Cuban Journal of Agricultural Science Vol. 57, january-december 2023, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v57e16
Animal Science

Arthropods on Platycyamus regnellii (Fabaceae) leaf surface: indice and ecological relationships. Technical note

 

iDG. Leão Demolin-Leite1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

iDNurys Valenciaga2Instituto de Ciencia Animal, San José de Las Lajas, Mayabeque, Cuba*✉:nvalenciaga1966@gmail.com

iDPatrícia Ferreira Santos Guanabens3Instituto Federal de Minas Gerais, Arcos, Minas Gerais State, Brazil.

iDM. Alvarenga Soares4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

iDJúlia Letícia Silva1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

iDGleisiany Nunes Gomes4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

iDJ. Cola Zanuncio5Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil


1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

2Instituto de Ciencia Animal, San José de Las Lajas, Mayabeque, Cuba

3Instituto Federal de Minas Gerais, Arcos, Minas Gerais State, Brazil.

4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

5Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil

 

*Email: nvalenciaga1966@gmail.com

Platycyamus regnellii is a Brazilian tree used in landscaping, degraded area recovery, and its wood for furniture. It is evaluated the ecological indices and interactions between the groups of arthropods on P. regnellii leaf surface. Highest numbers of phytophagous arthropods Orthoptera Tettigoniidae and Tropidacris collaris (Romaleidae), and Hemiptera Pentatomidae; natural enemies Hymenoptera Camponotus sp. and Pseudomyrmex termitarius (Formicidae), and Diptera Dolichopodidae; and abundance and species richness of chewing insects and protocooperating ants were observed on the adaxial leaf face of P. regnellii plants. Abundance of spiders correlated, positively, with that of chewing insects and number of spiders with that of T. collaris. The knowledge of the leaf face, preferred by herbivorous insects, helps in the correct application of pesticides in integrated pest management programs.

Key words: 
abundance, diversity, species richness, sucking insects

Received: 11/1/2023; Accepted: 26/10/2023

Conflict of interest: The authors declare that there was not conflict among them.

Authors contribution: G. Leão Demolin-Leite: Conceptualization, Investigation, Methodology, Formal analysis, Funding acquisition, Writing - original draft. Nurys Valenciaga: Supervision, Writing - original draft, Writing - review & editing. Patrícia Ferreira Santos Guanabens: Investigation, Data curation, Writing - original draft. M. Alvarenga Soares: Data curation, Formal analysis, Writing - original draft. Júlia Letícia Silva: Investigation, Data curation, Writing - original draft. Gleisiany Nunes Gomes: Conceptualization, Methodology, Writing - original draft. J. Cola Zanuncio: Writing - review & editing.

Conflict of interest: The authors declare that there was not conflict among them.

Authors contribution: G. Leão Demolin-Leite: Conceptualization, Investigation, Methodology, Formal analysis, Funding acquisition, Writing - original draft. Nurys Valenciaga: Supervision, Writing - original draft, Writing - review & editing. Patrícia Ferreira Santos Guanabens: Investigation, Data curation, Writing - original draft. M. Alvarenga Soares: Data curation, Formal analysis, Writing - original draft. Júlia Letícia Silva: Investigation, Data curation, Writing - original draft. Gleisiany Nunes Gomes: Conceptualization, Methodology, Writing - original draft. J. Cola Zanuncio: Writing - review & editing.

CONTENT

Platycyamus regnellii (Fabaceae), native to Brazil, is distributed from southern Bahia to Espírito Santo States, Goiás, Minas Gerais, Rio de Janeiro, Paraná, and São Paulo states, especially, in the altitude semi deciduous forests. This plant is used to recover degraded areas and their wood in civil construction and carpentry, in the treatment of fever, poor digestion, and inappetence. Also, as medicinal plant against diabetes (Cruz et al. 2022 Cruz, P.M. da S.N., Araujo, T.A. de S., Andrade, B. de A., Correa, A.J.C., Vilanova, M.V. de S. & Amorim, E.L.C. 2022. "Medicinal plants and diabetes: An ethnopharmacological study in Brazilian Northeast". Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 21(5): 593-606, ISSN: 0717-7917. https://doi.org/10.37360/blacpma.22.21.5.36 ) and, for having showy flowers, in landscaping in parks and gardens. In addition, P. regnellii can be used in consortium with pastures in order to provide shade for cattle (e.g. thermal comfort) and improving the quality of the pasture (e.g. nutrient recycling) (Martins et al. 2008 Martins J.L., Fagnani M.A., Silva I.J.O., Piedade S.M.S. & Conceição M.N. 2008. "Evaluation of the arboreal shades quality in pasture". Livestock Environment VIII, 31 August - 4 September 2008, Iguassu Falls, Brazil. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.25592 ). However, the arthropodfauna of this plant is little studied with only Phenacoccus sp. (Hemiptera: Pseudococcidae) related as a potential pest (Gomes 2018 Gomes J.B. 2018. Horizontal stratification of phytophagous insects, and natural enemies and foliar compound chemicals on Platycyamus regnellii Benth. (Fabaceae) in a degraded area. UFVJM, Diamantina, 50p., CDD 634.9 Available: http://acervo.ufvjm.edu.br/jspui/handle/1/1885, [Consulted: September 01, 2018]. ).

Insects can damage different parts of the plant or its leaves (adaxial and abaxial faces). Knowledge of the preferred leaf face is important for pest control (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ), which is more difficult for those who live and feed on the abaxial. Sucking insects, in general, prefer abaxial leaf face due to it has softer tissue, thinner epidermis, and more prominent ribs (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ), besides of to greater protection against climatic factors (e.g. solar radiation) and natural enemies. On the other hand, arthropods may prefer the adaxial leaf face due to lower force applied to remain on this face (Salerno et al. 2018 Salerno G., Rebora M., Gorb E. & Gorb S. 2018. "Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces". Scientific Reports, 8, ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-29175-2 ). Relationships between insects can be intra or interspecific, with or without prejudice to the individuals involved - harmonic (e.g. protocooperation ants and sucking insects) or when at least one is harmed - disharmonious (e.g. predation or competition) (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ). It is evaluated the ecological indices (abundance, diversity, and species richness) and interactions between the groups of arthropods on P. regnellii leaf surface, during 24 months, in a degraded area.

The work was carried out in a degraded area of the “Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG)” in the municipality of Montes Claros, Minas Gerais state, Brazil (latitude 16º 51' 38" S, longitude 44º 55' 00" W, altitude 943 m) for 24 months (April 2015 to March 2017). The climate of this area, according to the Köppen climate classification, is tropical dry, with annual precipitation between 1000 and 1300 mm, dry winter and average annual temperature ≥ 18 ºC. The soil is Neosol Litolic with an Alic horizon (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ).

The P. regnellii seedlings were planted in hole (40 x 40 x 40 cm) when they were 30 cm high, with a 2-meter spacing between them. The soil was corrected with dolomitic limestone, increasing base saturation to 50 %, natural phosphate, gypsum, FTE (Fritted Trace Elements), potassium chloride and micronutrients equivalent to the need determined in the soil analysis. A total of 20 L of dehydrated sewage sludge was placed in each hole (single dose) and the biochemical characteristics of this fertilizer have been reported (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ). In March 2014, P. regnellii seedlings were prepared in a nursery in plastic bags (16 x 24 cm) with reactive natural phosphate mixed with the substrate at a dosage of 160 g, which were then planted in the final location in September of the same year. The seedlings were irrigated twice a week until the beginning of the rainy season (October). The design was completely randomized with 48 replications (plants), with the adaxial and abaxial leaf faces as the treatments.

Arthropods were counted on the leaf faces (adaxial and abaxial) between 7:00 and 11:00 a.m. on vertical axis (apical, middle and basal parts) and horizontal axis (north, south, east and west) of the canopy, totaling 12 leaves/plant/evaluation, in the 48 P. regnellii plants, six months of age, for 24 months. The insects captured were stored in flasks with 70 % alcohol, separated into morphospecies and sent for identification.

Data was reduced by calculating averages per replication (plant). The ecological indices (abundance, diversity and species richness) were calculated per species identified in the treatments (adaxial and abaxial faces) using the BioDiversity Professional software, Version 2 (Krebs 1998 Krebs CJ. 1998. Bray-Curtis cluster analysis. 1. Biodiversity Pro version 2. Available: http://biodiversity-pro.software.informer.com, [Consulted: May 02, 2018]. ). Abundance and species richness are the total number of individuals and species, respectively, in a sampling unit. Diversity was calculated using the Hill’ formula (1st order): N1= exp (H’), where H’ is the Shannon-Weaver diversity index, calculating the diversity with the actual species number.

Data for abundance, diversity and species richness of arthropod groups (e.g. phytophagous) were subjected to a non-parametric statistical hypothesis, the Wilcoxon signed rank test (P<0.05), using the System for Analysis Statistics and Genetics (SAEG) statistical program, version 9.1 (SAEG 2007 SAEG (System for Analysis Statistics and Genetics) 2007. Sistema para Análises Estatísticas – SAEG Versão 9.1. http://arquivo.ufv.br/saeg/ [Consulted: June 30, 2018]. ) (Supplier: “Universidade Federal de Viçosa”). The interactions between the arthropod groups were assessed by Spearman correlations (P<0.05) using this program.

The highest numbers of phytophagous insects Orthoptera Tettigoniidae and Tropidacris collaris (Romaleidae), and Hemiptera Pentatomidae; that of natural enemies Hymenoptera Camponotus sp. and Pseudomyrmex termitarius (Formicidae), and Diptera dolichopodidae; and abundance and species richness of chewing insects and protocooperanting ants were observed in the P. regnellii adaxial leaf face. The sucking insect Phenacoccus sp. (Hemiptera: Pseudococcidae) (≈0.37), chewing insect T. collaris (≈0.16) and the natural enemy Araneidae (≈0.52) were the arthropods with highest numbers of on P. regnellii leaves (table 1). The abundance of spiders correlated, positively, with that of chewing insects (r = 0.18, P = 0.04, n = 96), and the number of spiders with that of T. collaris (r = 0.23, P = 0.01, n = 96) on P. regnellii plants.

Table 1.  Number of individuals (average ± SE) per specie, abundance, diversity, and species richness of phytophagous and pollinator insects and natural enemies in the adaxial and abaxial leaf faces on Platycyamus regnellii (Fabaceae)/plant
Phytophagous (Class Insecta) Leaf face TW*
Abaxial Adaxial VT § P
Coleoptera (Chrysomelidae): Alagoasa sp. 0.00 ± 0.00 0.04 ± 0.04 1.00 0.15
Eumolpus sp. 0.04 ± 0.02 0.02 ± 0.02 0.58 0.27
Walterianela sp. 0.02 ± 0.02 0.08 ± 0.04 1.37 0.08
Wanderbiltiana sp 0.06 ± 0.03 0.04 ± 0.04 0.98 0.16
Curculionidae: Lordops sp. 0.04 ± 0.02 0.02 ± 0.02 0.59 0.27
Lepidoptera 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Orthoptera (Tettigoniidae) 0.00 ± 0.00 0.27 ± 0.08 3.50 0.00
Romaleidae: Tropidacris collaris 0.04 ± 0.02 0.27 ± 0.08 2.47 0.01
Abundance of chewing insects 0.77 ± 0.14 0.21 ± 0.06 3.26 0.00
Diversity of chewing insects 0.25 ± 0.12 0.20 ± 0.09 0.04 0.49
Species richness of chewing insects 0.63 ± 0.10 0.21 ± 0.06 3.15 0.00
Sucking insects
Hemiptera (Aleyrodidae) 0.46 ± 0.26 0.04 ± 0.02 0.91 0.18
Cicadellidae: Balclutha hebe 0.00 ± 0.00 0.04 ± 0.02 1.42 0.07
Erythrogonia sexguttata 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Nogodinidae: Bladina sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pentatomidae 0.00 ± 0.00 0.21 ± 0.06 3.13 0.00
Pseudococcidae: Phenacoccus sp. 0.73 ± 0.51 0.00 ± 0.00 1.42 0.07
Abundance of sucking insects 0.33 ± 0.09 1.19 ± 0.56 1.01 0.16
Diversity of sucking insects --- --- --- ---
Species richness of sucking insects 0.31 ± 0.09 0.13 ± 0.04 1.46 0.07
Pollinator (Class Insecta)
Hymenoptera (Apidae): Apis mellifera 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Natural enemies (Classes Arachnida and Insecta)
Araneidae 0.02 ± 0.02 1.02 ± 0.93 1.39 0.08
Oxyopidae 0.00 ± 0.00 0.04 ± 0.02 1.42 0.07
Oxyopes saliticus 0.08 ± 0.04 0.04 ± 0.02 0.83 0.20
Salticidae 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Aphirape uncifera 0.08 ± 0.04 0.02 ± 0.02 1.37 0.08
Uspachus sp. 0.02 ± 0.02 0.02 ± 0.02 0.00 0.50
Sparassidae: Quemedice sp. 0.02 ± 0.02 0.08 ± 0.05 1.03 0.15
Tetragnathidae: Leucauge sp. 0.02 ± 0.02 0.06 ± 0.04 0.59 0.27
Thomisidae: Tmarus sp. 0.04 ± 0.02 0.00 ± 0.00 1.42 0.07
Aphantochilus rogersi 0.04 ± 0.02 0.00 ± 0.00 1.42 0.07
Abundance of spiders 1.31 ± 0.93 0.33 ± 0.09 0.35 0.37
Diversity of spiders 0.17 ± 0.06 0.23 ± 0.10 0.07 0.47
Species richness of spiders 0.33 ± 0.08 0.45 ± 0.15 0.09 0.47
Diptera (Dolichopodidae) 0.00 ± 0.00 0.17 ± 0.07 2.52 0.01
Hymenoptera (Braconidae) 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Vespidae: Polybia sp. 0.00 ± 0.00 0.02 ± 0.02 1.0 0.15
Formicidae: Brachymyrmex sp. 0.02 ± 0.02 0.04 ± 0.02 0.58 0.27
Camponotus sp. 0.00 ± 0.00 0.15 ± 0.05 2.73 0.00
Cephalotes sp. 0.00 ± 0.00 0.04 ± 0.04 1.00 0.15
Ectatoma sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pheidole sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pseudomyrmex termitarius 0.00 ± 0.00 0.10 ± 0.04 2.29 0.01
Abundance of protocooperanting ants 0.38 ± 0.10 0.02 ± 0.02 3.64 0.00
Diversity of protocooperanting ants 0.03 ± 0.03 0.03 ± 0.03 0.00 0.50
Species richness of protocooperanting ants 0.35 ± 0.09 0.02 ± 0.02 3.64 0.00

*TW= Test of Wilcoxon. §VT= value of test. n= 48 per treatment. --- = not generated.

Recently, research in Brazil reported the sucking insect Phenacoccus sp. (Hemiptera: Pseudococcidae) as the most abundant phytophagous on P. regnellii plants (Souza et al. 2021 Souza, G.F., Leite, G.L.D., Silva, F.W.S., Silva, J.L., Sampaio, R.A., Texeira, G.L., Soares, M.A. & Zanuncio, J.C. 2021. "Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage slude". Revista Colombiana de Entomología, 47 (1): e8493, ISSN: 2665-4385. https://doi.org/10.25100/socolen.v47il.8943. ) and with the highest porcentage Importance Index-Production Unknow on leaves of P. regnellii (Leite 2022 Leite G.L.D. 2022. "Arthropods as possible loss and solution sources on Platycyamus regnellii (Benth) (Fabales: Fabaceae) saplings". International Journal of Pest Management, https://doi.org/10.1080/09670874.2022.2131933 ).

The greatest numbers of the phytophagous insects Pentatomidae, Tettigoniidae, and T. collaris, and of the natural enemies Camponotus sp., Dolichopodidae, and P. termitarius, and the abundance and species richness of chewing insects and protocooperanting ants, were noted in the adaxial leaf face on P. regnellii plants is, probably, due to the lowest force applied by these arthropods to remain on this face and the absence of trichomes on them. The choice of the adaxial leaf face, perhaps, is due to the leaf characteristics of the P. regnellii plants, which are tri-foliate pinnate (in the form of a feather) with elliptical lateral leaflets (9-15 cm long and 6.5-10 cm wide) and the central is largely elliptical (14-25 in length and 10-19 cm in width) and, mainly, with dense hair in the abaxial (Moura et al. 2016 Moura T.M., Lewis G.P. & Tozzi A.M.G.A. 2016. "A revision of the South American genus Platycyamus Benth. (Leguminosae)". Kew Bulletin, 71, ISSN: 1874-933X. https://doi.org/10.1007/S12225-016-9617-X ), maybe as a source of resistance to most arthropods in this last leaf surface. Host plant leaf characteristics such as hairiness, regular shape or not, roughness, wax content, and type and number of veins can affect the insect, choosing the leaf face (adaxial or abaxial) that requires less force applied to walking (Salerno et al. 2018 Salerno G., Rebora M., Gorb E. & Gorb S. 2018. "Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces". Scientific Reports, 8, ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-29175-2 ).

The largest numbers Phenacoccus sp. on P. regnellii plants can be a problem due to this sucking insect is related as pest of Abelmoschus esculentus (Malvaceae), Amaranthus flavus (Amaranthaceae), Bidens pilosa (Asteraceae), Carica papaya (Caricaceae), Gossypium hirsutum (Malvaceae), Manihot esculenta (Euphorbiaceae), Solanum lycopersicum (Solanaceae), and Vitis vinifera (Vitaceae). This insect causes necrosis in the apical tissues, reduces the photosynthetic rate, leaf growth (with yellowing and fall of these), negatively affecting the plant production (e.g. M. esculenta) (Schulthess 1991 Schulthess F., Baumgärtner J.U., Delucchi V. & Gutierrez A.P. 1991. "The influence of the cassava mealybug, Phenacoccus manihoti Mat.-Ferr. (Hom., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz". Journal of Applied Entomology, 111: 155–165, ISSN: 1439-0418. https://doi.org/10.1111/j.1439-0418.1991.tb00306.x , Culik et al. 2007 Culik M.P., Martins D.S., Ventura J.A., Peronti A.L.B.G., Gullan P.J. & Kondo T. 2007. "Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil". Biota Neotropica, 7: 61-65, ISSN: 1676-0611. https://doi.org/10.1590/S1676-06032007000300006 and Santos and Peronti 2017 Santos R.S. & Peronti A.L.B.G. 2017. "Ocorrência de Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) em quiabeiro no estado do Acre". EntomoBrasilis, 10: 135-138, ISSN: 1983-0572. https://doi.org/10.12741/ebrasilis.v10i2.684 ). The biggest numbers of the chewing insect T. collaris on P. regnellii plants confirms its polyphagy, which has been reported to damage plants of Acacia mangium (Fabaceae), Casuarina glauca (Casuarinaceae), and Leucaena leucocephala (Fabaceae) (Poderoso et al. 2013 Poderoso J.C.M., Da Costa M.K.M., Correia-Oliveira M.E., Dantas P.C., Zanuncio J.C. & Ribeiro G.T. 2013. "Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil". Florida Entomologist, 96: 268-269, ISSN: 1938-5102. https://doi.org/10.1653/024.096.0143 , Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. and Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ). The highlight of spiders, Araneidae family, on P. regnellii plants, is due to their generalist predatory habit, reducing damage by insects, mainly defoliators, in USA agroecosystems (Landis et al. 2000 Landis D.A., Wratten S.D. & Gurr G.M. 2000. "Habitat management to conserve natural enemies of arthropod pests in agriculture". Annual Review of Entomology, 45: 175-201. ISSN: 0066-4170. https://doi.org/10.1146/annurev.ento.45.1.175 ), in Caryocar brasiliense (Caryocaraceae) trees, in cerrado and pasture areas, in Brazil (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ), in silvopastoral systems L. leucocephala - Megathyrsus maximus (Poaceae) in Cuba (Valenciaga et al. 2020 Valenciaga, N., Ruiz, T.E., Ramirez-Avilés, L. & Parsons, D. 2020. Abundance of Heteropsylla cubana population and its natural enemies in Leucaena leucocephala agroecosystems. Livestock Research for Rural Development, 32 (11), Article #177, ISSN: 2521-9952. https://lrrd.org/public-lrrd/proofs/lrrd3211/nvalecit.html ), and those of Lycosidae and Linyphiidae in Hordeum vulgare (Poaceae) fields in different landscapes in Uppsala, Switzerland (Öberg et al. 2008 Öberg S., Mayr S. & Dauber J. 2008. "Landscape effects on recolonisation patterns of spiders in arable fields". Agriculture, Ecosystems & Environment, 123: 211-218, ISSN: 0167-8809. https://doi.org/10.1016/j.agee.2007.06.005 ), Ctenidae in Italy (Venturino et al. 2008 Venturino E., Isaia M., Bona F., Chatterjee S. & Badino G. 2008. "Biological controls of intensive agroecosystems: Wanderer spiders in the Langa astigiana". Ecological Complexity, 5: 157-164, ISSN: 1476-945X. https://doi.org/10.1016/j.ecocom.2007.10.003. ) and Oxyopidae on A. mangium trees (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ).

The positive correlation between the abundance of spiders and that of chewing insects and the number of spiders with that of T. collaris on P. regnellii plants is, probably, due to predators following their prey, as observed on C. brasiliense, L. leucocephala, and Pistacia lentiscus (Anacardiaceae) trees (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ). Spiders prey on insects in natural and agricultural systems (Venturino et al. 2008 Venturino E., Isaia M., Bona F., Chatterjee S. & Badino G. 2008. "Biological controls of intensive agroecosystems: Wanderer spiders in the Langa astigiana". Ecological Complexity, 5: 157-164, ISSN: 1476-945X. https://doi.org/10.1016/j.ecocom.2007.10.003. ), often reducing defoliation and mines in plants, as related in C. brasiliense trees (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ).

It is concluded that the greatest species richness and numbers of chewing insects (e.g. T. collaris) and protocooperanting ants (e.g. P. termitarius) on the adaxial leaf face on P. regnellii plants are, probably, due to the lowest force required for walking and absence of trichomes (e.g. resistance factor). The largest numbers of Phenacoccus sp. and T. collaris in P. regnellii plants is a cause for concern, as these insects are pests in several cultures. Spiders (e.g. Araneidae), natural enemies, showed greatest numbers of individuals in leaves on P. regnellii plants and followed their prey, being important in biological control.

References

 

Culik M.P., Martins D.S., Ventura J.A., Peronti A.L.B.G., Gullan P.J. & Kondo T. 2007. "Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil". Biota Neotropica, 7: 61-65, ISSN: 1676-0611. https://doi.org/10.1590/S1676-06032007000300006

Cruz, P.M. da S.N., Araujo, T.A. de S., Andrade, B. de A., Correa, A.J.C., Vilanova, M.V. de S. & Amorim, E.L.C. 2022. "Medicinal plants and diabetes: An ethnopharmacological study in Brazilian Northeast". Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 21(5): 593-606, ISSN: 0717-7917. https://doi.org/10.37360/blacpma.22.21.5.36

Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311.

Gomes J.B. 2018. Horizontal stratification of phytophagous insects, and natural enemies and foliar compound chemicals on Platycyamus regnellii Benth. (Fabaceae) in a degraded area. UFVJM, Diamantina, 50p., CDD 634.9 Available: http://acervo.ufvjm.edu.br/jspui/handle/1/1885, [Consulted: September 01, 2018].

Krebs CJ. 1998. Bray-Curtis cluster analysis. 1. Biodiversity Pro version 2. Available: http://biodiversity-pro.software.informer.com, [Consulted: May 02, 2018].

Landis D.A., Wratten S.D. & Gurr G.M. 2000. "Habitat management to conserve natural enemies of arthropod pests in agriculture". Annual Review of Entomology, 45: 175-201. ISSN: 0066-4170. https://doi.org/10.1146/annurev.ento.45.1.175

Leite G.L.D. 2022. "Arthropods as possible loss and solution sources on Platycyamus regnellii (Benth) (Fabales: Fabaceae) saplings". International Journal of Pest Management, https://doi.org/10.1080/09670874.2022.2131933

Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402

Martins J.L., Fagnani M.A., Silva I.J.O., Piedade S.M.S. & Conceição M.N. 2008. "Evaluation of the arboreal shades quality in pasture". Livestock Environment VIII, 31 August - 4 September 2008, Iguassu Falls, Brazil. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.25592

Moura T.M., Lewis G.P. & Tozzi A.M.G.A. 2016. "A revision of the South American genus Platycyamus Benth. (Leguminosae)". Kew Bulletin, 71, ISSN: 1874-933X. https://doi.org/10.1007/S12225-016-9617-X

Öberg S., Mayr S. & Dauber J. 2008. "Landscape effects on recolonisation patterns of spiders in arable fields". Agriculture, Ecosystems & Environment, 123: 211-218, ISSN: 0167-8809. https://doi.org/10.1016/j.agee.2007.06.005

Poderoso J.C.M., Da Costa M.K.M., Correia-Oliveira M.E., Dantas P.C., Zanuncio J.C. & Ribeiro G.T. 2013. "Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil". Florida Entomologist, 96: 268-269, ISSN: 1938-5102. https://doi.org/10.1653/024.096.0143

Salerno G., Rebora M., Gorb E. & Gorb S. 2018. "Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces". Scientific Reports, 8, ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-29175-2

Santos R.S. & Peronti A.L.B.G. 2017. "Ocorrência de Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) em quiabeiro no estado do Acre". EntomoBrasilis, 10: 135-138, ISSN: 1983-0572. https://doi.org/10.12741/ebrasilis.v10i2.684

SAEG (System for Analysis Statistics and Genetics) 2007. Sistema para Análises Estatísticas – SAEG Versão 9.1. http://arquivo.ufv.br/saeg/ [Consulted: June 30, 2018].

Schulthess F., Baumgärtner J.U., Delucchi V. & Gutierrez A.P. 1991. "The influence of the cassava mealybug, Phenacoccus manihoti Mat.-Ferr. (Hom., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz". Journal of Applied Entomology, 111: 155–165, ISSN: 1439-0418. https://doi.org/10.1111/j.1439-0418.1991.tb00306.x

Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196.

Souza, G.F., Leite, G.L.D., Silva, F.W.S., Silva, J.L., Sampaio, R.A., Texeira, G.L., Soares, M.A. & Zanuncio, J.C. 2021. "Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage slude". Revista Colombiana de Entomología, 47 (1): e8493, ISSN: 2665-4385. https://doi.org/10.25100/socolen.v47il.8943.

Valenciaga, N., Ruiz, T.E., Ramirez-Avilés, L. & Parsons, D. 2020. Abundance of Heteropsylla cubana population and its natural enemies in Leucaena leucocephala agroecosystems. Livestock Research for Rural Development, 32 (11), Article #177, ISSN: 2521-9952. https://lrrd.org/public-lrrd/proofs/lrrd3211/nvalecit.html

Venturino E., Isaia M., Bona F., Chatterjee S. & Badino G. 2008. "Biological controls of intensive agroecosystems: Wanderer spiders in the Langa astigiana". Ecological Complexity, 5: 157-164, ISSN: 1476-945X. https://doi.org/10.1016/j.ecocom.2007.10.003.

Cuban Journal of Agricultural Science Vol. 57, january-december 2023, ISSN: 2079-3480
 
Ciencia Animal

Artrópodos en la superficie foliar de Platycyamus regnellii (Fabaceae): índice y relaciones ecológicas. Nota técnica

 

iDG. Leão Demolin-Leite1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

iDNurys Valenciaga2Instituto de Ciencia Animal, San José de Las Lajas, Mayabeque, Cuba*✉:nvalenciaga1966@gmail.com

iDPatrícia Ferreira Santos Guanabens3Instituto Federal de Minas Gerais, Arcos, Minas Gerais State, Brazil.

iDM. Alvarenga Soares4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

iDJúlia Letícia Silva1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

iDGleisiany Nunes Gomes4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

iDJ. Cola Zanuncio5Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil


1Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais State, Brazil.

2Instituto de Ciencia Animal, San José de Las Lajas, Mayabeque, Cuba

3Instituto Federal de Minas Gerais, Arcos, Minas Gerais State, Brazil.

4Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais State, Brazil

5Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais State, Brazil

 

*Email: nvalenciaga1966@gmail.com

Platycyamus regnellii es un árbol brasileño utilizado para paisajismo, recuperación de áreas degradadas y su madera para muebles. Se evalúan los índices e interacciones ecológicos entre los grupos de artrópodos en la superficie foliar de P. regnellii. Mayor número de artrópodos fitófagos Orthoptera Tettigoniidae y Tropidacris collaris (Romaleidae), y Hemiptera Pentatomidae; enemigos naturales Hymenoptera Camponotus sp. y Pseudomyrmex termitarius (Formicidae) y Diptera Dolichopodidae; y se observó abundancia y riqueza de especies de insectos masticadores y hormigas protocooperadoras en la cara adaxial de la hoja de plantas de P. regnellii. La abundancia de arañas se correlacionó positivamente con la de insectos masticadores y el número de arañas con la de T. collaris. El conocimiento de la cara foliar, preferida por los insectos herbívoros, ayuda en la correcta aplicación de pesticidas en programas de manejo integrado de plagas.

Palabras clave: 
abundancia, diversidad, riqueza de especies, insectos chupadores

Platycyamus regnellii (Fabaceae), originaria de Brasil, se distribuye desde el sur de Bahía hasta los estados de Espírito Santo, Goiás, Minas Gerais, Río de Janeiro, Paraná y São Paulo, especialmente, en los bosques semideciduos de altitud. Esta planta se utiliza para recuperar áreas degradadas y su madera en construcción civil y carpintería, en el tratamiento de fiebre, mala digestión e inapetencia. También como planta medicinal contra la diabetes (Cruz et al. 2022 Cruz, P.M. da S.N., Araujo, T.A. de S., Andrade, B. de A., Correa, A.J.C., Vilanova, M.V. de S. & Amorim, E.L.C. 2022. "Medicinal plants and diabetes: An ethnopharmacological study in Brazilian Northeast". Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 21(5): 593-606, ISSN: 0717-7917. https://doi.org/10.37360/blacpma.22.21.5.36 ) y, por sus flores vistosas, para el paisajismo en parques y jardines. Además, P. regnellii se puede utilizar en consorcio con pastos para proporcionar sombra al ganado (por ejemplo, confort térmico) y mejorar la calidad de los pastos (reciclaje de nutrientes) (Martins et al. 2008 Martins J.L., Fagnani M.A., Silva I.J.O., Piedade S.M.S. & Conceição M.N. 2008. "Evaluation of the arboreal shades quality in pasture". Livestock Environment VIII, 31 August - 4 September 2008, Iguassu Falls, Brazil. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.25592 ). Sin embargo, la fauna artrópoda de esta planta está poco estudiada con únicamente Phenacoccus sp. (Hemiptera: Pseudococcidae) relacionada como plaga potencial (Gomes 2018 Gomes J.B. 2018. Horizontal stratification of phytophagous insects, and natural enemies and foliar compound chemicals on Platycyamus regnellii Benth. (Fabaceae) in a degraded area. UFVJM, Diamantina, 50p., CDD 634.9 Available: http://acervo.ufvjm.edu.br/jspui/handle/1/1885, [Consulted: September 01, 2018]. ).

Los insectos pueden dañar distintas partes de la planta o de sus hojas (cara adaxial y abaxial). El conocimiento de la cara foliar preferida es importante para el control de plagas (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ), lo cual es más difícil para quienes viven y se alimentan en la cara abaxial. Los insectos chupadores, en general, prefieren la cara abaxial de la hoja debido a que tiene tejido más blando, epidermis más delgada y nervios más prominentes (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ), además de una mayor protección contra factores climáticos (radiación solar) y enemigos naturales. Por otro lado, los artrópodos pueden preferir la cara de la hoja adaxial debido a la menor fuerza aplicada para permanecer en esta cara (Salerno et al. 2018 Salerno G., Rebora M., Gorb E. & Gorb S. 2018. "Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces". Scientific Reports, 8, ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-29175-2 ). Las relaciones entre insectos pueden ser intra o interespecíficas, con o sin perjuicio de los individuos involucrados: armónicas (hormigas de protocooperación e insectos chupadores) o cuando al menos uno resulta dañado, discordantes (depredación o competencia) (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ). Se evaluaron los índices ecológicos (abundancia, diversidad y riqueza de especies) y las interacciones entre los grupos de artrópodos en la superficie foliar de P. regnellii, durante 24 meses, en un área degradada.

El estudio se realizó en un área degradada del “Instituto de Ciências Agrárias da Universidade Federal de Minas Gerais (ICA/UFMG)” en el municipio de Montes Claros, estado de Minas Gerais, Brasil (latitud 16º 51' 38" S, longitud 44º 55' 00" W, altitud 943 m) durante 24 meses (abril 2015 a marzo 2017). El clima de esta zona, según la clasificación climática de Köppen, es tropical seco, con precipitación anual entre 1000 y 1300 mm, invierno seco y temperatura media anual ≥ 18 ºC. El suelo es Neosol Litólico con horizonte Alico (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ).

Las plántulas de P. regnellii se colocaron en hoyos (40 x 40 x 40 cm) cuando tenían 30 cm de altura, con un espaciamiento de 2 metros entre ellas. El suelo se corrigió con caliza dolomítica, lo que aumentó la saturación basal al 50 %, fosfato natural, yeso, FTE (Oligoelementos fritados), cloruro de potasio y micronutrientes equivalentes a la necesidad determinada en el análisis del suelo. En cada pozo se colocó un total de 20 L de lodos de depuradora deshidratados (dosis única) y se han reportado las características bioquímicas de este fertilizante (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ). En marzo de 2014 se prepararon plántulas de P. regnellii en un vivero, en bolsas plásticas (16 x 24 cm) con fosfato natural reactivo mezclado con el sustrato en dosis de 160 g, las cuales luego se sembraron en la ubicación definitiva en septiembre del mismo año. Las plántulas fueron regadas dos veces por semana hasta el inicio de la temporada de lluvias (octubre). El diseño fue completamente al azar con 48 repeticiones (plantas), siendo los tratamientos las caras foliares adaxial y abaxial.

Los artrópodos se contaron en las caras de las hojas (adaxial y abaxial) entre las 7:00 y las 11:00 a.m. en eje vertical (partes apical, media y basal) y eje horizontal (norte, sur, este y oeste) del dosel, totalizando 12 hojas/planta/evaluación, en las 48 plantas de P. regnellii, de seis meses de edad, por 24 meses. Los insectos capturados se almacenaron en matraces con alcohol al 70 %, separados en morfoespecies y enviados para su identificación.

Los datos se redujeron calculando promedios por réplica (planta). Los índices ecológicos (abundancia, diversidad y riqueza de especies) se calcularon por especies identificadas en los tratamientos (caras adaxiales y abaxiales) utilizando el software BioDiversity Professional, versión 2 (Krebs 1998 Krebs CJ. 1998. Bray-Curtis cluster analysis. 1. Biodiversity Pro version 2. Available: http://biodiversity-pro.software.informer.com, [Consulted: May 02, 2018]. ). La abundancia y la riqueza de especies son el número total de individuos y especies, respectivamente, en una unidad de muestreo. La diversidad se calculó utilizando la fórmula de Hill’ (1er orden): N1= exp (H’), donde H’ es el índice de diversidad de Shannon-Weaver, calculando la diversidad con el número real de especies.

Los datos de abundancia, diversidad y riqueza de especies de los grupos de artrópodos (fitófagos) se sometieron a una hipótesis estadística no paramétrica, la prueba de rangos con signos de Wilcoxon (P<0.05), utilizando el programa estadístico Sistema de Análisis Estadístico y Genético (SAEG), versión 9.1 (SAEG 2007 SAEG (System for Analysis Statistics and Genetics) 2007. Sistema para Análises Estatísticas – SAEG Versão 9.1. http://arquivo.ufv.br/saeg/ [Consulted: June 30, 2018]. ) (Proveedor: “Universidade Federal de Viçosa”). Las interacciones entre los grupos de artrópodos se evaluaron mediante correlaciones de Spearman (P <0.05) utilizando este programa.

El mayor número de insectos fitófagos Orthoptera Tettigoniidae y Tropidacris collaris (Romaleidae), y Hemiptera Pentatomidae; el de los enemigos naturales Hymenoptera Camponotus sp. y Pseudomyrmex termitarius (Formicidae) y Diptera Dolichopodidae; y se observó abundancia y riqueza de especies de insectos masticadores y hormigas protocooperantes en la cara adaxial de la hoja de P. regnellii. El insecto chupador Phenacoccus sp. (Hemiptera: Pseudococcidae) (≈0.37), el insecto masticador T. collaris (≈0.16) y el enemigo natural Araneidae (≈0.52) fueron los artrópodos con mayor número en las hojas de P. regnellii (tabla 1). La abundancia de arañas se correlacionó positivamente con la de insectos masticadores (r = 0.18, P = 0.04, n = 96), y el número de arañas con el de T. collaris (r = 0.23, P = 0.01, n = 96) en plantas de P. regnellii.

Table 1.  Number of individuals (average ± SE) per specie, abundance, diversity, and species richness of phytophagous and pollinator insects and natural enemies in the adaxial and abaxial leaf faces on Platycyamus regnellii (Fabaceae)/plant
Phytophagous (Class Insecta) Leaf face TW*
Abaxial Adaxial VT § P
Coleoptera (Chrysomelidae): Alagoasa sp. 0.00 ± 0.00 0.04 ± 0.04 1.00 0.15
Eumolpus sp. 0.04 ± 0.02 0.02 ± 0.02 0.58 0.27
Walterianela sp. 0.02 ± 0.02 0.08 ± 0.04 1.37 0.08
Wanderbiltiana sp 0.06 ± 0.03 0.04 ± 0.04 0.98 0.16
Curculionidae: Lordops sp. 0.04 ± 0.02 0.02 ± 0.02 0.59 0.27
Lepidoptera 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Orthoptera (Tettigoniidae) 0.00 ± 0.00 0.27 ± 0.08 3.50 0.00
Romaleidae: Tropidacris collaris 0.04 ± 0.02 0.27 ± 0.08 2.47 0.01
Abundance of chewing insects 0.77 ± 0.14 0.21 ± 0.06 3.26 0.00
Diversity of chewing insects 0.25 ± 0.12 0.20 ± 0.09 0.04 0.49
Species richness of chewing insects 0.63 ± 0.10 0.21 ± 0.06 3.15 0.00
Sucking insects
Hemiptera (Aleyrodidae) 0.46 ± 0.26 0.04 ± 0.02 0.91 0.18
Cicadellidae: Balclutha hebe 0.00 ± 0.00 0.04 ± 0.02 1.42 0.07
Erythrogonia sexguttata 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Nogodinidae: Bladina sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pentatomidae 0.00 ± 0.00 0.21 ± 0.06 3.13 0.00
Pseudococcidae: Phenacoccus sp. 0.73 ± 0.51 0.00 ± 0.00 1.42 0.07
Abundance of sucking insects 0.33 ± 0.09 1.19 ± 0.56 1.01 0.16
Diversity of sucking insects --- --- --- ---
Species richness of sucking insects 0.31 ± 0.09 0.13 ± 0.04 1.46 0.07
Pollinator (Class Insecta)
Hymenoptera (Apidae): Apis mellifera 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Natural enemies (Classes Arachnida and Insecta)
Araneidae 0.02 ± 0.02 1.02 ± 0.93 1.39 0.08
Oxyopidae 0.00 ± 0.00 0.04 ± 0.02 1.42 0.07
Oxyopes saliticus 0.08 ± 0.04 0.04 ± 0.02 0.83 0.20
Salticidae 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Aphirape uncifera 0.08 ± 0.04 0.02 ± 0.02 1.37 0.08
Uspachus sp. 0.02 ± 0.02 0.02 ± 0.02 0.00 0.50
Sparassidae: Quemedice sp. 0.02 ± 0.02 0.08 ± 0.05 1.03 0.15
Tetragnathidae: Leucauge sp. 0.02 ± 0.02 0.06 ± 0.04 0.59 0.27
Thomisidae: Tmarus sp. 0.04 ± 0.02 0.00 ± 0.00 1.42 0.07
Aphantochilus rogersi 0.04 ± 0.02 0.00 ± 0.00 1.42 0.07
Abundance of spiders 1.31 ± 0.93 0.33 ± 0.09 0.35 0.37
Diversity of spiders 0.17 ± 0.06 0.23 ± 0.10 0.07 0.47
Species richness of spiders 0.33 ± 0.08 0.45 ± 0.15 0.09 0.47
Diptera (Dolichopodidae) 0.00 ± 0.00 0.17 ± 0.07 2.52 0.01
Hymenoptera (Braconidae) 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Vespidae: Polybia sp. 0.00 ± 0.00 0.02 ± 0.02 1.0 0.15
Formicidae: Brachymyrmex sp. 0.02 ± 0.02 0.04 ± 0.02 0.58 0.27
Camponotus sp. 0.00 ± 0.00 0.15 ± 0.05 2.73 0.00
Cephalotes sp. 0.00 ± 0.00 0.04 ± 0.04 1.00 0.15
Ectatoma sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pheidole sp. 0.00 ± 0.00 0.02 ± 0.02 1.00 0.15
Pseudomyrmex termitarius 0.00 ± 0.00 0.10 ± 0.04 2.29 0.01
Abundance of protocooperanting ants 0.38 ± 0.10 0.02 ± 0.02 3.64 0.00
Diversity of protocooperanting ants 0.03 ± 0.03 0.03 ± 0.03 0.00 0.50
Species richness of protocooperanting ants 0.35 ± 0.09 0.02 ± 0.02 3.64 0.00

*TW= Test of Wilcoxon. §VT= value of test. n= 48 per treatment. --- = not generated.

Recientemente, una investigación en Brasil informó al insecto chupador Phenacoccus sp. (Hemiptera: Pseudococcidae) como el fitófago más abundante en plantas de P. regnellii (Souza et al. 2021 Souza, G.F., Leite, G.L.D., Silva, F.W.S., Silva, J.L., Sampaio, R.A., Texeira, G.L., Soares, M.A. & Zanuncio, J.C. 2021. "Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage slude". Revista Colombiana de Entomología, 47 (1): e8493, ISSN: 2665-4385. https://doi.org/10.25100/socolen.v47il.8943. ) y con el mayor porcentaje Índice de Importancia-Producción Desconocida en hojas de P. regnellii (Leite 2022 Leite G.L.D. 2022. "Arthropods as possible loss and solution sources on Platycyamus regnellii (Benth) (Fabales: Fabaceae) saplings". International Journal of Pest Management, https://doi.org/10.1080/09670874.2022.2131933 ).

El mayor número de insectos fitófagos Pentatomidae, Tettigoniidae y T. collaris, y de los enemigos naturales Camponotus sp., Dolichopodidae y P. termitarius, así como la abundancia y riqueza de especies de insectos masticadores y hormigas protocooperantes se observó en la cara adaxial de la hoja en plantas de P. regnellii. Esto se debe, probablemente, a la menor fuerza aplicada por estos artrópodos para permanecer en esta cara y a la ausencia de tricomas en ellas. La elección de la cara foliar adaxial, quizás, se deba a las características foliares de las plantas de P. regnellii, que son pinnadas trifoliadas (en forma de pluma) con folíolos laterales elípticos (9-15 cm de largo y 6.5- 10 cm de ancho) y el central es mayoritariamente elíptico (14-25 de largo y 10-19 cm de ancho) y, principalmente, con vello denso en el abaxial (Moura et al. 2016 Moura T.M., Lewis G.P. & Tozzi A.M.G.A. 2016. "A revision of the South American genus Platycyamus Benth. (Leguminosae)". Kew Bulletin, 71, ISSN: 1874-933X. https://doi.org/10.1007/S12225-016-9617-X ), tal vez como fuente de resistencia a la mayoría de los artrópodos en esta última superficie foliar. Las características de la hoja de la planta huésped, como vellosidad, con forma regular o no, rugosidad, contenido de cera y tipo y número de venas, pueden afectar al insecto, eligiendo la cara de la hoja (adaxial o abaxial) que requiere menos fuerza aplicada para caminar (Salerno et al. 2018 Salerno G., Rebora M., Gorb E. & Gorb S. 2018. "Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces". Scientific Reports, 8, ISSN: 2045-2322. https://doi.org/10.1038/s41598-018-29175-2 ).

Una gran cantidad de Phenacoccus sp. en plantas de P. regnellii puede ser un problema debido a que este insecto chupador es considerado como plaga de Abelmoschus esculentus (Malvaceae), Amaranthus flavus (Amaranthaceae), Bidens pilosa (Asteraceae), Carica papaya (Caricaceae), Gossypium hirsutum (Malvaceae), Manihot esculenta (Euphorbiaceae), Solanum lycopersicum (Solanaceae) y Vitis vinifera (Vitaceae). Este insecto causa necrosis en los tejidos apicales, reduce la tasa fotosintética, afecta el crecimiento de las hojas (con amarillamiento y caída de estas), impactando negativamente la producción de la planta (e.g. M. esculenta) (Schulthess 1991 Schulthess F., Baumgärtner J.U., Delucchi V. & Gutierrez A.P. 1991. "The influence of the cassava mealybug, Phenacoccus manihoti Mat.-Ferr. (Hom., Pseudococcidae) on yield formation of cassava, Manihot esculenta Crantz". Journal of Applied Entomology, 111: 155–165, ISSN: 1439-0418. https://doi.org/10.1111/j.1439-0418.1991.tb00306.x , Culik et al. 2007 Culik M.P., Martins D.S., Ventura J.A., Peronti A.L.B.G., Gullan P.J. & Kondo T. 2007. "Coccidae, Pseudococcidae, Ortheziidae, and Monophlebidae (Hemiptera: Coccoidea) of Espírito Santo, Brazil". Biota Neotropica, 7: 61-65, ISSN: 1676-0611. https://doi.org/10.1590/S1676-06032007000300006 y Santos y Peronti 2017 Santos R.S. & Peronti A.L.B.G. 2017. "Ocorrência de Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) em quiabeiro no estado do Acre". EntomoBrasilis, 10: 135-138, ISSN: 1983-0572. https://doi.org/10.12741/ebrasilis.v10i2.684 ). La gran cantidad del insecto masticador T. collaris en plantas de P. regnellii confirma su polifagia, que daña las plantas de Acacia mangium (Fabaceae), Casuarina glauca (Casuarinaceae) y Leucaena leucocephala (Fabaceae) (Poderoso et al. 2013 Poderoso J.C.M., Da Costa M.K.M., Correia-Oliveira M.E., Dantas P.C., Zanuncio J.C. & Ribeiro G.T. 2013. "Occurrence of Tropidacris collaris (Orthoptera; Acridoidea; Romaleidae) damaging Casuarina glauca (Casuarinaceae) plants in the municipality of Central Bahia, Brazil". Florida Entomologist, 96: 268-269, ISSN: 1938-5102. https://doi.org/10.1653/024.096.0143 , Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. y Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ). El realce de las arañas, familia Araneidae, en las plantas de P. regnellii, se debe a su hábito depredador generalista, lo que reduce el daño de insectos, principalmente defoliadores, en los agroecosistemas de Estados Unidos (Landis et al. 2000 Landis D.A., Wratten S.D. & Gurr G.M. 2000. "Habitat management to conserve natural enemies of arthropod pests in agriculture". Annual Review of Entomology, 45: 175-201. ISSN: 0066-4170. https://doi.org/10.1146/annurev.ento.45.1.175 ), en los árboles de Caryocar brasiliense (Caryocaraceae), en cerrado y pastizales, en Brasil (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ), en sistemas silvopastoriles L. leucocephala - Megathyrsus maximus (Poaceae), en Cuba (Valenciaga et al. 2020 Valenciaga, N., Ruiz, T.E., Ramirez-Avilés, L. & Parsons, D. 2020. Abundance of Heteropsylla cubana population and its natural enemies in Leucaena leucocephala agroecosystems. Livestock Research for Rural Development, 32 (11), Article #177, ISSN: 2521-9952. https://lrrd.org/public-lrrd/proofs/lrrd3211/nvalecit.html ), y los de Lycosidae y Linyphiidae en campos de Hordeum vulgare (Poaceae) en diferentes paisajes en Uppsala, Suiza (Öberg et al. 2008 Öberg S., Mayr S. & Dauber J. 2008. "Landscape effects on recolonisation patterns of spiders in arable fields". Agriculture, Ecosystems & Environment, 123: 211-218, ISSN: 0167-8809. https://doi.org/10.1016/j.agee.2007.06.005 ), Ctenidae en Italia (Venturino et al. 2008 Venturino E., Isaia M., Bona F., Chatterjee S. & Badino G. 2008. "Biological controls of intensive agroecosystems: Wanderer spiders in the Langa astigiana". Ecological Complexity, 5: 157-164, ISSN: 1476-945X. https://doi.org/10.1016/j.ecocom.2007.10.003. ) y Oxyopidae en árboles de A. mangium (Silva et al. 2020 Silva J.L., Leite G.L.D., Tavares W.S., Silva F.W.S., Sampaio R.A., Azevedo A.M., Serrão J.E. & Zanuncio J.C. 2020. "Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area". Royal Society Open Science, 7: 1-12, ISSN: 2054-5703. https://doi.org/10.1098/rsos.191196. ).

La correlación positiva entre la abundancia de arañas y la de insectos masticadores, y la del número de arañas con la de T. collaris en plantas de P. regnellii se debe, probablemente, a que los depredadores siguen a sus presas, como se observó en C. brasiliense, L. leucocephala y en árboles de Pistacia lentiscus (Anacardiaceae) (Damascena et al. 2017 Damascena J.G., Leite G.L.D., Silva F.W.S., Soares M.A., Guanabens R.E.M., Sampaio R.A. & Zanuncio J.C. 2017. "Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado". Florida Entomologist, 100: 558-565, ISSN: 1938-5102. https://doi.org/10.1653/024.100.0311. ). Las arañas se alimentan de insectos en sistemas naturales y agrícolas (Venturino et al. 2008 Venturino E., Isaia M., Bona F., Chatterjee S. & Badino G. 2008. "Biological controls of intensive agroecosystems: Wanderer spiders in the Langa astigiana". Ecological Complexity, 5: 157-164, ISSN: 1476-945X. https://doi.org/10.1016/j.ecocom.2007.10.003. ), y a menudo reducen la defoliación y las minas en las plantas, como se relaciona con los árboles de C. brasiliense (Leite et al. 2012 Leite G.L.D., Veloso R.V.S., Zanuncio J.C., Almeida C.I.M., Ferreira P.S.F., Fernandes G.W. & Soares M.A. 2012. "Habitat complexity and Caryocar brasiliense herbivores (Insecta: Arachnida: Araneae)". Florida Entomologist, 95: 819-830. ISSN: 1938-5102 https://doi.org/10.1653/024.095.0402 ).

Se concluye que la mayor riqueza de especies y el mayor número de insectos masticadores (T. collaris) y hormigas protocooperantes (P. termitarius) en la cara adaxial de la hoja de las plantas de P. regnellii se deben, probablemente, a la menor fuerza requerida para caminar y la ausencia de tricomas (factor de resistencia). El mayor número de Phenacoccus sp. y T. collaris en plantas de P. regnellii es motivo de preocupación, ya que estos insectos son plagas en varios cultivos. Las arañas (Araneidae), enemigos naturales, mostraron mayor número de individuos en las hojas de las plantas de P. regnellii y siguieron a sus presas, siendo importantes en el control biológico.