Cuban Journal of Agricultural Science Vol. 57, january-december 2023, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v57e26
Animal Science

Estimated enteric methane production from cattle and small ruminants fed on diets with tropical legume forages

 

iDJ. M. Castro-Montoya1Graduate School, Faculty of Agricultural Sciences, University of El Salvador, San Salvador, El Salvador.*✉: joaquin.montoya@ues.edu.sv

iDMizeck Chagunda2Institute of Agricultural Sciences in the Tropics, Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany.


1Graduate School, Faculty of Agricultural Sciences, University of El Salvador, San Salvador, El Salvador.

2Institute of Agricultural Sciences in the Tropics, Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany.

 

*Email: joaquin.montoya@ues.edu.sv

With the aim of exploring the effects of tropical legumes on methane emissions, methane production from ruminants fed tropical legumes was estimated using predictive equations based on diet’s nutrient characteristics, dry matter intake (DMI), and digestibility from 258 in vivo studies (1355 treatments) from literature. The dataset was divided into adult and growing cattle, goat, and sheep. Additionally, subsets were created depending on the growth habit of the legume: herb, shrub and tree. Methane was expressed relative to metabolic body weight (MBW), DMI, digestible organic matter intake (DOMI), and milk yield or average daily gain (ADG). Estimated methane for each subset of data and for each unit of expression was regressed on the proportion of legume in the diet. Increasing proportion of legumes decreased methane relative to MBW, DMI and ADG -but not relative to milk yield and DOMI- in cattle. For small ruminants, increasing legume proportion decreased estimated methane relative to MBW, DMI and DOMI (by tendency), but no effects were observed on methane relative to ADG, although these effects were likely underestimated. Herb legumes consistently showed the greater decreases in estimated methane in both cattle and small ruminants, while shrubs showed the smaller effects on methane decrease. These analyses highlight the potential of tropical legumes to decrease methane emissions, with differences between types of legumes, with improved effects were found in combination with grasses and concentrate. Further evidence is needed to affirm undeniable positive effects of legumes on the decrease of emissions relative to final product.

Keywords: 
intensity emissions, herb legumes, ruminants, methane inhibition

Received: 22/11/2022; Accepted: 15/6/2023

Data availability, Funding & Conflict of Interest: The database used for this study is available upon request to the authors. No funding was utilized for the execution of this study. The authors declare no conflict of interest.

Author´s contribution: J.M. Castro-Montoya: Conceptualization, Methodology, Formal analysis, Data curation, Writing - original draft, Visualization. Mizeck Chagunda: Conceptualization, Writing - Review & Editing

CONTENT

Incorporating legume forages in ruminants feeding has several positive impacts on the sustainability of the agricultural system including biological N fixation, control of erosion, recycling of nutrients, and maintenance of biodiversity (Schultze-Kraft et al. 2018Schultze-Kraft, R., Rao, I.M., Peters, M., Clements, R.J., Bai, C. & Liu, G. 2018. "Tropical forage legumes for environmental benefits: An overview". Tropical Grasslands - Forrajes Tropicales, 6: 1-1, ISSN: 2346-3775. http://dx.doi.org/10.17138/tgft(6)1-14.) as well as increase productivity in cattle. Enteric methane is one of the most commonly discussed environmental impacts of ruminants, and feeding legumes has been proposed as a via to inhibit methanogenesis, mainly due to their contents of phytogenic compounds with the potential to modulate rumen fermentation. Moreover, if the premise of an increased productivity when feeding legumes is achieved, the intensity of emissions (the amount of methane per unit of final product) would likely also decrease.

A great number of studies have explored the in vitro effects of legumes on methane, generally showing their ability to decrease methane. However, in vitro fermentation cannot account for dry matter intake (DMI), a main determinant of methane production, neither for the adaptation of rumen microbes to a diet. Literature on in vivo trials is scarce and less conclusive, with several studies not providing estimates of DMI or the proportion of legumes consumed. At the time of the writing, ten studies were found reporting methane production accompanied by DMI (Possenti et al. 2008Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J., Frighetto, R.T.S. & Lima, M.A.D. 2008. "Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos". Revista Brasileira de Zootecnia, 37: 1509-1516, ISSN: 1806-9290. http://dx.doi.org/10.1590/S1516-35982008000800025. , Kennedy and Charmley 2012Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. , Delgado et al. 2013Delgado, D.C., Galindo, J., Cairo, J., Orta, I. & Dorta, N. 2013. "Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep". Cuban Journal of Agricultural Science, 47(3): 267-271, ISSN: 2079-3480., Moreira et al. 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. , Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. , Washaya et al. 2018Washaya, S., Mupangwa, J. & Muchenje, V. 2018. "Chemical composition of Lablab purpureus and Vigna unguiculata and their subsequent effects on methane production in Xhosa lop-eared goats". South African Journal of Animal Science, 48: 445-458, ISSN: 2221-4062. http://dx.doi.org/10.4314/sajas.v48i3.5. , Lima et al. 2020Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. , Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. and Suybeng et al. 2020Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S. & Malau-Aduli, A.E. 2020. "Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions". Animals, 10: 2097, ISSN 2076-2615. https://doi.org/10.3390/ani10112097.). With such a small sample size it is difficult to conclude on the effects of tropical legumes on methane emissions, particularly knowing that in 6 of the 10 studies Leucaena leucocephala was the legume tested. The effects of leucaena cannot be ascribed to all tropical legumes, as tree, shrub and herb legumes differ in composition and degradability (Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ).

The limited number of studies is a consequence of the complexity of the methane measurement techniques, not available for the majority of research groups in tropical regions. However, the potential of these forages can be explored using predictive equations to estimate methane based on dietary characteristics (Ellis et al. 2007Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. and Ramin and Huhtanen 2013Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095. ) including some who have been developed for tropical environments (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ). Even though, the accuracy and global applicability of such equations can be debated, they still allow for the screening of large number of dietary strategies with effects on DMI, organic matter digestibility (OMD) and, therefore, on methane production. Hence, the objective of this study was to estimate methane emissions from literature data in a large number of dietary treatments containing tropical legumes, attempting to assess their potential to mitigate methane emissions from ruminants accounting for their effects on DMI, digestibility and final product’s yields.

Materials and Methods

 

Database, parameters extracted and calculations

 

The data used for the current study derived from a database reported in Castro-Montoya and Dickhoefer (2020)Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. . For the current analysis, the studies had to report legume species, their proportion in the diet, the nutritional composition of the diet [organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) concentration], animal body weight (BW), DMI, and OM -or dry matter (DM)- total tract digestibility. If available, milk yield (kg/d) and average daily gain (ADG) were recorded. A total of 258 studies fulfilled these criteria, resulting in 1355 dietary treatments. Further parameters were estimated. The feeding level (FL), presented as a multiple of maintenance energy requirements, was estimated by dividing the metabolizable energy (ME) intake by the maintenance ME requirement for the animals. The ME requirement for each animal was calculated based on the BW reported using the estimates from the meta analysis of Salah et al. (2014)Salah, N., Sauvant, D. & Archimède, H. 2014. "Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis". Animal, 8: 1439-1447, ISSN: 1751-732X. https://doi.org/10.1017/S1751731114001153. for tropical small ruminants and cattle (542.64 and 631.26 kJ ME/kg BW0.75, respectively).

The majority of the studies did not provide information on the ME concentration of the diet, therefore this was estimated according to Minson (1984)Minson, D.J. 1984. "Digestibility and voluntary intake by sheep of five Digitaria species". Australian Journal of Experimental Agriculture, 24: 494-500, ISSN: 1446-5574. https://doi.org/10.1071/EA9840494. [Eq. (1) ME ( MJ kg ) =   0.157 DOM +   0.059 CP   1.073 ] with CP and digestible OM as predictors, two parameters that account for differences between legumes and grasses.

ME ( MJ kg ) =   0.157 DOM +   0.059 CP   1.073  Eq.(1)

Where

DOM = concentration of digestible organic matter in the diet (g/100 g DM);

CP = concentration of crude protein in the diet (g/100 g DM);

Digestible OM concentration was estimated from the concentration of OM in the diet and from the OMD (g/kg) reported in the studies. For those studies not reporting OMD but where DM digestibility was available, the former was estimated from DM digestibility (DMD (g/kg)) using regressions derived from the data used for this study [Eq. (2) OMD ( g kg ) =   100.2   +   0.876   × DMD ; R 2 = 0.72 ; for grasses only , (3) OMD ( g kg ) =   108.0   +   0.848   × DMD ;   R 2 = 0.65 ; for mixed legume grasses rations , (4) OMD ( g kg ) =   44.9   +   0.951   × DMD ; R 2 = 0.88 ;   for legumes only ].

OMD ( g kg ) =   100.2   +   0.876   × DMD ; R 2 = 0.72 ; for grasses only  Eq.(2)
OMD ( g kg ) =   108.0   +   0.848   × DMD ;   R 2 = 0.65 ; for mixed legume grasses rations  Eq.(3)
OMD ( g kg ) =   44.9   +   0.951   × DMD ; R 2 = 0.88 ;   for legumes only  Eq.(4)

Equations to estimate methane

 

For the estimation of methane production, equations considering DMI, NDF, ADF, and ME concentrations or intakes, as well as OMD were favored, parameters that capture the characteristics of legume forages, the differences within types of legume and between legumes and grasses, while also allowing for the estimation of methane from a significant amount of observations. In this regard, the predictive equations produced by Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. and Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. were considered. From the equations produced by Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. the Binomial 12 [Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 ], Binomial 13 [Eq. (6) CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2 ], Linear 17 [Eq. (7) CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI ] and Linear 18 [Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm ] were selected based on their performance and the availability of the predictor variables within this dataset.

C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2  Eq.(5)
CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2  Eq.(6)
CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI  Eq.(7)
CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm  Eq.(8)

Where

DMI = dry matter intake in kg/d;

NDFI = NDF intake in kg/d;

ADFI = ADF intake (kg/d);

FL = feeding level as multiple of the maintenance requirements.

OMDm = organic matter digestibility (g/kg) at a maintenance level of feeding (estimated based on OMD following the procedure outlined by Ramin and Huhtanen (2013)Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095. .

Where DMI = dry matter intake in kg/d; NDFI = NDF intake in kg/d; ADFI = ADF intake (kg/d); FL = feeding level as multiple of the maintenance requirements; OMDm = organic matter digestibility (g/kg) at a maintenance level of feeding (estimated based on OMD following the procedure outlined by Ramin and Huhtanen (2013)Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095. .

From the work of Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. predictive equations 6c [Eq. (9) CH 4   ( MJ d ) =   3.44 ±   0.937   +   0.502 ±   0.115   × DMI +   0.506 ±   0.211   × NDFI ], 7c [Eq. (10) CH 4   ( MJ d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   × MEI +   0.606 ±   0.306   × ADFI ], 8c [Eq. (11) CH 4   ( MJ d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   × MEI +   0.980 ±   0.241   × NDFI ], and 10c [Eq. (12) CH 4   ( MJ d ) =   3.41 ±   0.973   +   0.520 ±   0.120   × DMI 0.996 ±   0.447   × ADFI + 1.15 ±   0.321   × NDFI ] were used to estimate methane in this dataset:

CH 4   ( MJ d ) =   3.44 ±   0.937   +   0.502 ±   0.115   × DMI +   0.506 ±   0.211   × NDFI  Eq.(9)
CH 4   ( MJ d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   × MEI +   0.606 ±   0.306   × ADFI  Eq.(10)
CH 4   ( MJ d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   × MEI +   0.980 ±   0.241   × NDFI  Eq.(11)
CH 4   ( MJ d ) =   3.41 ±   0.973   +   0.520 ±   0.120   × DMI 0.996 ±   0.447   × ADFI + 1.15 ±   0.321   × NDFI  Eq.(12)

Where

DMI = dry matter intake in kg/d;

NDFI = NDF intake in kg/d;

MEI = ME intake in MJ/d;

ADFI = ADF intake in kg/d.

Subsetting of data

 

The dataset was divided into cattle and small ruminants, and subsets were created according to physiological stage (adult or growing), species (goat and sheep). and legume’s growth habit (herb, shrub and tree legumes). The latter classification was based on the PLANTS database (https://plants.usda.gov) of the Natural Conservation service of the United Sates as described by Castro-Montoya and Dickhoefer (2018)Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. . Descriptive statistics of the variables used in the study are presented in table 1. Another subset of data was created including only diets with grass forage with and without concentrate supplementation from small ruminants (table 1). This was not done for cattle because of the reduced number of observations available.

Table 1.  Descriptive statistics of parameters used for the prediction of methane emissions for the different datasets used.
Variable n Average Median Standard deviation Minimum Maximum
Adult cattle
Body weight (kg) 70 378.00 367.00 140.40 180.00 820.00
Dry matter intake (kg/d) 76 9.27 8.70 3.55 2.50 19.60
Organic matter digestibility (g/kg) 47 624.00 630.00 72.00 420.00 751.00
Digestible organic matter intake (kg/d) 38 5.45 4.84 2.97 1.51 12.60
Metabolizable energy (MJ/kg DM) 38 8.24 8.49 1.33 4.69 10.60
Metabolizable energy intake (MJ/d) 38 81.8 72.3 46.2 22.30 196.00
Feeding level 35 1.50 1.47 0.63 0.51 2.77
Neutral detergent fiber intake (kg/d) 69 5.21 5.31 1.71 1.34 8.64
Acid detergent fiber intake (kg/d) 57 3.27 3.00 1.15 0.85 5.96
Milk yield (kg/d) 23 7.68 6.30 4.50 3.75 22.00
Growing cattle
Body weight (kg) 79 195.00 181.00 94.80 36.00 411.00
Dry matter intake (kg/d) 79 4.62 4.30 2.01 0.34 9.40
Organic matter digestibility (g/kg) 44 573.00 584.00 92.9 129.00 724.00
Digestible organic matter intake (kg/d) 44 2.17 2.23 0.75 0.51 3.60
Metabolizable energy (MJ/kg DM) 44 7.78 7.86 1.27 1.66 9.38
Metabolizable energy intake (MJ/d) 44 32.30 33.20 11.00 7.21 53.00
Feeding level 44 1.08 1.03 0.37 0.23 2.20
Neutral detergent fiber intake (kg/d) 76 2.79 2.74 1.31 0.08 6.57
Acid detergent fiber intake (kg/d) 57 1.85 1.81 0.87 0.32 4.08
Average daily gain (g/d) 43 429.3 434.00 237.10 0.00 920.00
Adult goat
Body weight (kg) 98 31.10 29.00 11.90 14.20 67.00
Dry matter intake (kg/d) 100 0.88 0.68 0.51 0.11 2.61
Organic matter digestibility (g/kg) 84 594.00 622.00 120.4 293.00 759.00
Digestible organic matter intake (kg/d) 82 0.45 0.36 0.28 0.06 1.17
Metabolizable energy (MJ/kg DM) 82 8.17 8.63 1.84 3.59 11.3
Metabolizable energy intake (MJ/d) 82 6.80 5.44 4.25 0.86 18.0
Feeding level 82 0.94 0.91 0.40 0.21 1.84
Neutral detergent fiber intake (kg/d) 87 0.49 0.43 0.28 0.07 1.67
Acid detergent fiber intake (kg/d) 74 0.32 0.31 0.16 0.04 1.02
Growing goat
Body weight (kg) 232 15.10 14.90 4.06 5.43 25.80
Dry matter intake (kg/d) 235 0.51 0.50 0.15 0.11 0.96
Organic matter digestibility (g/kg) 145 631.00 632.00 84.00 455.00 819.00
Digestible organic matter intake (kg/d) 138 0.30 0.27 0.11 0.13 0.65
Metabolizable energy (MJ/kg DM) 138 8.76 8.84 1.33 5.60 11.80
Metabolizable energy intake (MJ/d) 138 4.54 4.11 1.62 1.94 9.90
Feeding level 135 1.09 1.07 0.34 0.48 2.36
Neutral detergent fiber intake (kg/d) 217 0.28 0.27 0.09 0.04 0.53
Acid detergent fiber intake (kg/d) 193 0.18 0.17 0.07 0.02 0.38
Average daily gain (g/d) 82 44.9 38.7 25.90 1.60 143.00
Adult sheep
Body weight (kg) 253 31.90 29.50 11.50 12.50 70.00
Dry matter intake (kg/d) 266 0.80 0.74 0.31 0.16 1.87
Organic matter digestibility (g/kg) 233 558 570 85.00 270.00 769.00
Digestible organic matter intake (kg/d) 211 0.40 0.38 0.19 0.05 1.04
Metabolizable energy (MJ/kg DM) 211 7.50 7.66 1.30 3.79 10.70
Metabolizable energy intake (MJ/d) 211 5.94 5.55 2.84 0.74 15.90
Feeding level 205 0.83 0.82 0.32 0.09 1.97
Neutral detergent fiber intake (kg/d) 242 0.48 0.48 0.19 0.06 1.01
Acid detergent fiber intake (kg/d) 205 0.31 0.30 0.13 0.04 0.61
Growing sheep
Body weight (kg) 357 21.60 19.50 15.00 4.10 209.00
Dry matter intake (kg/d) 357 0.70 0.68 0.20 0.21 1.28
Organic matter digestibility (g/kg) 207 592.00 578.00 83.70 408.00 840.00
Digestible organic matter intake (kg/d) 190 0.40 0.36 0.30 0.19 4.27
Metabolizable energy (MJ/kg DM) 190 8.53 7.95 6.82 5.22 101.00
Metabolizable energy intake (MJ/d) 190 5.92 5.35 4.80 2.72 66.9
Feeding level 190 1.12 0.96 1.32 0.23 18.7
Neutral detergent fiber intake (kg/d) 353 0.41 0.39 0.13 0.10 0.82
Acid detergent fiber intake (kg/d) 298 0.25 0.24 0.09 0.09 0.61
Average daily gain (g/d) 75 57.6 48.00 34.90 2.00 170.00
No legumes small ruminants
Body weight (kg) 264 24.10 21.20 11.40 5.43 70.00
Dry matter intake (kg/d) 271 0.65 0.59 0.32 0.17 2.89
Organic matter digestibility (g/kg) 200 586.00 592.00 106.90 227.00 840.00
Digestible organic matter intake (kg/d) 184 0.34 0.31 0.19 0.09 1.28
Metabolizable energy (MJ/kg DM) 184 7.79 7.90 1.67 2.56 11.7
Metabolizable energy intake (MJ/d) 184 5.08 4.55 2.88 1.14 19.7
Feeding level 179 0.85 0.78 0.38 0.17 2.21
Neutral detergent fiber intake (kg/d) 195 618.00 620.00 116.70 242.00 899.00
Acid detergent fiber intake (kg/d) 253 0.42 0.40 0.19 0.10 1.41
Average daily gain (g/d) 33 42.90 36.20 28.4 1.60 120

Using an energy density of 55.5 MJ/kg (Elert 2006Elert, G. 2020. The Physics Hypertextbook. Available: https://physics.info/energy-chemical/. June 4.), the estimated methane in MJ/d from Eq. (5 C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 - 12) CH 4   ( MJ d ) =   3.41 ±   0.973   +   0.520 ±   0.120   × DMI 0.996 ±   0.447   × ADFI + 1.15 ±   0.321   × NDFI were converted into g/d. Methane estimated from Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 for cattle and from Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm for small ruminants was further expressed as g/kg metabolic body weight (MBW), g/kg DMI, g/kg digestible organic matter intake (DOMI), g/kg milk, and g/kg ADG.

With the objective of comparing different forages without influence of other ingredients, a subset of data was created where small ruminants were fed exclusively on grasses, straw/stover, herb legumes, shrub legumes, or tree legumes. Boxplots were created with the forages categories for methane in g/kg DMI and in g/kg DOMI. Also, a subset was created to compare different forages when supplemented with concentrate feed in small ruminants. First, observations were selected where grasses or straw/stover were fed in proportions between 60 and 90 g/100 g DM, with the remainder of the DM coming from concentrate feeds. Second, observations were selected where legumes were fed mixed with grasses, where the legume inclusion ranged between 20 and 50 g/100 g DM, and where the total forage proportion (grass + legume) ranged between 60 and 90 g/100 g DM, with the remainder of the DM coming from concentrate feeds. Legumes were then divided into herbs, shrubs and trees. Boxplots were created with the forage categories for methane in g/kg DMI, in g/kg DOMI, and in g/kg ADG.

Statistical analysis

 

Outliers in the predicted methane from each equation were identified and removed based on the interquartile range. Pearson correlation was estimated within the methane predictions from all equations using the cor ( ) function of R program. The estimated methane production from Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 for cattle and from Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm for small ruminants was regressed on the legume proportion in the diet using the lm ( ) function of R. Regression analyses were conducted independently for the cattle and the small ruminant datasets. Within each of these datasets, further regression analyses were conducted for subsets based on the physiological stage (adult or growing), species (goat or sheep), and growth habit of legumes (herb, shrub, tree). For the dataset including only control treatments in small ruminants, predicted methane emissions were regressed on the proportion of concentrate in the diet following the procedure described above. Significances of the slopes were declared at P < 0.05, whereas tendencies were declared at 0.05 < P < 0.10.

Results

 

For the cattle dataset there was a high correlation between methane estimates from all equations, with those of Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 having the highest correlations with all other estimates (data not shown). Average methane estimated (g/d) for cattle was consistently higher when derived from the equations of Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. [Eq. (9 CH 4   ( MJ d ) =   3.44 ±   0.937   +   0.502 ±   0.115   × DMI +   0.506 ±   0.211   × NDFI - 12) CH 4   ( MJ d ) =   3.41 ±   0.973   +   0.520 ±   0.120   × DMI 0.996 ±   0.447   × ADFI + 1.15 ±   0.321   × NDFI ] than when estimated from the equations of Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. [Eq. (5 C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 - 8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm ] (Table 2). For the dataset on small ruminants Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 , (6) CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2 and (7) CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ) produced a high number of negative estimations, and were not considered for further analyses (data not shown). Similarly, the estimates from the equations of Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. ranged between 71.6 and 313 g/d (data not shown) and were deemed unrealistic, thus were also disregarded for further analysis. Only the estimates of Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ) appeared to be within realistic ranges of methane production for small ruminants (Table 2).

Table 2.  Summary statistics of estimated methane for cattle and small ruminants
Average Median Standard deviation Minimum Maximum
Cattle
Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (g/d) Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 128.0 131.2 50.6 7.4 249.1
Eq. (6) CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2 128.2 137.4 49.6 5.3 261.2
Eq. (7) CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI 135.8 128.2 74.8 32.4 313.6
Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm 122.1 118.8 52.8 48.7 254.0
Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. (g/d) Eq. (9) CH 4   ( MJ d ) =   3.44 ±   0.937   +   0.502 ±   0.115   × DMI +   0.506 ±   0.211   × NDFI 158.4 154.5 48.1 65.7 301.8
Eq. (10) CH 4   ( MJ d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   × MEI +   0.606 ±   0.306   × ADFI 149.2 134.8 49.7 84.8 273.4
Eq. (11) CH 4   ( MJ d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   × MEI +   0.980 ±   0.241   × NDFI 169.8 154.9 49.6 96.8 287.6
Eq. (12) CH 4   ( MJ d ) =   3.41 ±   0.973   +   0.520 ±   0.120   × DMI 0.996 ±   0.447   × ADFI + 1.15 ±   0.321   × NDFI 165.2 163.2 49.2 74.9 296.6
Small ruminants
Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (g/d) Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm 25.9 26.2 22.4 2.12 62.7

The regressions presented in table 3 as well as scatterplots in figure 1and figure 2 correspond to Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ). Overall for cattle, when expressed relative to MBW, DMI and ADG, increasing proportions of legume in the diet decreased methane emissions (P ≤ 0.04) (figure 1) (table 3, Reg. 1, Reg. 7, Reg. 23). When expressed relative to DOMI or milk yield, the proportion of legume in the diet did not affect methane production (P ≥ 0.48) even though negative slopes for legume proportion were observed in both cases (figure 1) (table 3, Reg. 13 and Reg. 19). For adult cattle, methane in any unit was not affected by legume proportion in the diet (table 3; P ≥ 0.27), even though a negative slope was observed for all regressions with the exception of methane in g/kg DOMI (table 3, Reg. 14). For growing cattle methane in all units of expression decreased with increasing legume proportion (P < 0.01) (Table 3, Reg. 3, Reg. 9, Reg. 15, Reg. 23). Methane in g/kg MBW was greater in adult compared with growing cattle (figure 1) but the opposite appeared when expressed in g/kg DMI (figure 1).

Table 3.  Regression equations of legume proportion in the diet on methane emissions for cattle ruminants.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 1 (134) All 2.23 0.085 -7.17 × 10-3 2.24 × 10-3 <0.01
Reg. 2 (61) Adult 2.24 0.157 -5.80 × 10-3 5.61 × 10-3 0.30
Reg. 3 (73) Growing 2.17 0.113 -6.73 × 10-3 2.56 × 10-3 0.01
Reg. 4 (65) Herb 2.49 0.150 -10.0 × 10-3 4.33 × 10-3 0.02
Reg. 5 (19) Shrub 2.07 0.148 -6.31 × 10-3 4.33 × 10-3 0.16
Reg. 6 (50) Tree 1.98 0.123 -5.36 × 10-3 2.90 × 10-3 0.07
Methane relative to dry matter intake (g/kg DMI)
Reg. 7 (137) All 21.2 0.359 -1.98 × 10-2 0.99 × 10-2 0.04
Reg. 8 (66) Adult 19.8 0.527 -1.13 × 10-2 1.90 × 10-2 0.55
Reg. 9 (71) Growing 23.2 0.411 -4.54 × 10-2 0.97 × 10-2 <0.01
Reg. 10 (70) Herb 19.9 0.585 2.01 × 10-2 1.76 × 10-2 0.26
Reg. 11 (19) Shrub 21.3 0.543 -0.37 × 10-2 1.59 × 10-2 0.82
Reg. 12 (48) Tree 22.1 0.625 -4.89 × 10-2 1.54 × 10-2 <0.01
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 13 (75) All 38.9 1.41 -0.925 × 10-2 3.46 × 10-2 0.79
Reg. 14 (35) Adult 32.5 2.72 13.0 × 10-2 11.7 × 10-2 0.27
Reg. 15 (40) Growing 45.7 1.71 -9.81 × 10-2 3.32 × 10-2 0.01
Reg. 16 (24) Herb 35.2 2.77 13.6 × 10-2 8.30 × 10-2 0.12
Reg. 17 (13) Shrub 34.3 1.84 9.02 × 10-2 4.65 × 10-2 0.08
Reg. 18 (38) Tree 42.1 2.11 -8.77 × 10-2 4.67 × 10-2 0.07
Methane relative to milk yield (g/kg MY)
Reg. 19 (45) All 30.7 4.45 -1.27 × 10-1 1.81 × 10-1 0.48
Reg. 20 (30) Herb 28.7 5.62 -1.47 × 10-1 2.17 × 10-1 0.50
Reg. 21 (5) Shrub 28.4 15.03 1.15 × 10-1 7.64 × 10-1 0.89
Reg. 22 (10) Tree 31.6 5.82 1.31 × 10-1 2.52 × 10-1 0.62
Methane relative to average daily gain (g/kg ADG)
Reg. 23 (38) All 0.275 0.027 -1.73 × 10-3 0.621 × 10-3 0.01
Reg. 24 (16) Herb 0.322 0.054 -2.66 × 10-3 1.21 × 10-3 0.04
Reg. 25 (5) Shrub 0.304 0.101 -1.83 × 10-3 2.79 × 10-3 0.56
Reg. 26 (17) Tree 0.242 0.032 -1.24 × 10-3 0.719 × 10-3 0.11

1number of observations used in the regression

Figure 1.  Scatter plot of the regression of legume proportion in the diet on methane emissions expressed in different units for the complete cattle data (solid black line) and for data separated into growing and adult animals.
Figure 2.  Scatter plot of the regression of legume proportion in the diet on methane emissions of cattle expressed in different units for data separated into herb, shrub and tree legumes.

Regarding legume’s growth habit, when expressed as g/kg MBW herbs decreased methane production (P = 0.02), trees tended to decrease it (P = 0.07) and shrubs did not have an effect (P = 0.16) (table 3, Reg. 4-6) ). Herbs showed a greater methane production (g/kg MBW) than both trees and shrubs (figure 2). Relative to DMI, methane decreased with increasing proportions of tree legumes (P < 0.01), while no effects were observed for herbs and shrubs (P ≥ 0.26) (table 3, Reg. 10-12). Methane relative to DOMI (figure 2) tended to increase with increasing proportion of shrubs in the diet (P = 0.08) and tended to decrease with tree legumes (P = 0.07), while no effects of herbs was detected even though a positive slope was obvious (figure 2) and greater than that of shrubs (table 3, Reg. 16-18). Relative to milk no effects of legume type was significant (P ≥ 0.50), and only herbs had a negative slope (table 3, Reg. 20-23). Relative to ADG herbs showed a decrease in methane with increasing proportion of legume (P = 0.04), with no effects found for shrubs and trees (P ≥ 0.11) (table 3, Reg. 24-26).

For small ruminants overall, increasing proportions of legumes decreased methane emissions relative to MBW, DMI and DOMI (by tendency; P = 0.06) (table 4, Reg. 27, 35, 43), but did not have an effect on methane in g/kg ADG (P = 0.97; table 4, Reg. 51). When analyzing the data by species (goats and sheep) and physiological stage (i.e. adult and growing) no effect was observed for adult goats or growing sheep in any unit of methane expression (P > 0.10) (table 4, Reg. 28, 31, 36, 39, 44, 47, 53). Feeding increasing proportions of legumes decreased methane in growing goats when expressed as g/kg MBW, g/kg DMI, and g/kg DOMI (by tendency; P = 0.08) (table 4, Reg. 29, 37, 45). For adult sheep methane decreased when expressed relative to DMI (by tendency; P = 0.06) or DOMI (table 4, Reg. 38, 46). Moreover, growing goats appeared to produce more methane than growing sheep when expressed relative to MBW, DMI and DOMI, but differences between adult and growing animals for other units of expression of methane appeared less clear (figure 3).

Table 4.  Regression equations of legume proportion in the diet on methane emissions for small ruminants.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 27 (572) All 2.46 0.051 -2.62 × 10-3 1.14 × 10-3 0.02
Reg. 28 (75) Goat - Adult 2.03 0.149 3.92 × 10-3 3.11 × 10-3 0.21
Reg. 29 (124) Goat - Growing 3.10 0.116 -7.54 × 10-3 2.74 × 10-3 0.01
Reg. 30 (190) Sheep - Adult 2.19 0.065 -1.34 × 10-3 1.31 × 10-3 0.31
Reg. 31 (183) Sheep - Growing 2.37 0.090 -0.986 × 10-3 2.24 × 10-3 0.66
Reg. 32 (160) Herb 2.66 0.102 -5.12 × 10-3 2.03 × 10-3 0.01
Reg. 33 (58) Shrub 1.95 0.174 3.07 × 10-3 3.19 × 10-3 0.34
Reg. 34 (354) Tree 2.45 0.064 -2.65 × 10-3 1.57 × 10-3 0.09
Methane relative to dry matter intake (g/kg DMI)
Reg. 35 (576) All 40.4 1.15 -5.15 × 10-2 2.56 × 10-2 0.04
Reg. 36 (72) Goat - Adult 32.2 3.20 7.93 × 10-2 6.76 × 10-2 0.24
Reg. 37 (125) Goat - Growing 48.8 2.57 -13.0 × 10-2 6.14 × 10-2 0.04
Reg. 38 (192) Sheep - Adult 40.0 1.77 -6.71 × 10-2 3.52 × 10-2 0.06
Reg. 39 (187) Sheep - Growing 37.2 2.19 -0.51 × 10-2 5.50 × 10-2 0.93
Reg. 40 (160) Herb 45.0 2.41 -11.9 × 10-2 4.80 × 10-2 0.01
Reg. 41 (58) Shrub 34.1 4.53 5.65 × 10-2 8.42 × 10-2 0.50
Reg. 42 (358) Tree 39.9 1.37 -5.21 × 10-2 3.36 × 10-2 0.12
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 43 (578) All 77.1 2.24 -0.953 × 10-1 4.98 × 10-2 0.06
Reg. 44 (75) Goat - Adult 62.3 6.72 2.27 × 10-1 13.9 × 10-2 0.11
Reg. 45 (125) Goat - Growing 87.3 5.21 -2.19 × 10-1 12.4 × 10-2 0.08
Reg. 46 (189) Sheep - Adult 82.2 3.58 -1.99 × 10-1 7.14 × 10-2 0.01
Reg. 47 (189) Sheep - Growing 70.8 3.94 -0.263 × 10-1 9.96 × 10-2 0.79
Reg. 48 (160) Herb 86.2 4.62 -2.58 × 10-1 9.22 × 10-2 0.01
Reg. 49 (59) Shrub 58.2 8.89 2.65 × 10-1 16.2 × 10-2 0.11
Reg. 50 (359) Tree 77.2 2.65 -1.16 × 10-1 6.54 × 10-2 0.08
Methane relative to average daily gain (g/kg ADG)
Reg. 51 (135) All 0.526 0.055 -0.071 × 10-3 1.63 × 10-3 0.97
Reg. 52 (64) Goat - Growing 0.665 0.075 -3.40 × 10-3 2.39 × 10-3 0.16
Reg. 53 (71) Sheep - Growing 0.413 0.079 2.23 × 10-3 2.20 × 10-3 0.32
Reg. 54 (43) Herb 0.644 0.110 -1.79 × 10-3 2.79 × 10-3 0.53
Reg. 55 (7) Shrub 0.817 0.437 0.143 × 10-3 0.10 × 10-3 0.99
Reg. 56 (85) Tree 0.515 0.061 -1.72 × 10-3 2.06 × 10-3 0.41

1number of observations used in the regression

Figure 3.  Scatter plot of the regression of legume proportion in the diet on methane emissions for small ruminants expressed in different units for the complete dataset (solid black line) and for data separated into adult and growing goat and sheep

Moreover, in small ruminants, herbs decreased methane relative to MBW, DMI and DOMI (P = 0.01; Table 4, Reg. 32, 40, 48) (figure 4). Tree legumes only tended to decrease methane relative to MBW and DOMI (table 4, Reg. 34, 50). Feeding increasing proportions of shrub legumes did not have any effect on methane (P ≥ 0.11), but it is important to note that it showed a positive slope in all cases (table 4, Reg. 33, 41, 49, 55) (figure 4).

Figure 4.  Scatter plot of the regression of legume proportion in the diet on methane emissions for small ruminants expressed in different units for data separated into herb, shrub and tree legumes.

The regression of methane emissions on the concentrate proportion in diets with grasses but no legumes showed that higher concentrate proportion in the diet decreased methane emissions relative to DMI, DOMI and ADG (P ≤ 0.03), but not when expressed in g/kg MBW (P = 0.41) (table 5, Reg. 57, 60, 63, 66) (figure 5). However, when the analysis was conducted separately for grasses and for crop residues (straw or stover) supplementing grasses with concentrates always decreased methane emissions (P ≤ 0.02; table 5, Reg. 58, 61, 64, 67), but when concentrates supplemented straw/stover methane tended to decrease only in g/kg DOMI (P = 0.05), while it tended to increase when expressed in g/kg MBW (P = 0.05), with no effects over methane in g/kg DMI or g/kg ADG (P ≥ 0.56) (table 5, Reg. 59, 62, 65, 68).

Table 5.  Regression of estimated methane on concentrate proportion in diets of small ruminants having grass or straw/stover as sole forage source in the diet.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 57 (151) All 2.45 0.06 -2.28 × 10-3 2.75 × 10-3 0.41
Reg. 58 (949) Grass 2.52 0.08 -7.96 × 10-3 3.33 × 10-3 0.02
Reg. 59 (57) Straw/Stover 2.33 0.10 9.09 × 10-3 4.54 × 10-3 0.05
Methane relative to dry matter intake (g/kg DMI)
Reg. 60 (152) All 46.5 1.53 -15.9 × 10-2 5.82 × 10-2 <0.01
Reg. 61 (93) Grass 45.0 1.94 -30.3 × 10-2 7.56 × 10-2 <0.01
Reg. 62 (59) Straw/Stover 49.6 2.05 2.72 × 10-2 7.51 × 10-2 0.72
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 63 (152) All 95.3 2.96 -56.9 × 10-2 11.3 × 10-2 <0.01
Reg. 64 (97) Grass 89.9 3.59 -82.4 × 10-2 14.3 × 10-2 <0.01
Reg. 65 (55) Straw/Stover 106.0 3.75 -26.6 × 10-2 13.3 × 10-2 0.05
Methane relative to average daily gain (g/kg ADG)
Reg. 66 (27) All 0.861 0.139 -7.35 × 10-3 3.24 × 10-3 0.03
Reg. 67 (16) Grass 0.956 0.141 -15.2 × 10-3 4.21 × 10-3 <0.01
Reg. 68 (11) Straw/Stover 0.826 0.314 -3.54 × 10-3 5.84 × 10-3 0.56

1 number of observations used in the regression

Figure 5.  Scatter plot of the regression of concentrate proportion in the diet on methane emissions for small ruminants expressed in different units. Solid line represents the general regression line.

Discussion

 

For this discussion the reader must keep in mind that methane was estimated from predictive equations and not directly measured, which carries an uncertainty in the results obtained from these analyses. However, similar exercises have been made before (Chagunda et al. 2010Chagunda, M.G., Flockhart, J.F. & Roberts, D.J. 2010. "The effect of forage quality on predicted enteric methane production from dairy cows". International Journal of Agricultural Sustainability, 8: 250-256, ISSN: 1747-762X. https://doi.org/10.3763/ijas.2010.0490. ) with results in line with in vivo observations. Moreover, the trends observed in this study across the subsets of data are consistent throughout the study and in accordance with physiological principles. Another important aspect to consider is that legumes contain a number of bioactive compounds with the capability to alter rumen fermentation, including methane production (Archimède et al. 2011Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. ). Secondary compounds may have effects on DMI and OMD, both parameters strongly linked with methane production, thus indirectly, the equations used to estimate methane have accounted for some of the possible effects of secondary compounds. Even with these caveats, the robustness of this study lays in the volume of information that could be analyzed, where even small tendencies might be indicative of important and biologically relevant effects. Therefore, the results of the current analysis certainly contribute to the discussion on the ability of tropical legumes to decrease methanogenesis.

Predictive equations used

 

Equations to predict methane were selected based on the available parameters in our dataset. Therefore, equations including e.g. fat, non-structural carbohydrates, or gross energy concentration were not considered. Equations based exclusively on DMI were also disregarded, as these do not consider the differences in the nutritional composition of legumes and grasses. Hence, predictive equations considering DMI, OMD, NDF and ADF concentration or intake were purposely targeted. Recent studies have shown that, when accounting for the nutritional composition and at high inclusion levels, diets with increasing legume level tend to decrease DMI and OMD (da Silva et al. 2017da Silva, T., Pereira, O., Martins, R., Agarussi, M., da Silva, L., Rufino, L., Valadares, F. & Ribeiro, K. 2017. "Stylosanthes cv. Campo Grande silage and concentrate levels in diets for beef cattle". Animal Production Science, 58: 539-545, ISSN: 1836-5787. https://doi.org/10.1071/AN15781. and Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ) with clear differences between herb, shrub and tree legumes (Castro-Montoya and Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). Along this line, tropical legumes have a fairly high concentration of NDF and ADF, which reflects on a lower in vitro OMD than grasses, particularly for shrub legumes (Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. ), hence, this study aimed at capturing this variation into the estimation of methane.

For the cattle dataset, including both adult and growing animals, all the equations used yielded estimates of methane within expected values for large ruminants (table 3). For example, estimates of Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 to (7) CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI ranged between 0.76 and 1.58 MJ/kg DMI, while Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. and Yan et al. (2009)Yan, T., Porter, M.G. & Mayne, C.S. 2009. "Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters". Animal, 3: 1455-1462, ISSN: 1751-732X. https://doi.org/10.1017/S175173110900473X. , reported methane emissions ranging from 1.12 to 1.49 MJ/kg DMI. For the cattle dataset, there was a high correlation between all predictive equations (r ≥ 0.71; data not shown). The equations of Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. had consistently higher estimated methane than that of Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (table 2) likely due to the higher overall methane production of the temperate cattle used by Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. . Not only because Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 was developed from tropical cattle, but also because it was the equation that allowed for the maximum number of observations predicted, the estimates of Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 were used for the calculation of methane relative to MBW, DMI, DOMI, milk yield, and ADG, and the subsequent regression analyses.

For small ruminants Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 , (6) CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2 and (7) CH 4    ( MJ d ) =   0.910 ± 0.746   +   1.472 ± 0.154   × DMI   1.388 ± 0.451   × FL   0.669 ± 0.338   × ADFI produced a high number of negative estimations, likely due to the quadratic nature of NDFI and ADFI in Eq. (5) C H 4   ( MJ d ) =   1.012 ± 0.709   +   0.308 ± 0.249   × DMI +   0.0404 ± 0.0119   × DMI 2   +   2.424 ± 0.415   × NDFI   0.290 ± 0.0409   × NDFI 2 and (6) CH 4   ( MJ d ) =   1.490 ± 0.745   +   0.418 ± 0.232   × DMI +   0.0415 ± 0.0118   × DMI 2    +   4.311 ± 0.718   × ADFI   0.977 ± 0.138   × ADFI 2 and due to the high ADF concentrations in diets in the tropics. Equation (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm , based on the OMD, FL and DMI, yielded methane estimates with mean, min and max (g/d) of 25.9, 2.12 and 62.7 (table 2). The estimates of Eq. (8) CH 4   ( MJ d ) =   1.559 ± 2.010   +   1.217 ± 0.164   × DMI   2.418 ± 0.724   × FL +   0.00714 ± 0.00316   × OMDm still appeared to be on the higher end of daily methane emissions for small ruminants (Pelchen and Peters 1998Pelchen, A. & Peters, K.J. 1998. "Methane emissions from sheep". Small Ruminant Research, 27: 137-150, ISSN: 1879-0941. https://doi.org/10.1016/S0921-4488(97)00031-X. ), but despite the possible overestimation, these estimates were used to calculate methane relative to MBW, DMI, DOMI, and ADG, and the subsequent regression analyses. The estimates from the equations of Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. averaged methane emissions between 71.4 and 88.9 g/d and were deemed not plausible for tropical small ruminants (data not shown).

In vivo methane production when feeding tropical legumes

 

Methane synthesis is a function of intake, therefore, robust conclusions can only be obtained when DMI has been reported in a study, thus manuscripts with grazing animals are not included in the following discussion. Under those considerations, ten studies were found reporting methane emissions and DMI from ruminants fed on tropical legumes comparing them with a control diet. Six of those in vivo studies tested the effects of leucaena, with four of them finding decreases in methane emissions (Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. and Possenti et al. 2008Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J., Frighetto, R.T.S. & Lima, M.A.D. 2008. "Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos". Revista Brasileira de Zootecnia, 37: 1509-1516, ISSN: 1806-9290. http://dx.doi.org/10.1590/S1516-35982008000800025. ) while two other finding no effects (Delgado et al. 2013Delgado, D.C., Galindo, J., Cairo, J., Orta, I. & Dorta, N. 2013. "Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep". Cuban Journal of Agricultural Science, 47(3): 267-271, ISSN: 2079-3480. and Moreira et al. 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. ). Importantly, three of the studies reporting a decrease in methane when feeding leucaena also found a decrease in OMD (Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. and Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ). When testing other legume species, Suybeng et al. (2020)Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S. & Malau-Aduli, A.E. 2020. "Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions". Animals, 10: 2097, ISSN 2076-2615. https://doi.org/10.3390/ani10112097. found decreases in methane (g/kg DMI) with increasing levels of Descanthus spp. but ADG decreased at the highest inclusion level (31 g/100 g DM). Three additional studies did not find any effect of feeding Lablab purpureus, Vigna unguiculata, Styzolobium aterrimum, Mimosa caesalpiniaefolia and Macrotyloma axiliare on methane emissions in g/kg DMI (Moreira et al., 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. ; Washaya et al., 2018Washaya, S., Mupangwa, J. & Muchenje, V. 2018. "Chemical composition of Lablab purpureus and Vigna unguiculata and their subsequent effects on methane production in Xhosa lop-eared goats". South African Journal of Animal Science, 48: 445-458, ISSN: 2221-4062. http://dx.doi.org/10.4314/sajas.v48i3.5. and Lima et al., 2020Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. ).

Moreover, Kennedy and Charmley (2012)Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. quantified the methane emission from several diets containing Lablab purpureus, Leucaena leucocephala, Stylosantes hamata, and Macroptilium bracteatum, but the study was not designed to compare those emissions to those of other diets. The authors found that when increasing the legume proportion in the diet from 20 to 40 g/100 g DM, the changes in methane production where not consistent and depended on the basal grass, the legume species, and the unit in which methane was expressed (Kennedy and Charmley 2012Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. ). The meta-analysis of Archimède et al. (2011)Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. concluded that legumes from warm environments produced less methane than their grasses counterparts, but the analysis was based on only 12 observations comparing legumes versus grasses. All of these studies point towards reductions in methane production when tropical legumes are fed, but the heterogeneity in legume species, animal characteristics, and diet’s nutritional composition make it venturous to draw a conclusion on the potential of these forages to reduce methane emissions.

Overall effects of legume forages on estimated methane production

 

Methane decreased with increasing legume proportion in the diet when expressed relative to MBW, however, emissions could decrease simply because of a lower DMI or degradability of the feed. Indeed, recent studies showed that high proportions of tropical legumes decrease intake, as well as OM and NDF degradability of the diet (Castro-Montoya and Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. and da Silva et al. 2017da Silva, T., Pereira, O., Martins, R., Agarussi, M., da Silva, L., Rufino, L., Valadares, F. & Ribeiro, K. 2017. "Stylosanthes cv. Campo Grande silage and concentrate levels in diets for beef cattle". Animal Production Science, 58: 539-545, ISSN: 1836-5787. https://doi.org/10.1071/AN15781. ). In this regard, when expressed relative to DMI, methane still decreased with increasing legume proportion in the diet. However, when expressed relative to DOMI tropical legumes caused a less obvious response in methane, with no effects when fed to cattle and only a tendency to decrease in small ruminants.

Several mechanisms by which legumes may exert this decrease in methane production are discussed. First, microbial degradation of cellulose and hemicellulose yields H2 that must be later removed from the rumen environment (Carroll and Hungate 1955Carroll, E.J. & Hungate, R.E. 1955. "Formate dissimilation and methane production in bovine rumen contents". Archives of Biochemistry and Biophysics, 56: 525-536, ISSN: 1096-0384. https://doi.org/10.1016/0003-9861(55)90272-1. ). A lower fiber degradability compared with grasses has been observed in tropical legumes, resulting in less substrate for methane formation. Second, diets conducive of higher propionate production sequester H2 away from methane (Marty and Demeyer 1973Marty, R.J. & Demeyer, D.I. 1973. "The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses". British Journal of Nutrition, 30: 369-376, ISSN: 1475-2662. https://doi.org/10.1079/BJN19730041. ), however, studies have shown that tropical legumes have higher acetate to propionate ratios (e.g. Castro-Montoya et al. 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. and Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ), thus, a higher sequestration of methane from propionate seems unlikely.

Also, it has been argued that the presence of secondary compounds in legumes may play a role on activity and number of methanogens (Makkar et al. 2007Makkar, H.P.S., Francis, G. & Becker, K. 2007. "Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems". Animal, 1: 1371-1391, ISSN: 1751-732X. https://doi.org/10.1017/S1751731107000298. ). The in vivo studies reporting microbial activity and methane are inconclusive. The study of Montoya-Flores et al. (2020)Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. with leucaena did not find any effect of the legume on methanogens number, despite the high concentration of total and condensed tannins and a decreased methane production. Conversely, Lima et al. (2020)Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. found no decrease in methane production when macrotyloma was fed to lambs but found a decrease in the abundance of methanogens (also an increase in Ruminococcus flavefaciesn and Fibrobacter succionogens). In this study it was not possible to prove the direct effects of secondary compounds on methane, nevertheless, the indirect effects of those compounds, if any, could reflect on OMD and DMI, variables considered in these estimations. Importantly, not all tropical legumes are rich in secondary compounds neither it is proven that their activity is biologically significant to exert an effect on methanogenesis, therefore, not all the effects of legumes on methane production can be ascribed to secondary compounds.

Decreased degradability and intake can have negative consequences if their extent affects the supply of nutrients to the animal, ultimately decreasing its performance. Therefore, the best indicator of the effectiveness of a strategy to reduce methane is the reduction of intensity of emissions. In this regard, methane relative to milk yield was not affected by legume proportion (even though a negative slope was observed), whereas methane relative to ADG declined in cattle fed legumes. For methane relative to milk yield, it is important to notice that in the current dataset 95 % of the yields recorded was below 16.7 kg/d (average + 2 standard deviations), therefore the current results represent methane emissions of cattle with low to medium production level. Much higher milk yields are commonly found across the tropics. Not only are diets of high yielding cows usually well balanced in terms of nutrients, but also marginal improvements tend to decrease with higher yields. It is therefore uncertain and worth researching how tropical legumes would influence the intensity of emissions at high milk yield levels. The scenario presented for growing cattle appears to cover a larger range of growth for tropical cattle, where the majority of the ADG’s recorded were below 903 g/d.

Contrary to the cattle dataset, no effect of legumes was observed on methane in g/kg ADG for small ruminants. For goats, decreases in methane relative to MBW, DMI and DOMI were observed, hence a decrease in methane in g/kg ADG would be expected provided that ADG is maintained or increased when feeding legumes. Indeed, median ADG for sheep and goats was 48.0 and 38.7 g/d, respectively, higher than median ADG of small ruminants fed no legumes (36.2 g/d) (table 1). A previous study suggested a quadratic relationship between legume level and ADG, with ADG being maximized around 400 g legume/kg DM (Castro-Montoya and Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). High levels of legume inclusion were more common in small ruminants than in cattle (figure 1, Figure 3), therefore, a quadratic effect of legume proportion in the diet on methane in g/kg ADG was tested, but was found not significant (data not shown). Maybe more relevant, for small ruminants, but not for cattle, a number of observations reported a negative ADG, that is when animals lost weight throughout the experimental period. These data were not used for this analysis, as such calculation would produce a negative methane emission which is biologically impossible. Therefore, 12, 9 and 2 observations were removed from the calculations of methane in g/kg ADG of small ruminants without legume, growing sheep, and growing goat, respectively. When considering those negative observations, the median ADG of diets without legumes (25.0 g/d) was much lower than the median observed for growing sheep and goats, (48.0 and 38.1 g/d, respectively; data not shown). This means that the effect of feeding legumes to small ruminants on methane relative to ADG are indeed underestimated in this study, and that a greater reduction in methane emissions, for example over the lifespan of an animal, is likely when improving their feeding via legumes.

Effects of legumes forages according to their growth habit on estimated methane emissions

 

Recent literature reviews on tropical legumes have shown strong differences in the nutritional characteristics between herb, shrub and tree legumes (Castro-Montoya and Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. and Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. ) with shrubs having the highest NDF concentrations, and herbs having the greatest in vivo and in vitro OMD. Herb, shrub and tree legumes also differ in terms of ME, secondary compounds, and CP, to mention some (Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. ). All of these parameters will influence intake level, fermentation patterns, total tract digestibility, and performance. It is therefore expectable that different types of legumes will elicit different responses on methane production. Remarkably, the differential effects of herb, shrub and tree legumes were consistent across cattle and small ruminants and reflected previously outlined differences in their nutritional composition. A greater degradability would lead to higher methane emissions, and indeed, higher methane production was observed for herbs when expressed relative to MBW. When expressed relative to DMI and DOMI, herb legumes have higher methane emissions at levels of inclusion below 500 g/kg DM, but because of the steeper slope, with greater inclusion levels herbs produce less methane than shrubs and trees. Shrubs clearly show the lesser potential to decrease methane emissions, even having a tendency for higher emissions when expressed relative to DOMI, likely related to their higher NDF content directly linked to methane production.

According to the current analysis, tree legumes appear to be intermediate in their potential to decrease methane. Tree legumes have a higher lignin concentration and a lower OMD than herbs (Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ), as well as a decreased DMI and NDF digestibility (Castro-Montoya and Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). The lower digestibility an intake of tree legumes may reflect on a lower animal performance, and ultimately in their potential to decrease methane. Only the foliage of tree legumes is fed to ruminants, resulting in that, compared to herbs, tree legumes have a higher CP content, but also higher secondary compounds content. The presence of secondary compounds in trees may further influence their effects on methane, but the extent and direction of such effects are uncertain, as outlined before. For example, Tiemann et al. (2008)Tiemann, T., Lascano, C., Kreuzer, M. & Hess, H. 2008. "The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes". Journal of the Science of Food and Agriculture, 88: 1794-1803, ISSN: 1097-0010. https://doi.org/10.1002/jsfa.3282. found no correlation between the concentration of condensed tannins and NDF degradability of tropical legumes in vitro. The unclear effects of secondary compounds on ruminants’ nutrition and methane are likely related to their diversity, and must not be neglected from research, this, however, escapes the scope of this study.

The higher degradability and Metabolizable energy of herbs (Castro-Montoya and Dickhoefer 2020Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. ) is likely conducive of a greater positive effect on animal performance, whereas shrubs would have the lowest. Indeed, when expressed relative to ADG and milk yield, the slopes of the regression of legume herbs on methane were consistently negative and showed a greater potential to decrease intensity of emissions than trees and shrubs (figure 2).

Estimated methane emissions from diets of small ruminants without legumes

 

In general, the results of the current study evidence that legumes have potential to decrease methane emissions, particularly when expressed relative to DMI and DOMI. The decreases, however, where not comparable to those achieved when concentrate is supplemented to grasses or crop residues from cereals, as reflected in the greater negative slopes in table 5 compared with those of Table 4. Interestingly, the effects of feeding concentrate were contrasting when the basal forage was a grass or a crop residue. Concentrate feeding is regarded as a strategy to decrease methane emissions as less substrate for H2 producing is available, while steering the fermentation towards more propionate production (Carroll and Hungate, 1955Carroll, E.J. & Hungate, R.E. 1955. "Formate dissimilation and methane production in bovine rumen contents". Archives of Biochemistry and Biophysics, 56: 525-536, ISSN: 1096-0384. https://doi.org/10.1016/0003-9861(55)90272-1. ), while increasing animal productivity, thereby decreasing the intensity of emissions. In the current analysis, higher concentrate supplementation in the diet of small ruminants fed on grass constantly decreased methane emissions, including when expressed relative to ADG, an effect not always observed with the legumes. However, when concentrate was supplemented to straw, methane tended to increase when expressed relative to MBW and had no effect on methane relative to DMI. The supplementation of straw with concentrate feed certainly caused an increase in the overall diet digestibility, thereby producing more methane. Indeed, when methane was expressed relative to DOMI the supplementation of concentrate tended to decrease methane emissions. The effects of supplementing concentrate feeds to crop residues were not obvious when expressed relative to ADG. The reduction of methane when feeding a concentrate feed is remarkable considering that in most cases the portion referred as concentrate consisted of only a cereal meal, brans, cakes or byproducts from other industry, or mixtures of cereal and protein meals. This highlights, on the one hand, the low quality of basal forages found across the tropics, but on the other hand, the great potential that adding even a small proportion of readily digestible energy or protein sources may have in the utilization of that basal forage, performance, and emissions.

Importantly, the authors do not want to suggest that concentrates should be used in detriment of legume forages. Utilizing legume forages has several advantages for the agricultural production system. Moreover, enteric methane is not the only measurement of environmental impact of a given strategy, and other factors like carbon footprint, water footprint, or biodiversity should be considered for the legume forages vs. concentrates comparison.

Archimède et al. (2011)Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. found that sole legumes decrease methane emissions compared with sole grasses. In an attempt to do a similar evaluation boxplots were created comparing estimated methane for diets containing only grasses, only straw/stover, or only legumes (figure 6A-B). The boxplots clearly show higher methane emissions from both grasses and straw compared with only legumes for both methane in g/kg DMI and in g/kg DOMI, with herbs consistently having less methane than that of shrubs and trees. Unfortunately, not enough observations were available to compare sole forages on the basis of methane relative to ADG. Furthermore, when the grasses supplemented with concentrates were compared with mixed legume-grass rations supplemented with concentrates (figure 6C-D-E), relative to DMI and DOMI, median methane produced by grasses was lower than that of herbs and shrubs, and appeared similar to that of trees. However, when expressed relative to ADG the lowest median methane was found for diets where herbs were combined with grasses and supplemented with concentrate, slightly lower than those of only grass supplemented with concentrate. The synergism between legumes and grasses has been previously reported (Minson 1990Minson, D.J. 1990. Forage in ruminant nutrition. Academic Press Inc. CA, USA.), albeit not specific for methane emissions, but it could be related to a greater partitioning of energy away from metabolic losses.

Figure 6.  Boxplots of the comparison in methane emissions (g/kg DMI, g/kg DOMI) between diets were small ruminants were fed solely on forages (grasses, stover/straw or legumes forages (Herb, Shrub, Tree)) (A, B); and where small ruminants were supplemented with concentrate to basal diets of grasses, straw/stover or legumes (Herb, Shrub, Tree) mixed with grasses (g/kg DMI, g/kg DOMI, g/kg ADG) (C, D, E).

Worth noticing is that the median estimates of methane (g/kg ADG) from shrubs seem to be higher even than those where straws as sole forage were supplemented with concentrates. It is also important to see the variation in the effects of diets with tree legumes on methane relative to ADG. This further highlights the need to evaluate the effects of legumes depending on their growth habit or other classifications that account for their different nutritional quality. It becomes obvious that not all tropical legumes share the same nutritional attributes.

The results of the current analysis must be still validated with further studies in vivo, where the main varying effect should be the inclusion of the legume. If possible, factors like the forage to concentrate ratio or the NDF, CP, and ME concentration across dietary treatments should remain constant or at least similar. For forage based diets the comparison of diets with and without legumes is still valuable, but adjusting for the nutrients composition is not possible. In this case, the use of relevant nutrients concentration as covariates in the statistical analysis might be an option to account for the changes in the nutritional value of the diet. Expressing methane relative to DMI and digestible OM or DM intake, can also help to draw stronger conclusions. More importantly, aiming at obtaining a measure of intensity of emissions should be a priority of any study. Knowing the ability of rumen microbes to adapt to different conditions, mid to long-term trials would be ideal to assess the potential of tropical legumes to decrease methane emissions when routinely included in the rations of ruminants.

The results of the current analysis clearly show the potential of legumes to decrease methane emissions in ruminants in tropical environments, even though the evidence on the reduction of intensity of methane emissions is still inconclusive. Strong differences appeared in the effects of tropical legumes on estimated methane between herb, shrub, and tree legumes, where herbs showed a clear advantage in reducing methane. While methane estimates from only grasses versus only legumes appeared to favor the latter, the reduction of methane estimates when feeding tropical legumes is less than that of supplementing concentrate feeds to grasses. In terms of intensity of methane emissions, a good potential was observed when herb legumes were fed mixed with a grass and supplemented with a concentrate, highlighting the complementarity and the potential that exists in diets containing all these feed resources.

References

 

Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003.

Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423.

Carroll, E.J. & Hungate, R.E. 1955. "Formate dissimilation and methane production in bovine rumen contents". Archives of Biochemistry and Biophysics, 56: 525-536, ISSN: 1096-0384. https://doi.org/10.1016/0003-9861(55)90272-1.

Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324.

Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641.

Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136.

Chagunda, M.G., Flockhart, J.F. & Roberts, D.J. 2010. "The effect of forage quality on predicted enteric methane production from dairy cows". International Journal of Agricultural Sustainability, 8: 250-256, ISSN: 1747-762X. https://doi.org/10.3763/ijas.2010.0490.

Delgado, D.C., Galindo, J., Cairo, J., Orta, I. & Dorta, N. 2013. "Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep". Cuban Journal of Agricultural Science, 47(3): 267-271, ISSN: 2079-3480.

Elert, G. 2020. The Physics Hypertextbook. Available: https://physics.info/energy-chemical/. June 4.

Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675.

Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103.

Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127.

Makkar, H.P.S., Francis, G. & Becker, K. 2007. "Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems". Animal, 1: 1371-1391, ISSN: 1751-732X. https://doi.org/10.1017/S1751731107000298.

Marty, R.J. & Demeyer, D.I. 1973. "The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses". British Journal of Nutrition, 30: 369-376, ISSN: 1475-2662. https://doi.org/10.1079/BJN19730041.

Minson, D.J. 1984. "Digestibility and voluntary intake by sheep of five Digitaria species". Australian Journal of Experimental Agriculture, 24: 494-500, ISSN: 1446-5574. https://doi.org/10.1071/EA9840494.

Minson, D.J. 1990. Forage in ruminant nutrition. Academic Press Inc. CA, USA.

Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300.

Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0.

Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7.

Pelchen, A. & Peters, K.J. 1998. "Methane emissions from sheep". Small Ruminant Research, 27: 137-150, ISSN: 1879-0941. https://doi.org/10.1016/S0921-4488(97)00031-X.

Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192.

Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J., Frighetto, R.T.S. & Lima, M.A.D. 2008. "Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos". Revista Brasileira de Zootecnia, 37: 1509-1516, ISSN: 1806-9290. http://dx.doi.org/10.1590/S1516-35982008000800025.

Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095.

Salah, N., Sauvant, D. & Archimède, H. 2014. "Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis". Animal, 8: 1439-1447, ISSN: 1751-732X. https://doi.org/10.1017/S1751731114001153.

da Silva, T., Pereira, O., Martins, R., Agarussi, M., da Silva, L., Rufino, L., Valadares, F. & Ribeiro, K. 2017. "Stylosanthes cv. Campo Grande silage and concentrate levels in diets for beef cattle". Animal Production Science, 58: 539-545, ISSN: 1836-5787. https://doi.org/10.1071/AN15781.

Schultze-Kraft, R., Rao, I.M., Peters, M., Clements, R.J., Bai, C. & Liu, G. 2018. "Tropical forage legumes for environmental benefits: An overview". Tropical Grasslands - Forrajes Tropicales, 6: 1-1, ISSN: 2346-3775. http://dx.doi.org/10.17138/tgft(6)1-14.

Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S. & Malau-Aduli, A.E. 2020. "Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions". Animals, 10: 2097, ISSN 2076-2615. https://doi.org/10.3390/ani10112097.

Tiemann, T., Lascano, C., Kreuzer, M. & Hess, H. 2008. "The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes". Journal of the Science of Food and Agriculture, 88: 1794-1803, ISSN: 1097-0010. https://doi.org/10.1002/jsfa.3282.

Washaya, S., Mupangwa, J. & Muchenje, V. 2018. "Chemical composition of Lablab purpureus and Vigna unguiculata and their subsequent effects on methane production in Xhosa lop-eared goats". South African Journal of Animal Science, 48: 445-458, ISSN: 2221-4062. http://dx.doi.org/10.4314/sajas.v48i3.5.

Yan, T., Porter, M.G. & Mayne, C.S. 2009. "Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters". Animal, 3: 1455-1462, ISSN: 1751-732X. https://doi.org/10.1017/S175173110900473X.

Cuban Journal of Agricultural Science Vol. 57, january-december 2023, ISSN: 2079-3480
 
Ciencia Animal

Producción estimada de metano entérico de bovinos y pequeños rumiantes alimentados con forraje de leguminosas tropicales

 

iDJ. M. Castro-Montoya1Graduate School, Faculty of Agricultural Sciences, University of El Salvador, San Salvador, El Salvador.*✉: joaquin.montoya@ues.edu.sv

iDMizeck Chagunda2Institute of Agricultural Sciences in the Tropics, Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany.


1Graduate School, Faculty of Agricultural Sciences, University of El Salvador, San Salvador, El Salvador.

2Institute of Agricultural Sciences in the Tropics, Animal Breeding and Husbandry in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany.

 

*Email: joaquin.montoya@ues.edu.sv

Para explorar los efectos de las leguminosas tropicales en las emisiones de metano, se estimó la producción de metano de rumiantes alimentados con leguminosas tropicales utilizando ecuaciones predictivas basadas en las características de los nutrientes de la dieta, el consumo de materia seca (CMS) y la digestibilidad de 258 estudios in vivo (1355 tratamientos) de la literatura. El conjunto de datos se dividió en ovinos, caprinos y bovinos adultos y en crecimiento. Además, se crearon subconjuntos según el hábito de crecimiento de la leguminosa: gramínea, arbusto y árbol. El metano se expresó en relación con el peso corporal metabólico (PCM), consumo de materia seca (CMS), consumo de materia orgánica digestible (CMOD) y rendimiento de leche o ganancia media diaria (GMD). El metano estimado para cada subconjunto de datos y para cada unidad de expresión se sometió a una regresión sobre la proporción de leguminosas en la dieta. El aumento de la proporción de leguminosas disminuyó el metano en relación con PCM, CMS y GMD, pero no en relación con la producción de leche y CMOD, en el ganado. Para los rumiantes pequeños, el aumento de la proporción de leguminosas disminuyó el metano estimado en relación con el GMD, el CMS y el CMOD (por tendencia), pero no se observaron efectos en el metano con respecto a la GMD, aunque estos efectos probablemente se subestimaron. Las leguminosas herbáceas mostraron consistentemente las mayores disminuciones en el metano estimado tanto en el ganado vacuno como en los pequeños rumiantes, mientras que los arbustos mostraron menos efecto en la disminución del metano. Estos análisis destacan el potencial de las leguminosas tropicales para disminuir las emisiones de metano, con diferencias entre los tipos de leguminosas, y se encontraron mejores efectos en combinación con pastos y concentrados. Se necesita más evidencia para afirmar los efectos positivos innegables de las leguminosas en la disminución de las emisiones en relación con el producto final.

Palabras clave: 
intensidad de emisiones, leguminosas, rumiantes, inhibición de metano

La incorporación de forrajes de leguminosas en la alimentación de los rumiantes tiene varios impactos positivos en la sostenibilidad del sistema agrícola, incluida la fijación biológica de N, el control de la erosión, el reciclaje de nutrientes y el mantenimiento de la biodiversidad (Schultze-Kraft et al. 2018Schultze-Kraft, R., Rao, I.M., Peters, M., Clements, R.J., Bai, C. & Liu, G. 2018. "Tropical forage legumes for environmental benefits: An overview". Tropical Grasslands - Forrajes Tropicales, 6: 1-1, ISSN: 2346-3775. http://dx.doi.org/10.17138/tgft(6)1-14.), así como el aumento de la productividad en ganado. El metano entérico es uno de los impactos ambientales de los rumiantes más comúnmente discutidos, y la alimentación con leguminosas se ha propuesto como una vía para inhibir la metanogénesis, principalmente debido a su contenido de compuestos fitogénicos con el potencial para modular la fermentación del rumen. Además, si se logra la premisa de una mayor productividad al alimentar con leguminosas, la intensidad de las emisiones (la cantidad de metano por unidad de producto final) probablemente también disminuiría.

Un gran número de estudios han analizado los efectos in vitro de las leguminosas en el metano, mostrando generalmente su capacidad para disminuir el metano. Sin embargo, la fermentación in vitro no puede dar cuenta del consumo de materia seca (CMS), determinante principal de la producción de metano, ni de la adaptación de los microbios del rumen a una dieta. La literatura sobre ensayos in vivo es escasa y menos concluyente, con varios estudios que no proveen estimaciones de CMS o la proporción de legumbres consumidas. Al momento de escribir este artículo, se encontraron diez estudios que reportan producción de metano acompañada de CMS (Possenti et al. 2008Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J., Frighetto, R.T.S. & Lima, M.A.D. 2008. "Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos". Revista Brasileira de Zootecnia, 37: 1509-1516, ISSN: 1806-9290. http://dx.doi.org/10.1590/S1516-35982008000800025. , Kennedy y Charmley 2012Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. , Delgado et al. 2013Delgado, D.C., Galindo, J., Cairo, J., Orta, I. & Dorta, N. 2013. "Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep". Cuban Journal of Agricultural Science, 47(3): 267-271, ISSN: 2079-3480., Moreira et al. 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. , Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. , Washaya et al. 2018Washaya, S., Mupangwa, J. & Muchenje, V. 2018. "Chemical composition of Lablab purpureus and Vigna unguiculata and their subsequent effects on methane production in Xhosa lop-eared goats". South African Journal of Animal Science, 48: 445-458, ISSN: 2221-4062. http://dx.doi.org/10.4314/sajas.v48i3.5. , Lima et al. 2020Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. , Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. y Suybeng et al. 2020Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S. & Malau-Aduli, A.E. 2020. "Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions". Animals, 10: 2097, ISSN 2076-2615. https://doi.org/10.3390/ani10112097.). Con un tamaño de muestra tan pequeño, es difícil sacar conclusiones acerca de los efectos de las leguminosas tropicales en las emisiones de metano, particularmente sabiendo que, en 6 de los 10 estudios, la Leucaena leucocephala fue la leguminosa analizada. Los efectos de la leucaena no se pueden atribuir a todas las leguminosas tropicales, ya que las leguminosas arbóreas, arbustivas y herbáceas difieren en composición y degradabilidad (Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ).

El número limitado de estudios es consecuencia de la complejidad de las técnicas de medición de metano, que no están disponibles para la mayoría de los grupos de investigación en las regiones tropicales. Sin embargo, el potencial de estos forrajes se puede explorar utilizando ecuaciones predictivas para estimar el metano en función de las características de la dieta (Ellis et al. 2007Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. y Ramin y Huhtanen 2013Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095. ), incluidas algunas que se han desarrollado para ambientes tropicales (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ). Aunque la precisión y aplicabilidad global de tales ecuaciones pueden ser debatibles, todavía permiten la detección de un gran número de estrategias dietéticas con efectos en la CMS, la digestibilidad de la materia orgánica (DMO) y, por tanto, en la producción de metano. Por lo tanto, el objetivo de este estudio fue estimar las emisiones de metano a partir de datos de la literatura en un gran número de tratamientos dietéticos con leguminosas tropicales, para evaluar su potencial para mitigar las emisiones de metano de los rumiantes, teniendo en cuenta sus efectos en el CMS, la digestibilidad y los rendimientos del producto final.

Materiales y Métodos

 

Base de datos, parámetros extraídos y cálculos

 

Los datos utilizados para este estudio provienen de una base de datos informada en Castro-Montoya y Dickhoefer (2020)Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. . Para el análisis actual, los estudios debían informar las especies de leguminosas, su proporción en la dieta, la composición nutricional de esta [materia orgánica (MO), proteína cruda (PC), fibra detergente neutro (FDN), fibra detergente ácida (FAD)], peso corporal del animal (PC), CMS y digestibilidad total de MO -o materia seca (MS)- del tracto. Si estaba disponible, se registraron el rendimiento de la leche (kg/d) y la ganancia media diaria (GMD). Un total de 258 estudios cumplieron con estos criterios, lo que resultó en 1355 tratamientos dietéticos y se estimaron otros parámetros. El nivel de alimentación (FL, siglas en inglés), presentado como un múltiplo de los requerimientos de energía de mantenimiento, se estimó dividiendo el consumo de energía metabolizable (EM) por el requerimiento de EM de mantenimiento para los animales. El requerimiento de EM para cada animal se calculó basado en el peso corporal informado, utilizando las estimaciones del metaanálisis de Salah et al. (2014)Salah, N., Sauvant, D. & Archimède, H. 2014. "Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis". Animal, 8: 1439-1447, ISSN: 1751-732X. https://doi.org/10.1017/S1751731114001153. para pequeños rumiantes y bovinos tropicales (542.64 y 631.26 kJ EM/kg PC0.75, respectivamente).

La mayoría de los estudios no proporcionaron información sobre la concentración de EM de la dieta, por lo que esta se estimó según Minson (1984)Minson, D.J. 1984. "Digestibility and voluntary intake by sheep of five Digitaria species". Australian Journal of Experimental Agriculture, 24: 494-500, ISSN: 1446-5574. https://doi.org/10.1071/EA9840494. [Eq. (1) M E   ( M J / k g ) =   0.157   D O M   +   0.059   C P     1.073 ] con PC y MO digerible como predictores. Estos dos parámetros explican las diferencias entre leguminosas y hebáceas.

M E   ( M J / k g ) =   0.157   D O M   +   0.059   C P     1.073  Eq.(1)

Donde:

DOM = concentración de materia orgánica digestible en la dieta (g/100 g MS)

CP = concentración de proteína cruda en la dieta (g/100 g MS).

La concentración de MO digestible se estimó a partir de la concentración de MO en la dieta y de la DMO (g/kg) informada en los estudios. En aquellos estudios que no reportaron la DMO, pero la digestibilidad de la MS estaba disponible, la primera se estimó a partir de la digestibilidad de la MS (DMS (g/kg)), utilizando regresiones derivadas de los datos empleados para este estudio [Eq. (2) O M D     ( g / k g ) =   100.2   +   0.876   ×   D M D ; R 2 = 0.72 ;   ;   s o l o   p a r a   p a s t o s   , (3) O M D     ( g / k g ) =   108.0   +   0.848   ×   D M D ;   R 2 = 0.65 ; p a r a   l e g u m i n o s a s   m i x t a s r a c i o n e s   d e   g r a m í n e a s , (4) O M D     ( g k g ) =   44.9   +   0.951   ×   D M D ; R 2 = 0.88 ;   s o l o   p a r a   l e g u m i n o s a s ].

O M D     ( g / k g ) =   100.2   +   0.876   ×   D M D ; R 2 = 0.72 ;   ;   s o l o   p a r a   p a s t o s    Eq.(2)
O M D     ( g / k g ) =   108.0   +   0.848   ×   D M D ;   R 2 = 0.65 ; p a r a   l e g u m i n o s a s   m i x t a s r a c i o n e s   d e   g r a m í n e a s  Eq.(3)
O M D     ( g k g ) =   44.9   +   0.951   ×   D M D ; R 2 = 0.88 ;   s o l o   p a r a   l e g u m i n o s a s  Eq.(4)

Ecuaciones para estimar el metano

 

Para estimar la producción de metano, se favorecieron las ecuaciones que consideran las concentraciones o consumos de CMS, FND, FDA y EM, así como la DMO, parámetros que capturan las características de los forrajes de leguminosas, las diferencias entre los tipos de leguminosas y entre leguminosas y hebáceas, mientras que permitiendo también la estimación de metano a partir de una cantidad significativa de observaciones. En este sentido, se consideraron las ecuaciones predictivas de Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. y Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. . De las ecuaciones de Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. se seleccionaron el Binomio 12 [Eq. (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 ], Binomio 13 [Eq. (6) C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2 ], Lineal 17 [Eq. (7) C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I ] y Lineal 18 [Eq. (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m ] en función de su rendimiento y la disponibilidad de las variables predictoras dentro de este conjunto de datos.

C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2  Eq.(5)
C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2  Eq.(6)
C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I  Eq.(7)
C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m  Eq.(8)

Donde:

DMI = consumo de materia seca en kg/d

NDFI = consumo de FDN en kg/d

ADFI = consumo de FDA (kg/d)

FL = nivel de alimentación como múltiplo de los requisitos de mantenimiento

DMOm = digestibilidad de la materia orgánica (g/kg) a nivel de alimentación de mantenimiento (estimado basado en la DMO según Ramin y Huhtanen (2013)Ramin, M. & Huhtanen, P. 2013. "Development of equations for predicting methane emissions from ruminants". Journal of Dairy Science, 96: 2476-2493, ISSN: 1525-3198. https://doi.org/10.3168/jds.2012-6095.

De los estudios de Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. , se utilizaron las ecuaciones predictivas 6c [Eq. (9) C H 4   ( M J d ) =   3.44 ±   0.937   +   0.502 ±   0.115   ×   D M I   +   0.506 ±   0.211   ×   N D F I ], 7c [Eq. (10) C H 4   ( M J d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   ×   M E I   +   0.606 ±   0.306   ×   A D F I ], 8c [Eq. (11) C H 4   ( M J d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   ×   M E I   +   0.980 ±   0.241   ×   N D F I ], y 10c [Eq. (12) C H 4   ( M J d ) =   3.41 ±   0.973   +   0.520 ±   0.120   ×   D M I     0.996 ±   0.447   ×   A D F I   +   1.15 ±   0.321   ×   N D F I ] para estimar el metano en este conjunto de datos:

C H 4   ( M J d ) =   3.44 ±   0.937   +   0.502 ±   0.115   ×   D M I   +   0.506 ±   0.211   ×   N D F I  Eq.(9)
C H 4   ( M J d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   ×   M E I   +   0.606 ±   0.306   ×   A D F I  Eq.(10)
C H 4   ( M J d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   ×   M E I   +   0.980 ±   0.241   ×   N D F I  Eq.(11)
C H 4   ( M J d ) =   3.41 ±   0.973   +   0.520 ±   0.120   ×   D M I     0.996 ±   0.447   ×   A D F I   +   1.15 ±   0.321   ×   N D F I  Eq.(12)

Donde:

DMI = consumo de materia seca en kg/d

NDFI = consumo de FDN en kg/d

MEI = consumo de EM en MJ/d

ADFI = consumo de FDA en kg/d

Subconjunto de datos

 

El conjunto de datos se dividió en bovino y pequeños rumiantes, y se crearon subconjuntos según la etapa fisiológica (adulto o en crecimiento), especies (cabras y ovejas), y el hábito de crecimiento de las leguminosas (herbáceas, arbustivas y arbóreas). Para esta última clasificación se utilizó la base de datos PLANTS (https://plants.usda.gov) del servicio de Conservación Natural de los Estados Unidos, según lo descrito por Castro-Montoya y Dickhoefer (2018)Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. . Las estadísticas descriptivas de las variables utilizadas en el estudio se presentan en la tabla 1. Se creó otro subconjunto de datos que incluye solo dietas con forraje de pasto con y sin suplementos concentrados para pequeños rumiantes (tabla 1). Esto no se realizó para el ganado debido al reducido número de observaciones disponibles.

Table 1.  Descriptive statistics of parameters used for the prediction of methane emissions for the different datasets used.
Variable n Average Median Standard deviation Minimum Maximum
Adult cattle
Body weight (kg) 70 378 367 140.4 180 820
Dry matter intake (kg/d) 76 9.27 8.70 3.55 2.50 19.6
Organic matter digestibility (g/kg) 47 624 630 72.0 420 751
Digestible organic matter intake (kg/d) 38 5.45 4.84 2.97 1.51 12.6
Metabolisable energy (MJ/kg DM) 38 8.24 8.49 1.33 4.69 10.6
Metabolisable energy intake (MJ/d) 38 81.8 72.3 46.2 22.3 196
Feeding level 35 1.50 1.47 0.63 0.51 2.77
Neutral detergent fiber intake (kg/d) 69 5.21 5.31 1.71 1.34 8.64
Acid detergent fiber intake (kg/d) 57 3.27 3.00 1.15 0.85 5.96
Milk yield (kg/d) 23 7.68 6.30 4.50 3.75 22.0
Growing cattle
Body weight (kg) 79 195 181 94.8 36 411
Dry matter intake (kg/d) 79 4.62 4.30 2.01 0.34 9.40
Organic matter digestibility (g/kg) 44 573 584 92.9 129 724
Digestible organic matter intake (kg/d) 44 2.17 2.23 0.75 0.51 3.60
Metabolisable energy (MJ/kg DM) 44 7.78 7.86 1.27 1.66 9.38
Metabolisable energy intake (MJ/d) 44 32.3 33.2 11.0 7.21 53.0
Feeding level 44 1.08 1.03 0.37 0.23 2.20
Neutral detergent fiber intake (kg/d) 76 2.79 2.74 1.31 0.08 6.57
Acid detergent fiber intake (kg/d) 57 1.85 1.81 0.87 0.32 4.08
Average daily gain (g/d) 43 429.3 434.0 237.1 0 920
Adult goat
Body weight (kg) 98 31.1 29.0 11.9 14.2 67.0
Dry matter intake (kg/d) 100 0.88 0.68 0.51 0.11 2.61
Organic matter digestibility (g/kg) 84 594 622 120.4 293 759
Digestible organic matter intake (kg/d) 82 0.45 0.36 0.28 0.06 1.17
Metabolisable energy (MJ/kg DM) 82 8.17 8.63 1.84 3.59 11.3
Metabolisable energy intake (MJ/d) 82 6.80 5.44 4.25 0.86 18.0
Feeding level 82 0.94 0.91 0.40 0.21 1.84
Neutral detergent fiber intake (kg/d) 87 0.49 0.43 0.28 0.07 1.67
Acid detergent fiber intake (kg/d) 74 0.32 0.31 0.16 0.04 1.02
Growing goat
Body weight (kg) 232 15.1 14.9 4.06 5.43 25.8
Dry matter intake (kg/d) 235 0.51 0.50 0.15 0.11 0.96
Organic matter digestibility (g/kg) 145 631 632 84.0 455 819
Digestible organic matter intake (kg/d) 138 0.30 0.27 0.11 0.13 0.65
Metabolisable energy (MJ/kg DM) 138 8.76 8.84 1.33 5.60 11.8
Metabolisable energy intake (MJ/d) 138 4.54 4.11 1.62 1.94 9.90
Feeding level 135 1.09 1.07 0.34 0.48 2.36
Neutral detergent fiber intake (kg/d) 217 0.28 0.27 0.09 0.04 0.53
Acid detergent fiber intake (kg/d) 193 0.18 0.17 0.07 0.02 0.38
Average daily gain (g/d) 82 44.9 38.7 25.9 1.60 143
Adult sheep
Body weight (kg) 253 31.9 29.5 11.5 12.5 70.0
Dry matter intake (kg/d) 266 0.80 0.74 0.31 0.16 1.87
Organic matter digestibility (g/kg) 233 558 570 85.0 270 769
Digestible organic matter intake (kg/d) 211 0.40 0.38 0.19 0.05 1.04
Metabolisable energy (MJ/kg DM) 211 7.50 7.66 1.30 3.79 10.7
Metabolisable energy intake (MJ/d) 211 5.94 5.55 2.84 0.74 15.9
Feeding level 205 0.83 0.82 0.32 0.09 1.97
Neutral detergent fiber intake (kg/d) 242 0.48 0.48 0.19 0.06 1.01
Acid detergent fiber intake (kg/d) 205 0.31 0.30 0.13 0.04 0.61
Growing sheep
Body weight (kg) 357 21.6 19.5 15.0 4.1 209
Dry matter intake (kg/d) 357 0.70 0.68 0.20 0.21 1.28
Organic matter digestibility (g/kg) 207 592 578 83.7 408 840
Digestible organic matter intake (kg/d) 190 0.40 0.36 0.30 0.19 4.27
Metabolisable energy (MJ/kg DM) 190 8.53 7.95 6.82 5.22 101
Metabolisable energy intake (MJ/d) 190 5.92 5.35 4.80 2.72 66.9
Feeding level 190 1.12 0.96 1.32 0.23 18.7
Neutral detergent fiber intake (kg/d) 353 0.41 0.39 0.13 0.10 0.82
Acid detergent fiber intake (kg/d) 298 0.25 0.24 0.09 0.09 0.61
Average daily gain (g/d) 75 57.6 48.0 34.9 2.00 170
No legumes small ruminants
Body weight (kg) 264 24.1 21.2 11.4 5.43 70.0
Dry matter intake (kg/d) 271 0.65 0.59 0.32 0.17 2.89
Organic matter digestibility (g/kg) 200 586 592 106.9 227 840
Digestible organic matter intake (kg/d) 184 0.34 0.31 0.19 0.09 1.28
Metabolisable energy (MJ/kg DM) 184 7.79 7.90 1.67 2.56 11.7
Metabolisable energy intake (MJ/d) 184 5.08 4.55 2.88 1.14 19.7
Feeding level 179 0.85 0.78 0.38 0.17 2.21
Neutral detergent fiber intake (kg/d) 195 618 620 116.7 242 899
Acid detergent fiber intake (kg/d) 253 0.42 0.40 0.19 0.10 1.41
Average daily gain (g/d) 33 42.9 36.2 28.4 1.6 120

Con el uso de la densidad de energía de 55.5 MJ/kg (Elert 2006Elert, G. 2020. The Physics Hypertextbook. Available: https://physics.info/energy-chemical/. June 4.), el metano estimado en MJ/d de la ecuación (5 C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 - 12) C H 4   ( M J d ) =   3.41 ±   0.973   +   0.520 ±   0.120   ×   D M I     0.996 ±   0.447   ×   A D F I   +   1.15 ±   0.321   ×   N D F I se convirtieron en g/d. El metano estimado a partir de la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 para ganado y de la ecuación (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m para pequeños rumiantes se expresó además como g/kg de peso corporal metabólico (PCM), g/kg CMS, g/kg de consumo de materia orgánica digestible (CMOD), g/kg de leche y g/kg GMD.

Con el objetivo de comparar diferentes forrajes sin la influencia de otros ingredientes, se creó un subconjunto de datos donde los pequeños rumiantes se alimentaron exclusivamente con pastos, paja/rastrojos, leguminosas herbáceas, leguminosas arbustivas o leguminosas arbóreas. Se crearon diagramas con las categorías de forrajes para metano en g/kg CMS y en g/kg CMOD. Además, se creó un subconjunto para comparar diferentes forrajes cuando se suplementa con alimento concentrado a pequeños rumiantes. Primero, se seleccionaron observaciones en las que los animales se alimentaron con pastos o paja/rastrojos en proporciones entre 60 y 90 g/100 g de MS, y el resto de la MS provino de alimentos concentrados. En segundo lugar, se seleccionaron observaciones donde se ofrecieron las leguminosas mezcladas con hebáceas, donde la inclusión de leguminosas osciló entre 20 y 50 g/100 g MS, y la proporción total de forraje (pasto + leguminosa) osciló entre 60 y 90 g/100 g MS, con el resto de la MS proveniente de alimentos concentrados. Las leguminosas se dividieron entonces en hebáceas, arbustos y árboles. Se crearon diagramas de caja con las categorías de forraje para metano en g/kg CMS, en g/kg CMOD y en g/kg GMD.

Análisis estadístico

 

Los valores atípicos en el metano pronosticado de cada ecuación se identificaron y eliminaron en función del rango intercuartílico. La correlación de Pearson se estimó dentro de las predicciones de metano de todas las ecuaciones con el uso de la función cor ( ) del programa R. La producción de metano estimada a partir de la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 para bovinos y de la ecuación (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m para pequeños rumiantes se le realizó una regresión en la proporción de leguminosas en la dieta utilizando la función lm ( ) de R. Los análisis de regresión se realizaron independientemente para los conjuntos de datos de bovinos y de pequeños rumiantes. Dentro de cada uno de estos conjuntos de datos, se realizaron análisis de regresión adicionales para subconjuntos basados en la etapa fisiológica (adulto o en crecimiento), especie (cabra u oveja) y hábito de crecimiento de las leguminosas (herbácea, arbusto y árbol). Para el conjunto de datos que incluye solo tratamientos de control en pequeños rumiantes, las emisiones de metano pronosticadas se sometieron a una regresión en la proporción de concentrado en la dieta siguiendo el procedimiento descrito anteriormente. Las significaciones de las pendientes se declararon en P<0.05, mientras que las tendencias se declararon en 0.05 < P < 0.10.

Resultados

 

Para el conjunto de datos de bovinos hubo alta correlación entre las estimaciones de metano de todas las ecuaciones, con las de la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 , con las correlaciones más altas con todas las demás estimaciones (datos no mostrados). El metano promedio estimado (g/d) para bovinos fue consistentemente mayor cuando se derivó de las ecuaciones de Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. [ecuación (9 C H 4   ( M J d ) =   3.44 ±   0.937   +   0.502 ±   0.115   ×   D M I   +   0.506 ±   0.211   ×   N D F I - 12) C H 4   ( M J d ) =   3.41 ±   0.973   +   0.520 ±   0.120   ×   D M I     0.996 ±   0.447   ×   A D F I   +   1.15 ±   0.321   ×   N D F I ] que cuando se estimó a partir de las ecuaciones de Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. [ecuación (5 C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 - 8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m ] (tabla 2). Para los datos de pequeños rumiantes, las ecuaciones (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 , (6) C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2 y (7) C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ) produjeron una gran cantidad de estimaciones negativas y no se consideraron para análisis posteriores (datos no mostrados). De manera similar, las estimaciones de las ecuaciones de Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. oscilaron entre 71.6 y 313 g/d (datos no mostrados) y se consideraron poco realistas, por lo que tampoco se tuvieron en cuenta para un análisis posterior. Sólo las estimaciones de la ecuación (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ) parecía estar dentro de rangos realistas de producción de metano para pequeños rumiantes (tabla 2).

Table 2.  Summary statistics of estimated methane for cattle and small ruminants
Average Median Standard deviation Minimum Maximum
Cattle
Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (g/d) Eq. (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 128.0 131.2 50.6 7.4 249.1
Eq. (6) C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2 128.2 137.4 49.6 5.3 261.2
Eq. (7) C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I 135.8 128.2 74.8 32.4 313.6
Eq. (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m 122.1 118.8 52.8 48.7 254.0
Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. (g/d) Eq. (9) C H 4   ( M J d ) =   3.44 ±   0.937   +   0.502 ±   0.115   ×   D M I   +   0.506 ±   0.211   ×   N D F I 158.4 154.5 48.1 65.7 301.8
Eq. (10) C H 4   ( M J d ) =   3.63 ±   0.921   +   0.0549 ±   0.00939   ×   M E I   +   0.606 ±   0.306   ×   A D F I 149.2 134.8 49.7 84.8 273.4
Eq. (11) C H 4   ( M J d ) =   4.41 ±   1.13   +   0.0224 ±   0.0106   ×   M E I   +   0.980 ±   0.241   ×   N D F I 169.8 154.9 49.6 96.8 287.6
Eq. (12) C H 4   ( M J d ) =   3.41 ±   0.973   +   0.520 ±   0.120   ×   D M I     0.996 ±   0.447   ×   A D F I   +   1.15 ±   0.321   ×   N D F I 165.2 163.2 49.2 74.9 296.6
Small ruminants
Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (g/d) Eq. (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m 25.9 26.2 22.4 2.12 62.7

Las regresiones presentadas en la tabla 3, así como los diagramas de dispersión en la figura 1 y la figura 2 corresponden a la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 (Patra 2017Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. ). En general para el ganado, cuando se expresa en relación con PCM, CMS y GMD, el aumento de las proporciones de leguminosas en la dieta disminuyó las emisiones de metano (P ≤ 0.04) (figura 1) (tabla 3, Reg. 1, Reg. 7, Reg. 23). En relación con el CMOD o producción de leche, la proporción de leguminosas en la dieta no afectó la producción de metano (P ≥ 0.48), aunque se observaron pendientes negativas para la proporción de leguminosas en ambos casos (figura 1) (tabla 3, Reg. 13 y Reglamento 19). Para bovinos adultos, las leguminosas en la dieta no afectaron al metano en ninguna unidad (tabla 3; P ≥ 0.27), aunque se observó una pendiente negativa para todas las regresiones con la excepción del metano en g/kg CMOD (tabla 3, Reg. 14). Para el ganado en crecimiento, el metano en todas las unidades de expresión disminuyó al aumentar la cantidad de leguminosas (P < 0.01) (tabla 3, Reg. 3, Reg. 9, Reg. 15, Reg. 23). El metano en g/kg PCM fue mayor en adultos comparado con el ganado en crecimiento (figura 1), pero resultó lo contrario cuando se expresó en g/kg CMS (figura 1).

Table 3.  Regression equations of legume proportion in the diet on methane emissions for cattle ruminants.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 1 (134) All 2.23 0.085 -7.17 × 10-3 2.24 × 10-3 <0.01
Reg. 2 (61) Adult 2.24 0.157 -5.80 × 10-3 5.61 × 10-3 0.30
Reg. 3 (73) Growing 2.17 0.113 -6.73 × 10-3 2.56 × 10-3 0.01
Reg. 4 (65) Herb 2.49 0.150 -10.0 × 10-3 4.33 × 10-3 0.02
Reg. 5 (19) Shrub 2.07 0.148 -6.31 × 10-3 4.33 × 10-3 0.16
Reg. 6 (50) Tree 1.98 0.123 -5.36 × 10-3 2.90 × 10-3 0.07
Methane relative to dry matter intake (g/kg DMI)
Reg. 7 (137) All 21.2 0.359 -1.98 × 10-2 0.99 × 10-2 0.04
Reg. 8 (66) Adult 19.8 0.527 -1.13 × 10-2 1.90 × 10-2 0.55
Reg. 9 (71) Growing 23.2 0.411 -4.54 × 10-2 0.97 × 10-2 <0.01
Reg. 10 (70) Herb 19.9 0.585 2.01 × 10-2 1.76 × 10-2 0.26
Reg. 11 (19) Shrub 21.3 0.543 -0.37 × 10-2 1.59 × 10-2 0.82
Reg. 12 (48) Tree 22.1 0.625 -4.89 × 10-2 1.54 × 10-2 <0.01
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 13 (75) All 38.9 1.41 -0.925 × 10-2 3.46 × 10-2 0.79
Reg. 14 (35) Adult 32.5 2.72 13.0 × 10-2 11.7 × 10-2 0.27
Reg. 15 (40) Growing 45.7 1.71 -9.81 × 10-2 3.32 × 10-2 0.01
Reg. 16 (24) Herb 35.2 2.77 13.6 × 10-2 8.30 × 10-2 0.12
Reg. 17 (13) Shrub 34.3 1.84 9.02 × 10-2 4.65 × 10-2 0.08
Reg. 18 (38) Tree 42.1 2.11 -8.77 × 10-2 4.67 × 10-2 0.07
Methane relative to milk yield (g/kg MY)
Reg. 19 (45) All 30.7 4.45 -1.27 × 10-1 1.81 × 10-1 0.48
Reg. 20 (30) Herb 28.7 5.62 -1.47 × 10-1 2.17 × 10-1 0.50
Reg. 21 (5) Shrub 28.4 15.03 1.15 × 10-1 7.64 × 10-1 0.89
Reg. 22 (10) Tree 31.6 5.82 1.31 × 10-1 2.52 × 10-1 0.62
Methane relative to average daily gain (g/kg ADG)
Reg. 23 (38) All 0.275 0.027 -1.73 × 10-3 0.621 × 10-3 0.01
Reg. 24 (16) Herb 0.322 0.054 -2.66 × 10-3 1.21 × 10-3 0.04
Reg. 25 (5) Shrub 0.304 0.101 -1.83 × 10-3 2.79 × 10-3 0.56
Reg. 26 (17) Tree 0.242 0.032 -1.24 × 10-3 0.719 × 10-3 0.11

1 number of observations used in the regression

Figure 1.  Scatter plot of the regression of legume proportion in the diet on methane emissions expressed in different units for the complete cattle data (solid black line) and for data separated into growing and adult animals.
Figure 2.  Scatter plot of the regression of legume proportion in the diet on methane emissions of cattle expressed in different units for data separated into herb, shrub and tree legumes.

En cuanto al hábito de crecimiento de las leguminosas, cuando se expresa como g/kg PCM, las hebáceas disminuyeron la producción de metano (P = 0.02), los árboles tendieron a disminuirla (P = 0.07) y los arbustos no tuvieron efecto (P = 0.16) (tabla 3, Reg. 4-6)). Las herbáceas mostraron una mayor producción de metano (g/kg PCM) que los árboles y arbustos (figura 2). En relación con el CMS, el metano disminuyó con proporciones crecientes de leguminosas arbóreas (P < 0.01), mientras que no se observaron efectos para herbáceas y arbustos (P ≥ 0.26) (tabla 3, Reg. 10-12). El metano en relación con el CMOD (figura 2) tendió a aumentar con el aumento de la inclusión de arbustos en la dieta (P = 0.08) y tendió a disminuir con las leguminosas arbóreas (P = 0.07), mientras que no se detectaron efectos de las hebáceas a pesar de que se observó una pendiente positiva (figura 2) y mayor que la de los arbustos (tabla 3, Reg. 16-18). Respecto a la leche, ningún efecto del tipo de leguminosa fue significativo (P≥0.50), y solo las herbáceas tuvieron una pendiente negativa (tabla 3, Reg. 20-23). En relación con la GMD, las herbáceas mostraron una disminución en el metano con el aumento de la proporción de leguminosas (P = 0.04), sin que se encontraran efectos para arbustos y árboles (P≥0.11) (tabla 3, Reg. 24-26).

Para pequeños rumiantes, las mayores inclusiones de leguminosas disminuyeron las emisiones de metano relativas a PCM, CMS y CMOD (por tendencia; P = 0.06) (tabla 4, Reg. 27, 35, 43), pero no tuvieron efecto en el metano en g/kg GMD (P = 0.97; tabla 4, Reg. 51). Cuando se analizaron los datos por especies (cabras y ovejas) y etapa fisiológica (adulto o en crecimiento), no se observaron efectos para cabras adultas u ovejas en crecimiento cuando se expresó como g/kg PCM, g/kg CMS, and g/kg CMOD (por tendencia; P = 0.08) (tabla 4, Reg. 29, 37, 45). Con respecto a las ovejas adultas, el metano disminuyó cuando se expresó en relación con CMS (por tendencia; P = 0.06) o con CMOD (tabla 4, Reg. 38, 46). Además, las cabras en crecimiento produjeron más metano que las ovejas en crecimiento cuando se expresaron relacionadas con PCM, CMS y CMOD, pero las diferencias entre animales adultos y en crecimiento no parecieron muy claras para otras unidades de expresión del metano (figura 3).

Table 4.  Regression equations of legume proportion in the diet on methane emissions for small ruminants.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 27 (572) All 2.46 0.051 -2.62 × 10-3 1.14 × 10-3 0.02
Reg. 28 (75) Goat - Adult 2.03 0.149 3.92 × 10-3 3.11 × 10-3 0.21
Reg. 29 (124) Goat - Growing 3.10 0.116 -7.54 × 10-3 2.74 × 10-3 0.01
Reg. 30 (190) Sheep - Adult 2.19 0.065 -1.34 × 10-3 1.31 × 10-3 0.31
Reg. 31 (183) Sheep - Growing 2.37 0.090 -0.986 × 10-3 2.24 × 10-3 0.66
Reg. 32 (160) Herb 2.66 0.102 -5.12 × 10-3 2.03 × 10-3 0.01
Reg. 33 (58) Shrub 1.95 0.174 3.07 × 10-3 3.19 × 10-3 0.34
Reg. 34 (354) Tree 2.45 0.064 -2.65 × 10-3 1.57 × 10-3 0.09
Methane relative to dry matter intake (g/kg DMI)
Reg. 35 (576) All 40.4 1.15 -5.15 × 10-2 2.56 × 10-2 0.04
Reg. 36 (72) Goat - Adult 32.2 3.20 7.93 × 10-2 6.76 × 10-2 0.24
Reg. 37 (125) Goat - Growing 48.8 2.57 -13.0 × 10-2 6.14 × 10-2 0.04
Reg. 38 (192) Sheep - Adult 40.0 1.77 -6.71 × 10-2 3.52 × 10-2 0.06
Reg. 39 (187) Sheep - Growing 37.2 2.19 -0.51 × 10-2 5.50 × 10-2 0.93
Reg. 40 (160) Herb 45.0 2.41 -11.9 × 10-2 4.80 × 10-2 0.01
Reg. 41 (58) Shrub 34.1 4.53 5.65 × 10-2 8.42 × 10-2 0.50
Reg. 42 (358) Tree 39.9 1.37 -5.21 × 10-2 3.36 × 10-2 0.12
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 43 (578) All 77.1 2.24 -0.953 × 10-1 4.98 × 10-2 0.06
Reg. 44 (75) Goat - Adult 62.3 6.72 2.27 × 10-1 13.9 × 10-2 0.11
Reg. 45 (125) Goat - Growing 87.3 5.21 -2.19 × 10-1 12.4 × 10-2 0.08
Reg. 46 (189) Sheep - Adult 82.2 3.58 -1.99 × 10-1 7.14 × 10-2 0.01
Reg. 47 (189) Sheep - Growing 70.8 3.94 -0.263 × 10-1 9.96 × 10-2 0.79
Reg. 48 (160) Herb 86.2 4.62 -2.58 × 10-1 9.22 × 10-2 0.01
Reg. 49 (59) Shrub 58.2 8.89 2.65 × 10-1 16.2 × 10-2 0.11
Reg. 50 (359) Tree 77.2 2.65 -1.16 × 10-1 6.54 × 10-2 0.08
Methane relative to average daily gain (g/kg ADG)
Reg. 51 (135) All 0.526 0.055 -0.071 × 10-3 1.63 × 10-3 0.97
Reg. 52 (64) Goat - Growing 0.665 0.075 -3.40 × 10-3 2.39 × 10-3 0.16
Reg. 53 (71) Sheep - Growing 0.413 0.079 2.23 × 10-3 2.20 × 10-3 0.32
Reg. 54 (43) Herb 0.644 0.110 -1.79 × 10-3 2.79 × 10-3 0.53
Reg. 55 (7) Shrub 0.817 0.437 0.143 × 10-3 0.10 × 10-3 0.99
Reg. 56 (85) Tree 0.515 0.061 -1.72 × 10-3 2.06 × 10-3 0.41

1 number of observations used in the regression

Figure 3.  Scatter plot of the regression of legume proportion in the diet on methane emissions for small ruminants expressed in different units for the complete dataset (solid black line) and for data separated into adult and growing goat and sheep

Además, en pequeños rumiantes, las herbáceas redujeron el metano en relación con PCM, CMS y CMOD (P = 0,01; tabla 4, Reg. 32, 40, 48) (figura 4). Las leguminosas arbóreas solo tendieron a disminuir el metano en relación con PCM y CMOD (tabla 4, Reg. 34, 50). La inclusión de dosis crecientes de leguminosas arbustivas no tuvo ningún efecto en el metano (P ≥ 0.11), pero es importante resaltar que mostró una pendiente positiva en todos los casos (tabla 4, Reg. 33, 41, 49, 55) (figura 4).

Figure 4.  Scatter plot of the regression of legume proportion in the diet on methane emissions for small ruminants expressed in different units for data separated into herb, shrub and tree legumes.

La regresión de las emisiones de metano en la proporción concentrada en dietas con hebáceas, pero sin leguminosas, mostró que una mayor inclusión en la dieta redujo las emisiones de metano en relación con CMS, CMOD y GMD (P ≤ 0.03), pero no cuando se expresó en g/kg PCM (P = 0.41) (tabla 5, Reg. 57, 60, 63, 66) (figura 5). Sin embargo, cuando el análisis se realizó por separado específicamente para pastos y residuos de cultivos (paja o rastrojo), el suplemento de pastos con concentrados siempre disminuyó las emisiones de metano (P ≤ 0.02; tabla 5, Reg. 58, 61, 64, 67), pero cuando los concentrados complementaron con paja/rastrojos, el metano tendió a disminuir solo en g/kg CMOD (P = 0,05), mientras que tendió a aumentar cuando se expresó en g/kg PCM (P = 0,05), sin efectos sobre el metano en g/kg CMS o g/kg GMD (P ≥ 0.56 ) (tabla 5, Reg. 59, 62, 65, 68).

Table 5.  Regression of estimated methane on concentrate proportion in diets of small ruminants having grass or straw/stover as sole forage source in the diet.
Variable (n1)   Intercept SE Slope SE P slope
Methane relative to metabolic body weight (g/kg MBW)
Reg. 57 (151) All 2.45 0.06 -2.28 × 10-3 2.75 × 10-3 0.41
Reg. 58 (949) Grass 2.52 0.08 -7.96 × 10-3 3.33 × 10-3 0.02
Reg. 59 (57) Straw/Stover 2.33 0.10 9.09 × 10-3 4.54 × 10-3 0.05
Methane relative to dry matter intake (g/kg DMI)
Reg. 60 (152) All 46.5 1.53 -15.9 × 10-2 5.82 × 10-2 <0.01
Reg. 61 (93) Grass 45.0 1.94 -30.3 × 10-2 7.56 × 10-2 <0.01
Reg. 62 (59) Straw/Stover 49.6 2.05 2.72 × 10-2 7.51 × 10-2 0.72
Methane relative to digestible organic matter intake (g/kg DOMI)
Reg. 63 (152) All 95.3 2.96 -56.9 × 10-2 11.3 × 10-2 <0.01
Reg. 64 (97) Grass 89.9 3.59 -82.4 × 10-2 14.3 × 10-2 <0.01
Reg. 65 (55) Straw/Stover 106.0 3.75 -26.6 × 10-2 13.3 × 10-2 0.05
Methane relative to average daily gain (g/kg ADG)
Reg. 66 (27) All 0.861 0.139 -7.35 × 10-3 3.24 × 10-3 0.03
Reg. 67 (16) Grass 0.956 0.141 -15.2 × 10-3 4.21 × 10-3 <0.01
Reg. 68 (11) Straw/Stover 0.826 0.314 -3.54 × 10-3 5.84 × 10-3 0.56

1 number of observations used in the regression

Figure 5.  Scatter plot of the regression of concentrate proportion in the diet on methane emissions for small ruminants expressed in different units. Solid line represents the general regression line.

Discusión

 

Para esta discusión, se debe tener en cuenta que el metano se estimó a partir de ecuaciones predictivas y no se midió directamente, lo que conlleva una incertidumbre en los resultados de estos análisis. Sin embargo, existen estudios similares (Chagunda et al. 2010Chagunda, M.G., Flockhart, J.F. & Roberts, D.J. 2010. "The effect of forage quality on predicted enteric methane production from dairy cows". International Journal of Agricultural Sustainability, 8: 250-256, ISSN: 1747-762X. https://doi.org/10.3763/ijas.2010.0490. ) con resultados en línea con observaciones in vivo. Además, las tendencias observadas en este estudio con los subconjuntos de datos son consistentes a lo largo del estudio y de acuerdo con los principios fisiológicos. Otro aspecto importante a considerar es que las leguminosas contienen un grupo de compuestos bioactivos con la capacidad de alterar la fermentación del rumen, incluida la producción de metano (Archimède et al. 2011Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. ). Los compuestos secundarios pueden tener efectos en el CMS y en la DMO, ambos parámetros fuertemente vinculados con la producción de metano, por tanto, indirectamente, las ecuaciones utilizadas para estimar el metano han tenido en cuenta algunos de los posibles efectos de los compuestos secundarios. Incluso con estas advertencias, la solidez de este estudio radica en el volumen de información que podría analizarse, donde incluso las pequeñas tendencias podrían ser indicativas de efectos importantes y biológicamente relevantes. Por lo tanto, los resultados del presente análisis ciertamente contribuyen a la discusión sobre la capacidad de las leguminosas tropicales para disminuir la metanogénesis.

Ecuaciones predictivas utilizadas

 

Las ecuaciones para predecir el metano se seleccionaron en función de los parámetros disponibles en el conjunto de datos. Por lo tanto, no se consideraron las ecuaciones que incluyen las grasas, los carbohidratos no estructurales ni la concentración de energía bruta. Las ecuaciones basadas exclusivamente en CMS también fueron descartadas, ya que estas no consideran las diferencias en la composición nutricional de leguminosas y hebáceas. Por lo tanto, las ecuaciones predictivas que consideran la concentración o ingesta de DMI, OMD, FDNF y FSA se dirigieron deliberadamente. Estudios recientes han demostrado que, cuando se tiene en cuenta la composición nutricional y con altos niveles de inclusión, las dietas con niveles crecientes de leguminosas tienden a disminuir el CMS y la DMO (da Silva et al. 2017da Silva, T., Pereira, O., Martins, R., Agarussi, M., da Silva, L., Rufino, L., Valadares, F. & Ribeiro, K. 2017. "Stylosanthes cv. Campo Grande silage and concentrate levels in diets for beef cattle". Animal Production Science, 58: 539-545, ISSN: 1836-5787. https://doi.org/10.1071/AN15781. y Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ) con claras diferencias entre las dietas basadas en leguminosas hebáceas, arbustivas y arbóreas (Castro-Montoya y Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). En este sentido, las leguminosas tropicales tienen una concentración bastante alta de FDN y FDA, lo que se refleja en una DMO in vitro más baja que las hebáceas, particularmente para las leguminosas arbustivas (Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ), por lo que este estudio tuvo como objetivo capturar esta variación en la estimación del metano.

Para el conjunto de datos de ganado, incluidos los animales adultos y en crecimiento, todas las ecuaciones utilizadas mostraron estimaciones de metano dentro de los valores esperados para los grandes rumiantes (tabla 3). Por ejemplo, las estimaciones de las ecuaciones (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 a (7) C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I variaron entre 0.76 y 1.58 MJ/kg DMI, mientras que Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. y Yan et al. (2009)Yan, T., Porter, M.G. & Mayne, C.S. 2009. "Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters". Animal, 3: 1455-1462, ISSN: 1751-732X. https://doi.org/10.1017/S175173110900473X. , informaron emisiones de metano que oscilaban entre 1.12 y 1.49 MJ/kg CMS. Para el conjunto de datos de ganado, hubo alta correlación entre todas las ecuaciones predictivas (r ≥ 0,71; datos no mostrados). Las ecuaciones de Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. tuvieron un metano estimado consistentemente más alto que el de Patra (2017)Patra, A.K. 2017. "Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems". Mitigation and Adaptation Strategies for Global Change, 22: 629-650, ISSN: 1573-1596. https://doi.org/10.1007/s11027-015-9691-7. (tabla 2), probablemente debido a la mayor producción general de metano del ganado de clima templado utilizado por Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. . las estimaciones de la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 se utilizaron para el cálculo del metano en relación con PCM, CMS, CMOD, producción de leche y GMD, y los análisis de regresión posteriores, no solo porque la ecuación (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 se desarrolló a partir de ganado tropical, sino también porque era la ecuación que permitía el número máximo de observaciones previstas.

Para pequeños rumiantes, las ecuaciones (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 , (6) C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2 y (7) C H 4     ( M J d ) =   0.910 ± 0.746   +   1.472 ± 0.154   ×   D M I     1.388 ± 0.451   ×   F L     0.669 ± 0.338   ×   A D F I produjeron gran cantidad de estimaciones negativas, probablemente debido a la naturaleza cuadrática del CFDN y CFDA en las ecuaciones (5) C H 4   ( M J d ) =   1.012 ± 0.709   +   0.308 ± 0.249   ×   D M I   +   0.0404 ± 0.0119   ×   D M I 2   +   2.424 ± 0.415   ×   N D F I     0.290 ± 0.0409   ×   N D F I 2 y (6) C H 4   ( M J d ) =   1.490 ± 0.745   +   0.418 ± 0.232   ×   D M I   +   0.0415 ± 0.0118   ×   D M I 2     +   4.311 ± 0.718   ×   A D F I     0.977 ± 0.138   ×   A D F I 2 y por las altas concentraciones de FDA en las dietas de los trópicos. La ecuación (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m , basada en DMO, FL y CMS, arrojó estimaciones de metano con media, mín. y máx. (g/d) de 25.9, 2.12 y 62.7 (tabla 2). Las estimaciones de la ecuación (8) C H 4   ( M J d ) =   1.559 ± 2.010   +   1.217 ± 0.164   ×   D M I     2.418 ± 0.724   ×   F L   +   0.00714 ± 0.00316   ×   O M D m todavía parecía estar en el extremo superior de las emisiones diarias de metano para los pequeños rumiantes (Pelchen y Peters 1998Pelchen, A. & Peters, K.J. 1998. "Methane emissions from sheep". Small Ruminant Research, 27: 137-150, ISSN: 1879-0941. https://doi.org/10.1016/S0921-4488(97)00031-X. ), pero a pesar de la posible sobreestimación, estas estimaciones se usaron para calcular el metano en relación con PCM, CMS, CMOD y GMD, y los análisis de regresión posteriores. Las estimaciones de las ecuaciones de Ellis et al. (2007)Ellis, J.L., Kebreab, E., Odongo, N.E., McBride, B.W., Okine, E.K. & France, J. 2007. "Prediction of methane production from dairy and beef cattle". Journal of Dairy Science, 90: 3456-3466, ISSN: 1525-3198. https://doi.org/10.3168/jds.2006-675. promediaron las emisiones de metano entre 71.4 y 88.9 g/d y no se consideraron plausibles para los pequeños rumiantes tropicales (datos no mostrados).

Producción de metano in vivo al alimentar con leguminosas tropicales

 

La síntesis de metano es una función de la ingesta, por lo tanto, solo se pueden obtener conclusiones sólidas cuando se informa el CMS en un estudio, por lo tanto, los artículos con animales de pastoreo no se incluyen en la siguiente discusión. Con esas consideraciones, se encontraron diez estudios que reportan emisiones de metano y CMS de rumiantes alimentados con leguminosas tropicales comparándolas con una dieta control. Seis de estos estudios in vivo probaron los efectos de la leucaena, y cuatro de ellos encontraron disminuciones en las emisiones de metano (Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. y Possenti et al. 2008Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J., Frighetto, R.T.S. & Lima, M.A.D. 2008. "Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisiae sobre a fermentação ruminal e a emissão de gás metano em bovinos". Revista Brasileira de Zootecnia, 37: 1509-1516, ISSN: 1806-9290. http://dx.doi.org/10.1590/S1516-35982008000800025. ) mientras que no hubo efectos en los otros dos (Delgado et al. 2013Delgado, D.C., Galindo, J., Cairo, J., Orta, I. & Dorta, N. 2013. "Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep". Cuban Journal of Agricultural Science, 47(3): 267-271, ISSN: 2079-3480. y Moreira et al. 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. ). Es importante destacar que tres de los estudios que informaron una disminución en el metano al alimentar con leucaena también encontraron una disminución en la DMO (Archimède et al. 2016Archimède, H., Rira, M., Barde, D.J., Labirin, F., Marie‐Magdeleine, C., Calif, B., Périacarpin, F., Fleury, J., Rochette, Y., Morgavi, D.P. & Doreau, M. 2016. "Potential of tannin‐rich plants, Leucaena leucocephala, Glyricidia sepium and Manihot esculenta, to reduce enteric methane emissions in sheep". Journal of Animal Physiology and Animal Nutrition, 100: 1149-1158, ISSN: 1439-0396. https://doi.org/10.1111/jpn.12423. , Pineiro-Vásquez et al. 2018Pineiro-Vázquez, A.T., Canul-Solis, J.R., Jiménez-Ferrer, G.O., Alayón-Gamboa, J.A., Chay-Canul, A.J., Ayala-Burgos, A.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2018. "Effect of condensed tannins from Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low-quality forage". Asian-Australasian Journal of Animal Sciences, 31: 1738-1746, ISSN: 1976-5517. https://doi.org/10.5713/ajas.17.0192. y Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ). Al investigar otras especies de leguminosas, Suybeng et al. (2020)Suybeng, B., Charmley, E., Gardiner, C.P., Malau-Aduli, B.S. & Malau-Aduli, A.E. 2020. "Supplementing Northern Australian beef cattle with Desmanthus tropical legume reduces in-vivo methane emissions". Animals, 10: 2097, ISSN 2076-2615. https://doi.org/10.3390/ani10112097. reportaron disminuciones en el metano (g/kg CMS) con niveles crecientes de Descanthus spp. pero la GMD disminuyó en el nivel más alto de inclusión (31 g/100 g MS). Tres estudios adicionales no encontraron ningún efecto de la alimentación con Lablab purpureus, Vigna unguiculata, Styzolobium aterrimum, Mimosa caesalpiniaefolia y Macrotyloma axiliare en las emisiones de metano en g/kg CMS (Moreira et al. 2013Moreira, G.D., Lima, P.D., Borges, B.O., Primavesi, O., Longo, C., McManus, C., Abdalla, A. & Louvandini, H. 2013. "Tropical tanniniferous legumes used as an option to mitigate sheep enteric methane emission". Tropical Animal Health and Production, 45: 879-882, ISSN: 1573-7438. https://doi.org/10.1007/s11250-012-0284-0. , Washaya et al. 2018Washaya, S., Mupangwa, J. & Muchenje, V. 2018. "Chemical composition of Lablab purpureus and Vigna unguiculata and their subsequent effects on methane production in Xhosa lop-eared goats". South African Journal of Animal Science, 48: 445-458, ISSN: 2221-4062. http://dx.doi.org/10.4314/sajas.v48i3.5. y Lima et al. 2020Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. ).

Adicionalmente, Kennedy y Charmley (2012)Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. cuantificaron la emisión de metano de varias dietas que contenían Lablab purpureus, Leucaena leucocephala, Stylosantes hamata y Macroptilium bracteatum, pero el estudio no se diseñó para comparar esas emisiones con las de otras dietas. Los autores encontraron que al aumentar la proporción de leguminosas en la dieta de 20 a 40 g/100 g de MS, los cambios en la producción de metano no eran consistentes y dependían del pasto basal, la especie de leguminosa y la unidad en la que se expresaba el metano (Kennedy y Charmley 2012Kennedy, P.M. & Charmley, E. 2012. "Methane yields from Brahman cattle fed tropical grasses and legumes". Animal Production Science, 52: 225-239, ISSN: 1836-5787. http://dx.doi.org/10.1071/AN11103. ). En el metanálisis de Archimède et al. (2011)Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. concluyeron que las leguminosas de ambientes cálidos produjeron menos metano que sus contrapartes de pastos, pero el análisis se basó en solo 12 observaciones que compararon leguminosas con pastos. Todos estos estudios apuntan hacia reducciones en la producción de metano cuando los animales se alimentan con leguminosas tropicales, pero la heterogeneidad en las especies de leguminosas, las características de los animales y la composición nutricional de la dieta hacen que sea arriesgado sacar una conclusión sobre el potencial de estos forrajes para reducir las emisiones de metano.

Efectos generales de los forrajes de leguminosas en la producción estimada de metano

 

El metano disminuyó con el aumento de la proporción de leguminosas en la dieta cuando se expresó en relación con el PCM. Sin embargo, las emisiones podrían disminuir simplemente debido a un menor CMS o degradabilidad del alimento. De hecho, estudios recientes mostraron que altas proporciones de leguminosas tropicales disminuyen el consumo, así como la degradabilidad de la dieta de la MO y la FDN (Castro-Montoya y Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. y da Silva et al. 2017da Silva, T., Pereira, O., Martins, R., Agarussi, M., da Silva, L., Rufino, L., Valadares, F. & Ribeiro, K. 2017. "Stylosanthes cv. Campo Grande silage and concentrate levels in diets for beef cattle". Animal Production Science, 58: 539-545, ISSN: 1836-5787. https://doi.org/10.1071/AN15781. ). En este sentido, cuando se expresa en relación con el CMS, el metano aún disminuyó con el aumento de la proporción de leguminosas en la dieta. Sin embargo, cuando se expresó en relación con CMOD, las leguminosas tropicales causaron una respuesta menos obvia en el metano, sin efectos cuando se administró al ganado y solo con una tendencia a disminuir en los pequeños rumiantes.

Se discuten varios mecanismos por los cuales las leguminosas pueden ejercer esta disminución en la producción de metano. Primero, la degradación microbiana de la celulosa y la hemicelulosa produce H2 que luego debe eliminarse del ambiente del rumen (Carroll y Hungate 1955Carroll, E.J. & Hungate, R.E. 1955. "Formate dissimilation and methane production in bovine rumen contents". Archives of Biochemistry and Biophysics, 56: 525-536, ISSN: 1096-0384. https://doi.org/10.1016/0003-9861(55)90272-1. ). En las leguminosas tropicales se ha observado menor degradabilidad de la fibra en comparación con las hebáceas, lo que da como resultado menos sustrato para la formación de metano. En segundo lugar, las dietas que favorecen mayor producción de propionato, secuestran H2 lejos del metano (Marty y Demeyer 1973Marty, R.J. & Demeyer, D.I. 1973. "The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses". British Journal of Nutrition, 30: 369-376, ISSN: 1475-2662. https://doi.org/10.1079/BJN19730041. ). Sin embargo, los estudios han demostrado que las leguminosas tropicales tienen una mayor concentración de acetato a propionato (Castro-Montoya et al. 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. y Montoya-Flores et al. 2020Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. ), por lo que parece improbable un mayor secuestro de metano del propionato.

Además, se ha argumentado que la presencia de compuestos secundarios en las leguminosas puede desempeñar un papel en la actividad y el número de metanógenos (Makkar et al. 2007Makkar, H.P.S., Francis, G. & Becker, K. 2007. "Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems". Animal, 1: 1371-1391, ISSN: 1751-732X. https://doi.org/10.1017/S1751731107000298. ). Los estudios in vivo que reportan actividad microbiana y metano no son concluyentes. El estudio de Montoya-Flores et al. (2020)Montoya-Flores, M.D., Molina-Botero, I.C., Arango, J., Romano-Muñoz, J.L., Solorio-Sánchez, F.J., Aguilar-Pérez, C.F. & Ku-Vera, J.C. 2020. "Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers". Animals, 10: 300, ISSN: 2076-2615. https://doi.org/10.3390/ani10020300. con leucaena no encontró ningún efecto de la leguminosa en el número de metanógenos, a pesar de la alta concentración de taninos totales y condensados y menor producción de metano. Por el contrario, Lima et al. (2020)Lima, P.D., Abdalla Filho, A.L., Issakowicz, J., Ieda, E.H., Corrêa, P.S., de Mattos, W.T., Gerdes, L., McManus, C., Abdalla, A.L. & Louvandini, H. 2020. "Methane emission, ruminal fermentation parameters and fatty acid profile of meat in Santa Inês lambs fed the legume macrotiloma". Animal Production Science, 60: 665-673, ISSN: 1836-5787. https://doi.org/10.1071/AN19127. no encontraron una disminución en la producción de metano cuando se alimentó a los corderos con macrotyloma, pero encontraron una disminución en la abundancia de metanógenos (también un aumento de Ruminococcus flavefaciesn y Fibrobacter succionogens). En este estudio no fue posible demostrar los efectos directos de los compuestos secundarios en el metano. Sin embargo, los efectos indirectos de esos compuestos, si los hubiere, podrían reflejarse en la DMO y en el CMS, variables consideradas en estas estimaciones. Es importante destacar que no todas las leguminosas tropicales son ricas en compuestos secundarios ni está probado que su actividad sea biológicamente significativa para ejercer un efecto en la metanogénesis. Por lo tanto, no todos los efectos de las leguminosas en la producción de metano pueden atribuirse a compuestos secundarios.

La disminución de la degradabilidad y el consumo pueden tener consecuencias negativas si su extensión afecta el suministro de nutrientes al animal, lo que en última instancia disminuye su rendimiento. Por tanto, el mejor indicador de la eficacia de una estrategia para disminuir el metano es la reducción de la intensidad con las emisiones. En este sentido, la proporción de leguminosas no afectó al metano en relación a la producción de leche (aunque se observó una pendiente negativa), mientras que el metano en relación con la GMD disminuyó en el ganado alimentado con leguminosas. Para el metano relacionado con el rendimiento de la leche, es importante destacar que, en el conjunto de datos actual, el 95 % de los rendimientos registrados estuvo por debajo de 16.7 kg/d (promedio + 2 desviaciones estándar), por lo tanto, los resultados actuales representan emisiones de metano del ganado con un nivel bajo a medio. Rendimientos de leche mucho más altos se encuentran comúnmente en los trópicos. Las dietas de vacas de alto rendimiento no solo están bien equilibradas en términos de nutrientes, sino que también las mejoras marginales tienden a disminuir con rendimientos más altos. Por lo tanto, es incierto y vale la pena investigar cómo las leguminosas tropicales influirían en la intensidad de las emisiones a niveles altos de producción de leche. El escenario presentado para la crianza de ganado parece cubrir un mayor rango de crecimiento para el ganado tropical, donde la mayoría de las GMD registradas estuvieron por debajo de 903 g/d.

Al contrario del conjunto de datos de bovinos, no se observó ningún efecto de las leguminosas en el metano en g/kg GMD para pequeños rumiantes. Para las cabras, se observaron disminuciones en el metano en relación con PCM, CMS y CMOD, por lo que se esperaría una disminución en el metano en g/kg GMD siempre que la GMD se mantenga o aumente cuando se alimentan con leguminosas. De hecho, la GMD mediana para ovejas y cabras fue de 48.0 y 38.7 g/d, respectivamente, más alta que la GMD mediana de los pequeños rumiantes alimentados sin legumbres (36.2 g/d) (tabla 1). Un estudio anterior sugirió una relación cuadrática entre el nivel de leguminosas y la GMD, con una GMD maximizada alrededor de 400 g de leguminosas/kg de MS (Castro-Montoya y Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). Niveles altos de inclusión de leguminosas fueron más comunes en los pequeños rumiantes que en los bovinos (figura 1 y figura 3), por lo que se puso a prueba un efecto cuadrático de la proporción de leguminosas en la dieta en el metano en g/kg GMD, pero no fue significativo (datos no mostrados). Tal vez más relevante, para los pequeños rumiantes, pero no para el ganado bovino, varias observaciones reportaron una GMD negativa, es decir, cuando los animales perdieron peso durante el período experimental. Estos datos no se utilizaron para este análisis, ya que este cálculo produciría una emisión de metano negativa que es biológicamente imposible. Por lo tanto, se eliminaron las observaciones 12, 9 y 2 de los cálculos de metano en g/kg GMD de pequeños rumiantes sin leguminosas, ovejas en crecimiento y cabras en crecimiento, respectivamente. Al considerar esas observaciones negativas, la media de GMD de las dietas sin leguminosas (25.0 g/d) fue mucho más baja que la media observada para las ovejas y cabras en crecimiento (48.0 y 38.1 g/d, respectivamente; datos no mostrados). Esto significa que el efecto de alimentar a los pequeños rumiantes con leguminosas en el metano relacionado con la GMD se subestima en este estudio, y que es probable que se produzca una mayor reducción de las emisiones de metano, por ejemplo, durante la vida útil de un animal, al mejorar su alimentación a través de las leguminosas.

Efectos de leguminosas forrajeras según su hábito de crecimiento en las emisiones estimadas de metano

 

Revisiones recientes de la literatura sobre las leguminosas tropicales han mostrado fuertes diferencias en las características nutricionales entre las leguminosas herbáceas, arbustivas y arbóreas (Castro-Montoya y Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. y Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ), con los arbustos que tienen las concentraciones más altas de FDN y las hebáceas que tienen las mayores DMO in vivo e in vitro. Las leguminosas herbáceas, arbustivas y arbóreas también difieren en términos de EM, compuestos secundarios y PB, por mencionar algunos (Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ). Todos estos parámetros influirán en el nivel de consumo, los patrones de fermentación, la digestibilidad total del tracto y el desempeño. Por lo tanto, es de esperar que diferentes tipos de leguminosas provoquen diferentes respuestas en la producción de metano. Increíblemente, los efectos diferenciales de las leguminosas herbáceas, arbustivas y arbóreas fueron consistentes en el ganado vacuno y los pequeños rumiantes y reflejaron las diferencias descritas anteriormente en su composición nutricional. Una mayor degradabilidad conduciría a mayores emisiones de metano y, de hecho, se observó una mayor producción de metano para las hebáceas cuando se expresó en relación con el PCM. Cuando se expresan en relación con CMS y CMOD, las leguminosas herbáceas tienen mayores emisiones de metano a niveles de inclusión por debajo de 500 g/kg MS, pero debido a la pendiente más pronunciada, con mayores niveles de inclusión, las hebáceas producen menos metano que los arbustos y árboles. Los arbustos muestran claramente el menor potencial para disminuir las emisiones de metano, incluso teniendo una tendencia a mayores emisiones cuando se expresan en relación con CMOD, probablemente relacionado con su mayor contenido de FDN directamente vinculado a la producción de metano.

Según el análisis actual, las leguminosas arbóreas parecen tener un potencial intermedio para disminuir el metano. Las leguminosas arbóreas tienen mayor concentración de lignina y una DMO menor que las hebáceas (Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M. & Dickhoefer, U. 2020. "The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review". Animal Feed Science and Technology, 269: 1-14, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2020.114641. ), así como menor digestibilidad de CMS y FDN (Castro-Montoya y Dickhoefer 2018Castro‐Montoya, J.M. & Dickhoefer, U. 2018. "Effects of tropical legume silages on intake, digestibility and performance in large and small ruminants: A review". Grass and Forage Science, 73: 26-39, ISSN: 1365-2494. https://doi.org/10.1111/gfs.12324. ). La menor digestibilidad y el consumo de leguminosas arbóreas pueden reflejarse en un menor rendimiento animal y, en última instancia, en su potencial para disminuir el metano. Solo se administró el follaje de las leguminosas arbóreas a los rumiantes, lo que resulta en que, en comparación con las hebáceas, las leguminosas arbóreas tienen mayor contenido de PC, pero también mayor contenido de compuestos secundarios. La presencia de compuestos secundarios en los árboles puede influir aún más en sus efectos en el metano, pero el alcance y la dirección de dichos efectos son inciertos, como se indicó anteriormente. Por ejemplo, Tiemann et al. (2008)Tiemann, T., Lascano, C., Kreuzer, M. & Hess, H. 2008. "The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes". Journal of the Science of Food and Agriculture, 88: 1794-1803, ISSN: 1097-0010. https://doi.org/10.1002/jsfa.3282. no encontraron correlación entre la concentración de taninos condensados y la degradabilidad de FDN in vitro de leguminosas tropicales. Los efectos confusos de los compuestos secundarios en la nutrición de los rumiantes y el metano probablemente estén relacionados con su diversidad y no deben ser ignorados en la investigación. Sin embargo, esto no forma parte de este estudio.

La mayor degradabilidad y energía metabolizable de las hebáceas (Castro-Montoya y Dickhoefer 2020Castro-Montoya, J.M., Goetz, K. & Dickhoefer, U. 2020. "In vitro fermentation characteristics of tropical legumes and grasses of good and poor nutritional quality and the degradability of their neutral detergent fibre". Animal Production Science, 61: 645-654, ISSN: 1836-5787. https://doi.org/10.1071/AN20136. ) probablemente propicie mayor efecto positivo en el rendimiento animal, mientras que los arbustos tendrían el menor. De hecho, cuando se expresan en relación con la GMD y la producción de leche, las pendientes de la regresión de las leguminosas herbáceas en el metano fueron consistentemente negativas y mostraron mayor potencial para disminuir la intensidad de las emisiones que los árboles y arbustos (figura 2).

Emisiones estimadas de metano de las dietas de pequeños rumiantes sin legumbres

 

En general, los resultados del estudio actual evidencian que las leguminosas tienen potencial para disminuir las emisiones de metano, particularmente cuando se expresan en relación con CMS y CMOD. Las disminuciones, sin embargo, no son comparables con las logradas cuando el concentrado se complementa con pastos o residuos de cultivos de cereales, como se refleja en las mayores pendientes negativas en la tabla 5 en comparación con las de la tabla 4. Curiosamente, los efectos de la alimentación con concentrado contrastaron cuando el forraje basal era una gramínea o un residuo de cultivo. La alimentación con concentrado se considera una estrategia para disminuir las emisiones de metano, ya que hay menos sustrato disponible para la producción de H2, mientras se dirige la fermentación hacia una mayor producción de propionato (Carroll y Hungate 1955Carroll, E.J. & Hungate, R.E. 1955. "Formate dissimilation and methane production in bovine rumen contents". Archives of Biochemistry and Biophysics, 56: 525-536, ISSN: 1096-0384. https://doi.org/10.1016/0003-9861(55)90272-1. ), al tiempo que aumenta la productividad animal y, por lo tanto, disminuye la intensidad de las emisiones. En el presente análisis, la suplementación con mayor concentración en la dieta de pequeños rumiantes alimentados con hebáceas disminuyó constantemente las emisiones de metano, incluso cuando se expresa en relación con la GMD, un efecto que no siempre se observó con las leguminosas. Sin embargo, cuando se añadió concentrado a la paja, el metano tendió a aumentar cuando se expresó en relación con el PCM y no tuvo ningún efecto en el metano en relación con la CMS. La suplementación de paja con alimento concentrado ciertamente aumentó la digestibilidad general de la dieta, produciendo así más metano. De hecho, cuando el metano se expresó en relación con CMOD, la suplementación de concentrado tendió a disminuir las emisiones de metano. Los efectos de suplementar alimentos concentrados a los residuos de cultivos no fueron obvios cuando se expresaron en relación con GMD. La reducción de metano al alimentar un alimento concentrado es notable si se considera que en la mayoría de los casos la porción referida como concentrado consistía únicamente en harina de cereales, salvados, tortas o subproductos de otra industria, o mezclas de cereales y harinas proteicas. Esto destaca, por un lado, la baja calidad de los forrajes basales que se encuentran en los trópicos, y, por otro lado, el gran potencial que puede tener la inclusión de una pequeña proporción de fuentes de energía o proteínas fácilmente digeribles en la utilización de ese forraje basal, rendimiento y emisiones.

Es importante resaltar que los autores no quieren sugerir que los concentrados deban usarse en detrimento de los forrajes de leguminosas. Utilizar estos forrajes tiene varias ventajas para el sistema de producción agrícola. Además, el metano entérico no es la única medida del impacto ambiental de una estrategia dada, y se deben considerar otros factores, como la huella de carbono, la huella hídrica o la biodiversidad, para la comparación entre forrajes de leguminosas y los concentrados.

Archimède et al. (2011)Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D. P., Lecomte, P. & Doreau, M. 2011. "Comparison of methane production between C3 and C4 grasses and legumes". Animal Feed Science and Technology, 166: 59-64, ISSN: 0377-8401. https://doi.org/10.1016/j.anifeedsci.2011.04.003. encontraron que las leguminosas solas reducen las emisiones de metano en comparación con las hebáceas solas. En un intento de hacer una evaluación similar, se crearon diagramas de caja que comparan el metano estimado para dietas que contienen solo hebáceas, solo paja/rastrojos o solo leguminosas (figura 6A-B). Los diagramas de caja muestran claramente emisiones de metano más altas tanto de las hebáceas como de la paja en comparación con las leguminosas solas para el metano en g/kg CMS y en g/kg CMOD, y las hebáceas tienen consistentemente menos metano que los arbustos y árboles. Desafortunadamente, no hubo suficientes observaciones disponibles para comparar los forrajes solamente sobre la base del metano en relación con la GMD. Además, cuando se compararon las hebáceas suplementadas con concentrados con raciones mixtas de leguminosas y hebáceas suplementadas con concentrados (figura 6C-D-E), en relación con CMS y CMOD, la media de metano producido por las hebáceas fue menor que la de las hebáceas y los arbustos, y fue similar a la de los árboles. Sin embargo, cuando se expresó en relación con GMD, la media más baja de metano se encontró para las dietas en las que las hebáceas se combinaron con pastos y se complementaron con concentrado, ligeramente más bajas que las de solo pasto suplementado con concentrado. El sinergismo entre las leguminosas y las hebáceas se ha informado previamente (Minson 1990Minson, D.J. 1990. Forage in ruminant nutrition. Academic Press Inc. CA, USA.), aunque no es específico para las emisiones de metano, pero podría estar relacionado con una mayor partición de energía lejos de las pérdidas metabólicas.

Figure 6.  Boxplots of the comparison in methane emissions (g/kg DMI, g/kg DOMI) between diets were small ruminants were fed solely on forages (grasses, stover/straw or legumes forages (Herb, Shrub, Tree)) (A, B); and where small ruminants were supplemented with concentrate to basal diets of grasses, straw/stover or legumes (Herb, Shrub, Tree) mixed with grasses (g/kg DMI, g/kg DOMI, g/kg ADG) (C, D, E).

Vale la pena notar que las estimaciones medianas de metano (g/kg GMD) de los arbustos parecen ser más altas incluso que aquellas en las que la paja como único forraje se complementó con concentrados. También es importante notar la variación en los efectos de las dietas con leguminosas arbóreas en el metano relacionado con la GMD. Esto resalta aún más la necesidad de evaluar los efectos de las leguminosas según su hábito de crecimiento u otras clasificaciones que tengan en cuenta su diferente calidad nutricional. Se vuelve obvio que no todas las leguminosas tropicales comparten los mismos atributos nutricionales.

Los resultados del presente análisis aún deben validarse con más estudios in vivo, donde el principal efecto variable debería ser la inclusión de la leguminosa. Si es posible, factores como la proporción de forraje a concentrado o la concentración de FDN, PB y EM en los tratamientos deben permanecer constantes o al menos similares. Para dietas basadas en forrajes, la comparación de dietas con y sin leguminosas sigue siendo valiosa, pero no es posible ajustar la composición de nutrientes. En este caso, el uso de concentraciones de nutrientes relevantes como covariables en el análisis estadístico podría ser una opción para explicar los cambios en el valor nutricional de la dieta. Expresar el metano en relación con el CMS y el consumo de MS o de OM digestible también puede ayudar a sacar conclusiones más sólidas. Más importante aún, el objetivo de obtener una medida de la intensidad de las emisiones debe ser una prioridad de cualquier estudio. Conociendo la capacidad de los microbios del rumen para adaptarse a diferentes condiciones, los ensayos a mediano y largo plazo serían ideales para evaluar el potencial de las leguminosas tropicales para disminuir las emisiones de metano cuando se incluyen de forma rutinaria en las raciones de los rumiantes.

Los resultados del presente análisis muestran claramente el potencial de las leguminosas para disminuir las emisiones de metano en rumiantes en ambientes tropicales, aunque la evidencia sobre la reducción de la intensidad de las emisiones de metano aún no es concluyente. Aparecieron fuertes diferencias en los efectos de las leguminosas tropicales en el metano estimado entre las leguminosas herbáceas, arbustivas y arbóreas, donde las hebáceas mostraron una clara ventaja en la reducción del metano. Si bien las estimaciones de metano de solo hebáceas versus solo leguminosas parecían favorecer a las últimas, la reducción de las estimaciones de metano cuando se alimenta con leguminosas tropicales es menor que cuando se complementan los alimentos concentrados con hebáceas. En cuanto a la intensidad de las emisiones de metano, se observó un buen potencial cuando las leguminosas herbáceas se alimentaban mezcladas con una gramínea y suplementadas con un concentrado, destacando la complementariedad y el potencial existente en las dietas que contienen todos estos recursos alimenticios.