, % 99.14 99.12 0.411 0.9764
7-10 semanas
Peso vivo, g 684.24 687.95 5.388 0.6351
Consumo de alimento, g 892.05 914.56 18.060 0.3954
Conversión alimentaria 3.24 3.73 0.093 0.0524
11-15 semanas
Peso vivo, g 1064.60 1088.55 9.823 0.1105
Consumo de alimento, g 1561.39 1645.73 33.967 0.0154
Conversión alimentaria 3.24 4.11 0.054 0.0010
Viabilidad, % 99.41 99.71 0.336 0.5367
16-17 semanas
Peso vivo, g 1190.39 1199.19 8.099 0.4573
Consumo de alimento, g 685.39 652.91 19.455 0.2615
Conversión alimentaria 5.52 5.95 0.288 0.3124
1-17 semanas
Consumo de alimento, g 4042.06 4105.17 63.759 0.4974
Conversión alimentaria 3.50 3.52 0.037 0.6238
Uniformidad 2.35 2.20

T1 dieta control, T2 inclusión de 0.01 % de una enzima lipasa en dietas hipocalórica (-0.42 MJ/kg).

En las etapas de crecimiento (7-10 semanas) y prepostura (16-17), ningún indicador productivo cambió por efecto de los grupos experimentales. No obstante, en la etapa de desarrollo (11-15 semanas), la dieta hipocalórica con la lipasa incrementó el consumo de alimento y la conversión alimentaria, además, la uniformidad fue similar entre tratamientos, según el coeficiente de variación.

Uno de los objetivos del experimento fue comprobar si la enzima lipasa, que aporta 0.42 MJ/kg de energía metabolizable (según la información de la empresa Enziquim), reduce el costo de las dietas (tabla 1), sin modificar el comportamiento productivo de pollitas ponedoras desde el nacimiento hasta la prepostura (1-17 semanas), al considerar que las aves jóvenes tienen baja actividad enzimática (Temairaev et al. 2020Temiraev, V.H., Baeva, A.A., Vityuk, L.A., Mamukaev, M.N., Yurina, N.A., Ktsoeva, I.I. & Vologirova, F.A. 2020. Effect of probiotics on digestive metabolism in growing and laying poultry birds. Journal of Livestock Science, 11(1): 33-39, ISSN: 2277-6214. https://doi.org/10.33259/JLivestSci.2020.33-39). Este es el caso de la lipasa endógena, que se produce en el páncreas y participa en el metabolismo de los lípidos para catabolizar la hidrolisis de triglicéridos a glicerol y ácidos grasos libres (Wickramasuriya et al. 2020Wickramasuriya, S.S., Macelline, S.P., Cho, H.M., Hong, J.S., Park, S.H. & Heo, J.M. 2020. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Frontiers in Veterinary Science, 7: 583998. ISSN: 2297-1769. https://doi.org/10.3389/fvets.2020.583998).

El consumo de alimentos de las pollitas en las semanas 1-3 (inicio 1) se mantuvo sin cambios a pesar de la reducción energética (0.42 MJ/kg) en la dieta cuando se incluyó la enzima lipasa (tabla 2). Según Lamot et al. (2017)Lamot, D.M., Sapkota, D., Wijtten, P.J.A., van den Anker, I., Heetkamp, M.J.W., Kemp, B. & van den Brand, H. 2017. Diet density during the first week of life: Effects on energy and nitrogen balance characteristics of broiler chickens. Poultry Science, 96(7): 2294-2300, ISSN: 0032-5791. http://dx.doi.org/10.3382/ps/pex020 y Barzegar et al. (2020)Barzegar, S., Wu, S.B., Choct, M. & Swick, R.A. 2020. Factors affecting energy metabolism and evaluating net energy of poultry feed. Poultry Science, 99(1): 487-498, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez554, la concentración energética en la dieta tiene influencia directa en el consumo de alimento en las aves, lo que demuestra que las dietas tuvieron similar aporte de energía metabolizable (tabla 1). Bakare et al. (2021)Bakare, A.G., Zindove, T.J., Iji, P.A., Stamatopoulos, K. & Cowieson, A.J. 2021. A review of limitations to using cassava meal in poultry diets and the potential role of exogenous microbial enzymes. Tropical Animal Health and Production, 53(4): 1-13, ISSN: 1573-7438. https://doi.org/10.1007/s11250-021-02853-6 informaron el interés creciente del uso de enzimas exógenas en las dietas de las aves para mejorar la utilización de los nutrientes y disminuir el costo de las dietas. Al parecer, el uso de la lipasa provocó mayor disponibilidad de nutrientes (lípidos, ácidos grasos y glicerol), importante para maximizar la actividad enzimática en los animales jóvenes (Valentini et al. 2020Valentini, J., Da Silva, A.S., Fortuoso, B.F., Reis, J.H., Gebert, R.R., Griss, L.G. & Tavernari, F.C. 2020. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chemistry, 330: 127187, ISSN: 0308-8146. https://doi.org/10.1016/j.foodchem.2020.127187). Además, la administración oral de la lipasa redujo el costo de la dieta (1-3 semanas) en 12.09 USD/t (tabla 1).

El uso de la enzima lipasa en dietas sin el corrector energético (aceite de palma africana) disminuyó el costo de las dietas en 12.21 USD/t (tabla 1) y promovió el peso vivo desde las semanas 4-6 (tabla 2). Zhu et al. (2014)Zhu, H.L., Hu, L.L., Hou, Y.Q., Zhang, J. & Ding, B.Y. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poultry Science, 93(7): 1704-1712, ISSN: 1350-4177. https://doi.org/10.3382/ps.2013-03626 informaron que la utilización de una enzima lipasa en dietas hipocalóricas mejoró la actividad de las enzimas pancreática y pepsina, además, incrementó la altura y área de superficie de las vellosidades del yeyuno e íleon en las aves. Esto confirma que, en aves jóvenes, el uso de la lipasa favorece la digestión y la absorción de los lípidos e incide directamente en la eficiencia alimentaria de estos animales de crecimiento lento. Asimismo, Siqueira et al. (2021)Siqueira, L.A., Almeida, L.F., Fernandes, J.P.A., Araújo, M.C.U. & Lima, R.A.C. 2021. Ultrasonic-assisted extraction and automated determination of catalase and lipase activities in bovine and poultry livers using a digital movie-based flow-batch analyzer. Ultrasonics Sonochemistry, 79: 105774, ISSN: 1350-4177. https://doi.org/10.1016/j.ultsonch.2021.105774 recomendaron el uso de lipasas exógenas en las dietas, debido a que las aves no producen lipasa lingual y gástrica. Es en la molleja e intestino delgado donde ocurre la emulsificación de los lípidos. Sin embargo, las aves jóvenes tienen un sistema digestivo inmaduro, que provoca baja digestibilidad de los lípidos y menor aprovechamiento de la energía metabolizable de la dieta.

El grupo experimental con la lipasa provocó mejor eficiencia alimentaria de las aves en la fase inicio 2 (tabla 2). Aunque todavía existen contradicciones sobre los requerimientos de la energía metabolizable en las primeras etapas de vida en las pollitas, Savoldi et al. (2012)Savoldi, T.L., Nunes, R.V., Scherer, C., Tsutsumi, C.Y., Scheneiders, J.L., Marques, M.F.G. & Meza, S.K.L. 2012. Níveis de energia metabolizável e lisina digestível para o desempenho de pintos de corte de 1 a 10 dias de idade. Scientia Agraria Paranaensis, 11: 49-58, ISSN: 1983-1471. https://doi.org/10.18188/sap.v11io.7870 afirmaron que dietas con altos niveles de energía metabolizable durante la fase inicial favorecen la ganancia de peso y la conversión alimentaria. Además, Noy y Sklan (1995)Noy, Y. & Sklan, D. 1995. Digestion and absorption in the young chick. Poultry Science, 74(2): 366–373, ISSN: 0032-5791. https://doi.org/10.3382/ps.0740366 encontraron que las aves tienen digestibilidad de las grasas del 85 % en los primeros días posteclosión, y solo el factor crecimiento mejora la digestibilidad de esta biomolécula. Así, el uso de las enzimas lipasas podría potenciar la absorción de los lípidos en las primeras etapas de vida de las aves. Upadhaya et al. (2019)Upadhaya, S.D., Yun, K.S., Zhao, P.Y., Lee, I.S. & Kim, I.H. 2019. Emulsifier as a feed additive in poultry and pigs-a review. Animal Nutrition and Feed Technology, 19(2): 323-336, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2019.00030.1 informaron en pollos de engorde que la suplementación de lipasa mejoró la durabilidad del pelet, la producción de enzimas endógenas y la absorción de los lípidos y vitaminas liposolubles.

Durante la etapa de crecimiento (7-10 semanas), los indicadores productivos fueron similares en las aves alimentadas con la inclusión de 0.01 % de lipasa en dietas hipocalóricas (11.92 MJ/kg) y reducción del aceite de palma africana (2.11 %) y del costo de la dieta en 12.41 USD/t (tabla 1). Los resultados demuestran que la inclusión dietética de la lipasa exógena tiene mayor efecto promotor de crecimiento en las semanas previas (4-6 semanas) a la fase de crecimiento (7-10 semanas). De Oliveira et al. (2019)de Oliveira, L.S., Balbino, E.M., Silva, T.N.S., Ily, L., da Rocha, T.C., de Oliveira Strada, E.S. & de Brito, J.A.G. 2019. Use of emulsifier and lipase in feeds for broiler chickens. Semina: Ciências Agrárias, 40(6Supl2): 3181-3196, ISSN: 1679-0359. https://doi.org/10.5433/1679-0359.2019v40n6Supl2p3181 encontraron que el uso de una lipasa dietética cambió en el consumo de alimento de las aves, con mayor eficacia en las etapas iniciales. Los estudios con las enzimas lipasas en aves de crecimiento rápido (pollos) son insuficientes (Munir y Maqsood 2013Munir, K. & Maqsood, S. 2013. A review on role of exogenous enzyme supplementation in poultry production. Emirates Journal of Food and Agriculture, 25(1): 66-80, ISSN: 2079-0538. https://doi.org/10.9755/ejfa.v25i1.9138). Al-Marzooqi y Leeson (2000)Al-Marzooqi, W. & Leeson, S. 2000. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poultry Science, 79(7): 956-960. ISSN: 1350-4177. https://doi.org/10.1093/ps/79.7.7.956 refirieron que niveles crecientes de una enzima lipasa no cambiaron el comportamiento productivo y el peso relativo de los órganos internos durante 42 d de edad. Al parecer, en aves de crecimiento lento (como las pollitas), el efecto es más evidente. Sin embargo, otros estudios con esta enzima lipasa son necesarios para comprobar esta hipótesis.

Durante la fase de desarrollo (11-15 semanas), las pollitas se alimentan con dietas de mantenimiento, bajas en energía metabolizable y proteína bruta, y ricas en compuestos fibrosos, el peso vivo de los grupos experimentales fue similar a lo informado por el manual de la línea genética (Hendrix-Genetic 2022Hendrix-Genetics. 2022. Management Guide. Available at: https://layinghens.hendrix-genetics.com/en/technical-support/management/. Consulted: June 17/2023). El costo de las dietas con lipasa disminuyó en 12.47 USD/t (tabla 1, 11-15 semanas). Sin embargo, este tratamiento experimental incrementó el consumo de alimento y, por ende, la conversión alimentaria (tabla 2). Nogueira et al. (2013)Nogueira, W.C.L., Velásquez, P.A.T., Furlan, R.L. & Macari, M. 2013. Effect of dietary energy and stocking density on the performance and sensible heat loss of broilers reared under tropical winter conditions. Brazilian Journal of Poultry Science, 15: 53-57, ISSN: 1806-9061. https://doi.org/10.1590/S1516-635X2013000100009 encontraron que la suplementación de lecitina de soya, sola o en combinación con una enzima lipasa, disminuyó la eficiencia productiva debido al aumento de la conversión alimentaria de pollos de ceba. Otros estudios informaron que la inclusión dietética con 0.075 % de lipasa mejoró la absorción de los lípidos. Sin embargo, disminuyó el consumo de alimento y la ganancia de peso vivo en las aves, debido a la alta concentración de la enzima exógena (lipasa) y a la contaminación con colecistoquinina (Al-Marzooqi y Leeson 1999Al-Marzooqi, W. & Leeson, S. 1999. Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poultry Science, 78(11): 1561-1566. ISSN: 0032-5791. https://doi.org/10.1093/ps/78.11.1561). Al parecer, la estimulación del consumo voluntario en esta etapa productiva (desarrollo) está relacionada con que la lipasa tiene menor liberación energética que en etapas iniciales, por lo que las aves consumen más alimento por el déficit energético para las funciones orgánicas. Un efecto contrario informaron Wu et al. (2005)Wu, G., Bryant, M.M., Voitle, R.A. & Roland Sr, D.A. 2005. Effect of dietary energy on performance and egg composition of Bovans White and Dekalb White hens during phase I. Poultry Science, 84(10): 1610-1615, ISSN: 1350-4177. https://doi.org/10.1093/ps/84.10.1610, quienes refieren que dietas con alta concentración energética disminuyen el consumo voluntario de las aves en todas las etapas productivas.

En la prepostura (16-17 semanas), el requerimiento de energía está directamente relacionado con el peso corporal, la temperatura ambiente, el emplume, y la futura producción de huevos (Hadinia et al. 2018Hadinia, S.H., Carneiro, P.R.O., Ouellette, C.A. & Zuidhof, M.J. (2018) Energy partitioning by broiler breeder pullets in skip-a-day and precision feeding systems. Poultry Science, 97(12): 4279-4289, ISSN: 1350-4177. https://doi.org/10.3382/ps/pey283). La inclusión de lipasa redujo en 2.14 % el uso del aceite de palma africana y el costo de las dietas en 11.86 USD/t (tabla 1). Al parecer, la enzima suplió la energía faltante en la dieta hipocalórica (-0.42 MJ/kg), ya que el desempeño productivo fue similar para ambos tratamientos. Aunque no se encontraron estudios del efecto de las enzimas lipasas en la etapa de prepostura, Castro y Kim (2021)Castro, F.L. & Kim, W.K. 2021. Exogenous lipase supplementation to low-energy, low-protein, and low–amino acid diets for broiler chickens from one to 42 d. Journal of Applied Poultry Research, 30(1):100–117, ISSN: 1537-0437. https://doi.org/10.1016/j.japr.2020.100117 refirieron que la inclusión de una enzima lipasa en las dietas de finalización (29-42 días) incrementó la ganancia de peso vivo y disminuyó los efectos negativos de dietas con baja concentración de nutrientes en aves de crecimiento rápido.

De forma global (1-17 semanas), la utilización de la enzima lipasa (Lipase AN6) mantuvo los indicadores bioproductivos de pollitas ponedoras alimentadas con dietas hipocalóricas y redujo la utilización del corrector energético (aceite de palma africana) entre 0 a 2.14 % en la dieta. Resultados similares señalaron Suresh et al. (2014)Suresh, B.N., Reddy, B.S.V., Prabhu, T.M., Manju, G.U. & Suma, N. 2014. Effect of dietary inclusion of lipid utilizing agents and NSP-degrading enzymes on performance of layers. Animal Nutrition and Feed Technology, 14(2): 379-384, ISSN: 0972-2963. https://doi.org/10.5958/0974-181X.2014.01330.4, quienes no encontraron cambios para el consumo de alimento y conversión alimentaria cuando utilizaron tratamientos que incluían agentes emulsificantes de los lípidos (0.2 g de lipasa y 0.2 g/kg de lecitina de soya). Además, Lichovníková et al. (2002)Lichovnikova, M., Zeman, L., Klecker, D. & Fialova, M. 2002. The effects of the long-term feeding of dietary lipase on the performance of laying hens. Czech Journal of Animal Science, 47(4): 141-145, ISSN: 1805-9309. URL: https://agris.fao.org/agris-search/search.do?recordID=CZ2002000806 informaron que la adición de lipasa en dietas hipocalóricas mantuvo inalterable los indicadores productivos en gallinas ponedoras de 72 semanas de edad. Por su parte, Meng et al. (2004)Meng, X., Slominski, B.A. & Guenter, W. 2004. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poultry Science, 83(10): 1718-1727, ISSN: 1350-4177. https://doi.org/10.1093/ps/83.10.1718 señalaron que la productividad y digestibilidad de nutrientes de pollos de ceba no se afectó por la inclusión dietética de enzimas exógenas (incluida lipasa).

La uniformidad es uno de los indicadores más importantes en la producción de pollitas, ya que evalúa la homogeneidad del lote, lo que repercute directamente en la futura ponedora (Asensio et al. 2020Asensio, X., Abdelli, N., Piedrafita, J., Soler, M.D. & Barroeta, A.C. 2020. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 99(5): 2633-2644, ISSN: 1350-4177. https://doi.org/10.1016/j.psj.2020.01.015). Según Delgado et al. (2020)Delgado, A., Valdivié, M. & Martínez, Y. 2020. Evaluación del raquis de maíz troceado como cama avícola sobre el desempeño productivo de pollitas ponedoras de reemplazo Dekalb White®. Revista de Producción Animal, 32(2): 14-26; ISSN: 2224-7920. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-79202020000200014#:~:text=Est%C3%A1%20investigaci%C3%B3n%20confirma%20que%20el,gen%C3%A9tica%20(Dekalb%2C%202014), un CV de 8 % corresponde a lotes muy uniformes. Estos autores encontraron que el CV se incrementa con la edad de las aves. Esto demuestra que ambos grupos experimentales tuvieron una parvada uniforme en la semana 17 de edad (tabla 2) y que la lipasa no modificó este indicador productivo. Sweeney et al. (2022)Sweeney, K.M., Aranibar, C.D., Kim, W.K., Williams, S.M., Avila, L.P., Starkey, J.D. & Wilson, J.L. 2022. Impact of every-day versus skip-a-day feeding of broiler breeder pullets during rearing on body weight uniformity and reproductive performance. Poultry Science, 101959, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2022.101959 informaron que el crecimiento de las pollitas con un peso vivo similar en el lote influye en la edad al primer huevo, en la persistencia de postura y en la uniformidad del peso del huevo de gallinas ponedoras. En este estudio, no fue necesario el reagrupe para homogeneizar el lote, que es una práctica común en la crianza de pollitas y reemplazo de reproductores (García et al. 2019García, J., Mandalawi, H.A., Fondevila, G. & Mateos, G.G. (2019) Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight. Poultry Science, 98(9): 3937-3949, ISSN 1350-4177. https://doi.org/10.3382/ps/pez129).

Conclusiones

 

La inclusión dietética con 0.01 % de la enzima Lipase AN6 con un aporte energético de 0.42 MJ/kg redujo el nivel de inclusión del aceite de palma africana y el costo de las dietas en todas las etapas productivas. Asimismo, el empleo de esta enzima no afectó la productividad y la uniformidad de las pollitas ponedoras Dekalb White® (1-17 semanas).