Cuban Journal of Agricultural Science Vol. 57, January-December 2023, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v57e04
Animal Science

Growth promoting effect of a processed vegetable ingredient in pullets

 

iDK. D. Coello1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDL. A. Castellanos1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDP. E. Paz2Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDM. Valdivié3Centro Nacional para la Producción de Animales de Laboratorio, Santiago de las Vegas, Rancho Boyeros, La Habana, Cuba

iDY. Martínez1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras*✉:ymartinez@zamorano.edu


1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

2Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

3Centro Nacional para la Producción de Animales de Laboratorio, Santiago de las Vegas, Rancho Boyeros, La Habana, Cuba

 

* Email:ymartinez@zamorano.edu

A total of 1,500 one-day-old Hy-Line W36 pullets were randomized in two treatments, 15 repetitions and 50 pullets per repetitions to evaluate the dietary use of a processed vegetable ingredient (PVI) as a functional feed on the growth performance of pullets. The dietary treatments consisted of the inclusion of 10, 8, 5, and 3 % of the processed vegetable ingredient in starter 1 (0-3 weeks), starter 2 (4-6 weeks), grower (7-12 weeks), developer and pre-lay (13-15; 16-17 weeks, respectively). From the third week on, the functional feed increased (P<0.05) the body weight of pullets compared to the control diet (193.98 vs 204.38 g), without notable changes for viability, uniformity, and feed conversion ratio for 17 experimental weeks (P>0.05). The dietary inclusion with the processed vegetable ingredient had a natural growth-promoting effect on pullets.

Key words: 
body weight, dietary inclusion, feed intake, functional feed, birds

Received: 02/9/2022; Accepted: 05/1/2023

Conflict of interests: The authors declare that there is no conflict of interest between them.

Authors contribution: K.D. Coello: Data curation, Investigation, Formal analysis, Writing - original draft. L.A. Castellanos: Data curation, Investigation, Formal analysis, Writing - original draft. P. Paz: Investigation, Formal analysis. M. Valdivié: Formal analysis, Writing - original draft. Y. Martínez: Conceptualization, Data curation, Investigation, Formal analysis, Writing - original draft.

CONTENT

Currently, the high prices of raw materials to feed birds, which represent up to 75 % of the cost of poultry production (Dal Bosco 2021Dal Bosco, A., Mattioli, S., Cartoni, A., Cotozzolo, E. & Castellini, C. 2021. "Extensive rearing systems in poultry production: The right chicken for the right farming system. A review of twenty years of scientific research in Perugia University, Italy". Animals, 11(5): 1281, ISSN: 2076-2615. https://doi.org/10.3390/ani11051281.), have led to the generation of new ideas to counteract these current problems. Thus, one of the nutritional strategies is the development and use of functional ingredients to improve the feeding efficiency of birds (Fang et al. 2017Fang, J., Martínez, Y., Deng, C., Zhu, D., Peng, H., Jienag, H. & Li, A. 2017. "Effects of dietary enzymolysis products of wheat gluten on the growth performance, serum biochemical, immune, and antioxidant status of broilers". Food and Agricultural Immunology, 28(6): 1155-1167, ISSN: 0954-0105. https://doi.org/10.1080/09540105.2017.1332009. and Fries-Craft et al. 2021Fries-Craft, K., Meyer, M. M. & Bobeck, E. A. 2021. "Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction". Poultry Science, 100(9): 101369, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2021.101369.). It is known that functional foods provide one or more differentiated components to improve the physiological functions of the animal organism (Teklić et al. 2021Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z. & Lisjak, M. 2021. "Linking abiotic stress, plant metabolites, biostimulants and functional food". Annals of Applied Biology, 178(2): 169-191, ISSN: 1744-7348. https://doi.org/10.1111/aab.12651.). Also, the poultry industry has a wide interest in the use of functional products, especially as one of the nutritional strategies to eliminate growth-promoting antibiotics in these animals and improve the quality of the final product with a direct impact on the modern consumer (Camacho et al. 2019Camacho, F., Macedo, A. & Malcata, F. 2019. "Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review". Marine Drugs, 17(6): 312, ISSN: 1660-3397. https://doi.org/10.3390/md17060312.). Although most studies are conducted on fast-growing birds (broilers), the use of these feeds can also improve the growth performance of growing and developing pullets, mainly because it directly influences the development of the gastrointestinal tract and the immune response (Ayodele et al. 2021Ayodele, A. D., Tayo, G. O., Olumide, M. D., Adeyemi, O. A. & Akanbi, A.S. 2021. "Haematological and serum biochemical responses of pullet chicks fed diets containing single and combined levels of turmeric and clove". Nigerian Journal of Animal Production, 48(3): 71-85, ISSN: 0331-2064. https://doi.org/10.51791/njap.v48i3.2962.).

While many functional feeds have been developed, few are derived from plant ingredients after a biotechnological process (Wang et al. 2021Wang, L. T., Lv, M. J., An, J. Y., Fan, X. H., Dong, M. Z. & Zhang, S. D. 2021. "Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review". Food Function, 12(4): 1432-1451, ISSN: 2042-650X. https://doi.org/10.1039/d0fo02603d.). The processed vegetable ingredient (MrFeed® Pro50 C) is derived from a biotechnological process without artificial preservatives, is highly digestible, and rich in metabolizable energy, proteins, essential amino acids, peptides, nucleotides, vitamins, and minerals (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). To obtain the processed vegetable ingredient (MrFeed Pro50® Poultry), three chemical processes are applied to an organic by-product, known as fermentation, hydrolysis, and oligomerization (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.).

Studies conducted with this processed vegetable ingredient as a functional feed in broilers, tilapia, and shrimp diets found better feed efficiency and gut health, mainly due to the concentration of bioactive peptides less than 500 Daltons and nucleic acids, however, the results are inconsistent in dairy cow calves and growing pigs (McLean et al. 2020McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K. & Tran, L. 2020. ";Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge". Aquaculture, 527: 735383, ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735383., Ordoñez 2020Ordoñez, M. F. 2020. Evaluación de la inclusión de MrFeed Pro 50 Ta en dietas para alevines de tilapia (Oreochromis niloticus). (Dissertation). Tegucigalpa: Zamorano University. and Herrera and Moreno 2020Herrera, S. J. & Moreno, L. P. 2020. Evaluación nutricional del aditivo Mr. Feed® Pro50 Sw en cerdos de engorde desde la etapa de inicio hasta cosecha. [Dissertation]. Tegucigalpa: Zamorano University., Ponce 2021Ponce, O. M. 2021. Evaluación dietética de MrFeed Pro 10MRC® en el desempeño de terneras Holstein lactantes. (Dissertation). Tegucigalpa: Zamorano University. and Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). Thus, the processed vegetable ingredient, due to its chemical composition, could be used in slow-growing birds to promote the body weight of these birds before laying. Therefore, the aim of the present trial was to evaluate the dietary use of a processed vegetable ingredient as a functional feed on growth performance of pullets.

Materials and Methods

 

Experimental location. The experiment in a non-tunneled shed was developed located in the Poultry Research and Teaching Center of the Pan-American Agricultural School, Zamorano, located in the Yegüare Valley, San Antonio de Oriente, Francisco Morazán department, km 30 on the road of Tegucigalpa to Danlí, Honduras. At coordinates 1400’9 “N and 86059’31” W, 760 meters above sea level, with an average temperature of 26 °C.

Processed vegetable ingredient. The processed vegetable ingredient (MrFeed® Pro50 C) was supplied from the company Menon Renewable Products, Inc. (Escondido, California, USA). To obtain the processed vegetable ingredient, a by-product fermentation process was developed using a microbial inoculum to increase the concentration of nucleic acids. Followed by a specific enzymatic hydrolysis considering time, temperature, pH, and enzymes to carry out transformations of physicochemical properties, its main objective was the production of peptides. The third process consisted of an oligomerization, through catalysis to accelerate this process, then these are brought together to produce the different versions of the processed vegetable ingredient (MrFeed® Pro50 C) (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.). According to Menon Renewable Products, this processed vegetable ingredient (MrFeed® Pro50 C) has 51.9 % protein, 4.47 % lysine, 1.68 % methionine + cystine, 1.82 % threonine, 2.07 % valine and 19.49 MJ/kg of true metabolizable energy (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.).

Animals, experimental design, and treatments. A total of 1,500 one-day-old Hy-Line W36 pullets were randomized in two treatments, 15 repetitions and 50 pullets per repetition. The dietary treatments consisted of: Starter 1 (0-3 weeks): control (0 %) and 10 % the processed vegetable ingredient (PVI); Starter 2 (4-6 weeks): control (0 %) and 8 % PVI; Grower (7-12 weeks): control (0 %) and 5 % PVI; Development (13-15 weeks): control (0 %) and 3 % PVI; Pre-lay (16-17 weeks): control (0 %) and 3 % PVI according to the recommendations of Menon Renewable Products, Inc. (2020)Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.. The experimental diets are presented in table 1.

Table 1.  Ingredients and contributions of basal diets (control treatment) and diets with inclusion levels of a processed vegetable ingredient
Starter 1 Starter 2 Grower Developer Pre-lay
Ingredients (%) Basal diet PVI Basal diet PVI Basal diet PVI Basal diet PVI Basal diet PVI
Corn meal 59.382 61.891 62.566 64.681 61.639 63.818 63.706 64.696 59.252 60.05
Soybean meal 33.706 22.324 28.658 19.687 27.891 20.343 22.482 18.409 24.566 21.098
Wheat bran 00.00 00.00 02.11 01.966 05.168 05.752 08.115 8.335 5.782 05.774
PVI 00.00 10.00 00.00 08.00 00.00 05.00 00.00 3.00 0.00 03.00
Palm oil 02.23 01.69 02.00 01.54 00.00 00.00 00.00 0.00 1.96 01.80
CaCo3 01.69 01.247 01.709 01.355 01.741 01.517 01.772 1.638 5.775 05.643
Molasses 00.00 00.00 00.00 00.00 01.00 01.00 01.50 1.50 0.00 00.00
Biofos 01.658 01.679 01.591 01.608 01.436 01.446 01.306 1.312 01.522 01.529
Sodium chloride 00.268 00.299 00.228 00.277 00.239 00.24 00.237 0.238 00.291 00.292
Sodium bicarbonate 00.248 00.206 00.262 00.198 00.245 00.243 00.28 0.279 00.215 00.213
Premixes 00.23 00.23 00.23 00.23 00.23 00.23 00.23 0.23 00.23 00.23
DL-methionine 00.211 00.161 00.194 00.153 00.164 00.148 00.129 0.118 00.158 00.143
Mycofix plus 5.0 00.15 00.15 00.15 00.15 00.15 00.15 00.15 0.15 00.15 00.15
L- treonine 00.086 00.059 00.106 00.083 00.034 00.049 00.029 0.031 00.035 00.029
L-lysine 00.078 00.00 00.131 00.004 00.00 00.00 00.00 0.00 00.00 00.00
L-tryptophan 00.00 00.00 00.00 00.005 00.00 00.00 00.00 0.00 00.00 00.005
Coccidiostat 00.05 00.05 00.05 00.05 00.05 00.05 00.05 0.05 00.05 00.05
Phytase 00.01 00.01 00.01 00.01 00.01 00.01 00.01 0.01 00.01 00.01
Zn Bacitracin 00.004 00.004 00.004 00.004 00.004 00.004 00.004 0.004 00.004 00.004
Nutritional contributions (%)
ME (MJ/kg) 12.46 12.46 12.46 12.46 12.26 12.26 12.05 12.05 12.05 12.05
Crude protein 20.00 20.00 18.25 18.25 17.50 17.50 16.00 16.00 16.50 16.50
Ca 01.05 01.05 01.00 01.00 00.95 00.95 00.90 0.90 02.50 2.50
Available phosphorus 00.48 00.48 00.47 00.47 00.45 00.45 00.40 0.40 00.43 0.43
Lysine 01.05 01.05 00.98 00.98 00.88 00.88 00.76 0.76 00.78 0.78
Methionine+cystine 00.74 00.74 00.74 00.74 00.67 00.67 00.59 0.59 00.66 0.66
Treonine 00.69 00.69 00.66 00.66 00.60 00.60 00.52 0.52 00.55 0.55

1Each kg contains: vitamin A 11,550 IU, vitamin D3 4,300 IU, vitamin E 27.5 IU, vitamin K3 3.85 mg, vitamin B1 2.75 mg, vitamin B2 9.9 mg, vitamin B6 3.85 mg, vitamin B12 22.0 Mcg, niacin 49.5 mg, pantothenic acid 15.4 mg, folic acid 1.38 mg, biotin 166 Mcg; selenium 0.09 mg, iodine 0.18 mg, copper 3.00 mg, iron 36.0 mg, manganese 54.0 mg, zinc 48.0 mg, cobalt 0.12 mg.

Experimental conditions. The pullets were housed in a 400 m2 commercial shed and in 1.6 × 3.7 m cages with ceiling fans and an artificial lighting system. Each 5.92 m2 cage (1.6 m front × 3.7 m deep), housed 50 pullets/pen and 8.78 pullets/m2. Water and feed were offered ad libitum in troughs and bell feeders. sixteen hours of light were provided each day and the wood chips were used as poultry litter, also, the temperature and relative humidity within the shed were controlled. Pre-experimental adaptation to the new diets was intentionally not used.

Growth performance. The indicators of the performance of the pullets were determined weekly. Viability was determined by live animals among those existing at the beginning of the experiment. Body weight was performed individually, on a Mettler Toledo® IND226 industrial scale with precision ± 1.00 g. Feed intake was calculated weekly using the offer and reject method. For the feed conversion ratio per week, the accumulated feed intake and the weight gain were considered. Uniformity was carried out in the period (0-17 weeks) according to the method ±10.

Experimental design and statistical analysis. The data were analyzed using the Student’s t test, according to a completely randomized design. Previously, the normality of the data was verified by the Kolmogorov-Smirnov test and the uniformity of the variance by the Bartlett test. The viability was determined by comparison of proportions. IBM® SPSS® Statistics version 23.0.1.2014 was used.

Results and Discussion

 

Table 2 shows the effect of PVI as part of the diet on growth performance of Hy-Line W36 replacement layer pullets over 17 weeks. In the first two weeks old, no significant differences were found between treatments (P>0.05). However, from the third week, body weight increased (P<0.05) due to PVI diets, although with no notable changes in feed intake and viability (P>0.05).

Table 2.  Effect of the inclusion in the diet of a processed vegetable ingredient on the growth of pullets in the starter 1 phase (1-3 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 1
Initial body weight (g) 35.02 34.95 0.197 0.813
Final body weight (g) 74.13 75.89 0.754 0.113
Feed intake (g) 95.32 95.70 1.910 0.888
Viability (%) 99.33 99.42 0.335 0.862
Feed conversion ratio 2.44 2.34 0.048 0.059
Week 2
Body weight (g) 115.51 115.08 0.570 0.596
Feed intake (g) 96.08 99.27 1.750 0.211
Viability (%) 98.92 98.50 0.584 0.619
Feed conversion ratio 2.32 2.53 0.079 0.052
Week 3
Body weight (g) 193.98 204.38 2.293 0.004
Feed intake (g) 226.46 216.92 6.060 0.278
Viability (%) 99.67 99.42 0.272 0.523
Feed conversion ratio 2.89 2.42 0.091 0.038

It is known that the first week old of laying pullets is the most critical stage, since physiologically they cannot regulate their body temperature and have an immature digestive and immune system, thus the viability (99.33 to 99.42 %) in this experiment it was excellent. Furthermore, these results agree with Jung and Batal (2012)Jung, B. & Batal, A. B. 2012. "Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers". British Poultry Science, 53(1): 98-105, ISSN: 1466-1799. https://doi.org/10.1080/00071668.2012.659654. who found no significant changes in feed intake when they used nucleotide diets in the first 10 days old. PVI does not appear to cause any harm when used up to 10 % inclusion in diets. Other studies with the processed vegetable product in broilers, pigs, tilapia, shrimp, and dairy cows reported similar results in viability (McLean et al. 2020McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K. & Tran, L. 2020. ";Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge". Aquaculture, 527: 735383, ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735383., Herrera and Moreno 2020Herrera, S. J. & Moreno, L. P. 2020. Evaluación nutricional del aditivo Mr. Feed® Pro50 Sw en cerdos de engorde desde la etapa de inicio hasta cosecha. [Dissertation]. Tegucigalpa: Zamorano University., Ponce 2021Ponce, O. M. 2021. Evaluación dietética de MrFeed Pro 10MRC® en el desempeño de terneras Holstein lactantes. (Dissertation). Tegucigalpa: Zamorano University. and Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.).

From week 3 this functional product (PVI) promoted the body weight of the pullets (table 2), which could justify its use in poultry feed at all production scales. This processed vegetable product has 4800 mg/kg of nucleotides, the most quantified being cyclic adenosine monophosphate (AMPs), cyclic guanosine monophosphate (GMP) and uridine diphosphate (UDP) (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.). The positive effects observed with PVI could be because the nucleotides participate in the rapid cell proliferation and in the antioxidant activity of the organism, especially in young pullets due to the stress factors that affect the animals (Świątkiewicz et al. 2014Świątkiewicz, S., Arczewska-Włosek, A. & Józefiak, D. 2014. "Immunomodulatory efficacy of yeast cell products in poultry: a current review". World's Poultry Science Journal, 70(1): 57-68, ISSN: 0043-9339. https://doi.org/10.1017/S0043933914000051 ). In this sense, Esteve-García et al. (2007)Esteve-Garcia, E., Martinez-Puig, D., Borda, E. & Chetrit C. 2007. Efficacy of a nucleotide preparation in broiler chickens. In Proceedings 16th European Symposium on Poultry Nutrition; 2007; Strasbourg, France. p. 511-14. found a better productive response in the third week (21 days) of life in broilers when they used a diet based on nucleotides as additives (500 mg/kg). However, these authors did not find a productive efficacy when they used up to 1 g/kg, which shows that an excess of nucleotides can have a negative effect.

Likewise, Nazeer et al. (2021)Nazeer, N., Uribe-Diaz, S., Rodriguez-Lecompte, J.C. & Ahmed, M. 2021. "Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry". British Poultry Science, 62(5): 672-685, ISSN: 0007-1668. https://doi.org/10.1080/00071668.2021.1919993. have reported with peptides to have antimicrobial and immunomodulatory activities in the gastrointestinal (GI) tract of avian species. According to Menon Renewable Products, Inc. (2020)Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/. this processed vegetable ingredient shows that of the total quantified peptides, 48 % have a low molecular weight between 25 to 30 kDA more than soymeal and fishmeal. Although there are contradictions if the molecular weight of peptides has a direct influence on gut health, it seems that this should also be associated with the type of peptides in poultry diets. Therefore, feed products rich in beta defensin as a low molecular weight microbial peptide in poultry diets have been shown to enhance the immune system, being expressed in leukocytes and epithelial cells (Jacob and Pescatore 2014Jacob, J. P. & Pescatore A. J. 2014. "Barley β-glucan in poultry diets". Annals of Translational Medicine 2(2), ISSN: 2305-5839. https://doi.org/10.3978/j.issn.2305-5839.2014.01.02 .). Also, more studies are needed to understand the exact concentrations of nucleotides and peptides in the diet, but it seems that PVI promotes the greatest contributions of these in the diets. These results could be the starting point to understanding the role of nucleotides in feeds and their contributions to diets.

Table 3 shows the effect of PVI on performance of laying pullets in the start phase 2. Body weight improved (P<0.05) with the use of functional feed (PVI), also this product decreased feed conversion ratio in weeks 4 and 5, without changes in feed intake and viability (P>0.05).

Table 3.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the starter 2 phase (4-6 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 4
Body weight (g) 252.34 279.37 2.956 <0.001
Feed intake (g) 226.63 219.62 8.277 0.556
Viability (%) 99.17 97.92 0.775 0.266
Feed conversion ratio 3.88 2.93 0.128 0.008
Week 5
Body weight (g) 324.23 365.89 1.689 <0.001
Feed intake (g) 204.66 217.67 8.499 0.291
Viability (%) 99.50 99.42 0.325 0.858
Feed conversion ratio 2.85 2.52 0.112 0.052
Week 6
Body weight (g) 373.27 401.95 5.150 0.001
Feed intake (g) 298.71 298.75 11.302 0.708
Viability (%) 99.42 98.08 0.818 0.359
Feed conversion ratio 6.09 8.28 0.524 0.050

Pullet body weight increased by 27 and 28 g at weeks 4-5 on the PVI diets, respectively. It should be noted that the pullets have a weight similar to that reported by the genetic line, except in week 6 that the pullets of the control group had 93.02 % of the standard weight. Other authors such as Karimzadeh et al. (2016)Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. found an increase in body weight in broilers when they used diets with peptides for the period of 29-42 days. Furthermore, Jung and Batal (2012)Jung, B. & Batal, A. B. 2012. "Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers". British Poultry Science, 53(1): 98-105, ISSN: 1466-1799. https://doi.org/10.1080/00071668.2012.659654. reported that nucleotide-based diets promoted weight gain compared to the control diet. Wu et al. (2018)Wu, C., Yang, Z., Song, C., Liang, C., Li, H. & Chen, W. 2018. "Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens". Poultry Science, 97(11), 3837-3846, ISSN: 0007-1668. https://doi.org/10.3382/ps/pey268. found that dietary inclusion with nucleotides increased the villi height of the gastrointestinal tract, which improved intestinal health. According to Wang et al. (2022)Wang, Z., Shao, D., Kang, K., Wu, S., Zhong, G., Song, Z. & Shi, S. 2022. "Low protein with high amino acid diets improves the growth performance of yellow feather broilers by improving intestinal health under cyclic heat stress". Journal of Thermal Biology, 105: 103219, ISSN: 0306-4565. https://doi.org/10.1016/j.jtherbio.2022.103219. a rapid development of the intestinal mucosa increases the villi height, which improves the use of nutrients from an early age and in turn the development and growth.

In a study in broilers, this PVI markedly changed villus height (VH) and crypt depth (CD), relative to the basal diet. Also, in the duodenum and ileum, this alternative treatment (PVI) increased the VH:CD ratio (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). The ratio among villi and crypts is useful to estimate the digestion of nutrients and the absorptive capacity of the small intestine, a higher villus/crypt ratio translates into greater efficiency in the digestive process (Singh and Kim 2021Singh, A. K. & Kim, W. K. 2021. "Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities". Animals, 11(1): 181.). In this sense, Ebeid et al. (2021)Ebeid, T.A., Al-Homidan, I. H. & Fathi, M. M. 2021. "Physiological and immunological benefits of probiotics and their impacts in poultry productivity". World's Poultry Science Journal, 77(4): 883-899, ISSN: 0043-9339. https://doi.org/10.1080/00439339.2021.1960239. reported that crypt and villus morphology is associated with intestinal health and growth in animals. Authors such as Dixon et al. (2022)Dixon, B., Kilonzo-Nthenge, A., Nzomo, M., Bhogoju, S. & Nahashon, S. 2022. "Evaluation of selected bacteria and yeast for probiotic potential in poultry production". Microorganisms, 10(4): 676, ISSN: https://doi.org/10.3390/microorganisms10040676. informed a direct relationship between the villi height and the absorption of nutrients, which promotes growth, this effect seems to have occurred in this experiment, however further research is needed to justify this hypothesis.

The dietary inclusion with PVI promoted (P<0.05) the body weight of laying pullets in the productive phase of grower (7-12 weeks), however, at week 12, this functional product (PVI) increased feed conversion ratio (P<0.05). The other indicators did not change due to the effect of the experimental diets (table 4).

Table 4.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the grower phase (7-12 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 7
Body weight (g) 470.96 503.19 5.699 0.001
Feed intake (g) 309.93 319.02 20.858 0.761
Viability (%) 100.00 100.00
Feed conversion ratio 3.17 3.15 0.018 0.083
Week 8
Body weight (g) 571.68 602.98 6.725 0.003
Feed intake (g) 518.80 502.04 10.105 0.253
Viability (%) 99.17 98.83 0.582 0.689
Feed conversion ratio 5.15 5.03 0.048 0.058
Week 9
Body weight (g) 646.94 681.54 6.721 0.001
Feed intake (g) 560.14 558.40 19.033 0.949
Viability (%) 98.17 98.75 0.769 0.597
Feed conversion ratio 7.44 7.11 0.134 0.062
Week 10
Body weight (g) 711.98 746.47 5.600 0.001
Feed intake (g) 498.35 502.72 10.930 0.780
Viability (%) 99.50 99.50 0.261 0.999
Feed conversion ratio 7.66 7.74 0.038 0.071
Week 11
Body weight (g) 805.72 844.72 7.098 0.001
Feed intake (g) 567.73 613.20 18.083 0.089
Viability (%) 99.50 98.92 0.337 0.233
Feed conversion ratio 6.06 6.24 0.079 0.086
Week 12
Body weight (g) 870.27 905.75 9.176 0.012
Feed intake (g) 559.47 580.52 15.691 0.353
Viability (%) 99.42 99.75 0.283 0.414
Feed conversion ratio 8.67 9.51 0.249 0.048

As well, at week 7 it is observed that body weight increased with dietary inclusion with PVI in 7.02 %, and these pullets have a body weight similar as recommended the genetic line. At week 8, the use of PVI marked a difference in body weight in relation to the control in 31.3 g. García et al. (2019)García, J., Mandalawi, H. A., Fondevila, G. & Mateos, G. G. 2019. "Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight". Poultry Science, 98(9): 3937-3949, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez129. informed that pullets have a high growth rate that is related to rapid early development of the gastrointestinal tract, thus the use of nucleotides and peptides could increase the intestinal health and absorption of nutrients in pullets (Abdollahi et al. 2017Abdollahi, M.R., Zaefarian, F., Gu, Y., Xiao, W., Jia, J. & Ravindran, V. 2017. "Influence of soybean bioactive peptides on growth performance, nutrient utilization, digestive tract development and intestinal histology in broilers". Journal of Applied Animal Nutrition, 5(4): 1-7, ISSN: 1745-039X. https://doi.org/10.1017/JAN.2017.6.). Also, Martínez (2021)Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México. found that the inclusion with 5 % of PVI (0 to 10 days old) for broilers promoted a greater development of the bursa of Fabricius and the spleen, which could show a stimulation of immunity (He et al. 2019He, S., Yu, Q., He, Y., Hu, R., Xia, S. & He, J. 2019. "Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers". Poultry Science, 98(12): 6378-6387, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez471.).

In weeks 9 and 10, it was found that the PVI modified live weight by 4.84 % in relation to the basal diet (table 4). Although no differences were observed between treatments for feed intake and viability (table 4). At week 11, it was found that the dietary use of PVI increased the body weight of the pullets by 39 g, with 97.01 % of body weight corresponding to the standard weight. These results confirm that peptide-based diets promote proper weight gain and nutrient digestibility and absorption. Studies by Karimzadeh et al. (2016)Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. and Osho et al. (2019)Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346. found that the use of 200 and 250 mg/kg of bioactive peptides in poultry diets decreased the count of gram-negative bacteria in the ileum and caecum compared to the control group, as well as improved feed nutrients digestibility. Also, Feng et al. (2007)Feng, J., Liu, X., Xu, Z. R., Wang, Y. Z. & Liu, J. X. 2007. "Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers". Poultry Science, 86(6): 1149-1154, ISSN: 0032-5791. https://doi.org/10.93/ps/86.6.1149. and Landy et al. (2021)Landy, N., Kheiri, F. & Faghani, M. 2021. "Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers". Animal Nutrition, 7(1): 134-141, ISSN: 2405-6383. https://doi.org/10.1016/j.aninu.2020.06.008. found that the increase in growth in pullets may be due to higher enzymatic activity in the intestine due to the peptides supplemented in the ration.

At week 12, 35.48 g was observed as the difference found between treatments for these pullets when PVI were used as function feed, the pullets had 95.26 % of the ideal weight of the line. Apparently, the increase in feed conversion ratio with PVI was due to the non-significant increase in feed intake with this natural product (PVI), even though PVI increased body weight (35.48 g). In this sense, Osho et al. (2019)Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346. found an increase in gain:feed when they used peptide diets in broiler diets.

Like the other results, table 5 indicates that the PVI modifies the body weight of the pullets (P<0.05), also, at weeks 14 and 15 it increased feed intake (P<0.05), and the feed conversion ratio varied between treatments (P<0.05).

Table 5.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the development phase (13-15 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 13
Body weight (g) 967.05 1019.48 8.230 <0.001
Feed intake (g) 565.97 583.48 15.919 0.445
Viability (%) 99.08 99.25 0.332 0.726
Feed conversion ratio 5.85 5.13 0.159 0.038
Week 14
Body weight (g) 1034.00 1066.38 8.535 0.015
Feed intake (g) 566.56 587.49 2.584 <0.001
Viability (%) 98.00 99.17 0.589 0.175
Feed conversion ratio 8.46 12.53 1.038 0.008
Week 15
Body weight (g) 1109.09 1148.67 9.945 0.010
Feed intake (g) 565.98 582.66 2.401 <0.001
Viability (%) 99.25 98.92 0.541 0.667
Feed conversion ratio 7.54 7.08 0.131 0.048

At week 13, PVI increased body weight by 52.43 g in correspondence with the control. As well, the pullets have a body weight like the genetic line for week 13. At week 14, body weight and feed intake were the majority for the group with PVI at 32 g and 20.93 g, respectively. The pullets had 97.80 % of the ideal line weight for week 14. It is known that PVI has a peptide profile of less than 500 Dalton (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). According to Hou et al. (2017)Hou, Y., Wu, Z., Dai, Z., Wang, G. & Wu, G. 2017. "Protein Hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance". Journal of Animal Science and Biotechnology, 8: 24, ISSN: 2049-1891. https://doi.org/10.1186/s40104017-0153-9. a smaller size of peptides causes positive results in growth and intestinal health due to better absorption compared to other free amino acids. Furthermore, Xue et al. (2021)Xue, H., Han, J., He, B., Yi, M., Liu, X., Song, H. & Li J. 2021. "Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats". Food & Function, 12(11): 5157-5170, ISSN: 2042-650X. https://doi.org/10.1039/D1FO00356A. indicated that smaller peptides increase the number and size of villi in the small intestine compared to other complete proteins.

This is consistent with this study where PVI peptide molecules are small, confirming that PVI peptides may be involved in intestinal health and nutrient absorption. At week 15, 39.58 g and 16.68 g were the difference found for body weight and feed intake, respectively, in the group of pullets that consumed PVI. The pullets had 99.83 % of the ideal weight of the line for week 15. The feed conversion ratio varied depending on the stimulation of intake and the weight gain in each productive week. The PVI provoked the highest feed conversion ratio in week 14, this was due to the fact that the weight gain in relation to the control was lower than in the previous week (32.38 vs 52.43 g) and the feed consumption maintained the same trend.

In the pre-lay phase, the use of PVI improved (P<0.05) the body weight of the pullets at weeks 16 and 17. Also, at week 16, the group with PVI decreased feed conversion ratio (P<0.05) and the other indicators did not change due to the effect of the diets (P>0.05). In the period of 1-17 weeks, PVI promoted feed intake (P<0.05), although without changes (P>0.05) in feed conversion and viability (table 6).

Table 6.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the pre-lay phase (13-15 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 16
Body weight (g) 1125.05 1165.16 5.427 0.021
Feed intake (g) 532.53 513.75 16.245 0.422
Viability (%) 99.83 99.83
Feed conversion ratio 33.67 31.16 5.965 0.002
Week 17
Body weight (g) 1162.65 1214.44 7.132 <0.001
Feed intake (g) 485.78 497.10 19.428 0.684
Viability (%) 100.00 100.00
Feed conversion ratio 12.92 10.09 0.276 0.089
Week 1-17
Feed intake (g) 6879.10 7639.75 21.528 0.050
Viability (%) 99.30 99.14 0.084 0.860
Feed conversion ratio 6.10 6.48 0.136 0.058
Uniformity (%)* 89.90 90.42 0.357 0.089

*According to method±10

At week 16, it is observed that the PVI improved the body weight of the pullets by 40 g. The pullets are 97.90 % of the ideal line weight for week 16. At week 17, it is observed that the PVI improved the body weight of the pullets by 51.79 g. The pullets had 98.70 % of the ideal weight of the line for this week and the feed conversion ratio does not statistically increase. Consequently, it is known that pullets can be subjected to different stressors, especially when the holding conditions are not optimal, which directly affects the productive response and viability. Kamel et al. (2021)Kamel, N. F., Hady, M. M., Ragaa, N. M. & Mohamed, F. F. 2021. "Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density". Livestock Science, 253: 104703, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2021.104703. assure that stressful conditions can improve the effect of nucleotides on intestinal morphology.

In this sense, Leung et al. (2019)Leung, H., Patterson, R., Barta, J., Karrow, N. & Kiarie, E. 2019. "Nucleotide-rich yeast extract fed to broiler chickens challenged with Eimeria: impact on growth performance, jejunal histomorphology, immune system, and apparent retention of dietary components and caloric efficiency". Poultry Science, 98(10): 4375-4383, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez213. informed better results with the use of nucleotides in pullets subjected to Eimeria spp. It should be noted that even though the production conditions were optimal, this new feed product provoked a functional effect due to growth promotion. Globally (1-17 weeks), it is observed that despite the fact that the use of PVI caused a stimulation of the consumption of the birds, the feed efficiency was similar in both groups, because the live weight increased by 4.08 % compared to the control. Although there are few studies that evaluate feeds rich in peptides in pullets, other studies in fast-growing birds indicate similar results (Feng et al. 2007Feng, J., Liu, X., Xu, Z. R., Wang, Y. Z. & Liu, J. X. 2007. "Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers". Poultry Science, 86(6): 1149-1154, ISSN: 0032-5791. https://doi.org/10.93/ps/86.6.1149., Karimzadeh et al. 2016Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. and Osho et al. 2019Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346.). Thus, PVI could be considered as an alternative to subtherapeutic antibiotics, although further studies are needed to confirm this hypothesis.

On the other hand, Zuidhof et al. (2017)Zuidhof, M. J., Fedorak, M. V., Ouellette, C. A. & Wenger, I. I. 2017. "Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity". Poultry Science, 96(7): 2254-2263, ISSN: 0032-5791. https://doi.org/10.3382/ps/pex013 mentioned that a heterogeneous flock can cause delayed start of lay, low egg production and variability in egg weight. In this sense, the use of PVI did not depress the uniform development of the poultry mass, which may favor the synchronization of the arrival at sexual maturity with egg production. It is important to noted that Gous (2018)Gous, R. M. 2018. "Nutritional and environmental effects on broiler uniformity". World's Poultry Science Journal, 74(1): 21-34, ISSN: 0043-9339. https://doi.org/10.1017/S0043933917001039. refers that a good uniformity is greater than 80 %, according to table 2, the results showed higher percentages according to the ±10 method (89.90 vs 90.42 %).

Conclusions

 

The dietary inclusion with a processed vegetable ingredient (MrFeed® Pro50 C) naturally promoted the growth of the pullets from the third week old, without changes in viability, uniformity, feed intake and feed conversion ratio in the period from 0 to 17 weeks.

References

 

Abdollahi, M.R., Zaefarian, F., Gu, Y., Xiao, W., Jia, J. & Ravindran, V. 2017. "Influence of soybean bioactive peptides on growth performance, nutrient utilization, digestive tract development and intestinal histology in broilers". Journal of Applied Animal Nutrition, 5(4): 1-7, ISSN: 1745-039X. https://doi.org/10.1017/JAN.2017.6.

Ayodele, A. D., Tayo, G. O., Olumide, M. D., Adeyemi, O. A. & Akanbi, A.S. 2021. "Haematological and serum biochemical responses of pullet chicks fed diets containing single and combined levels of turmeric and clove". Nigerian Journal of Animal Production, 48(3): 71-85, ISSN: 0331-2064. https://doi.org/10.51791/njap.v48i3.2962.

Camacho, F., Macedo, A. & Malcata, F. 2019. "Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review". Marine Drugs, 17(6): 312, ISSN: 1660-3397. https://doi.org/10.3390/md17060312.

Dal Bosco, A., Mattioli, S., Cartoni, A., Cotozzolo, E. & Castellini, C. 2021. "Extensive rearing systems in poultry production: The right chicken for the right farming system. A review of twenty years of scientific research in Perugia University, Italy". Animals, 11(5): 1281, ISSN: 2076-2615. https://doi.org/10.3390/ani11051281.

Dekalb White. Product Guide. 2021. [cited 2022 Feb 5]. Available from: https://www.dekalb-poultry.com/documents/583/Dekalb_White_CS_product_guide_cage_EN_L1211-1.pdf

Dixon, B., Kilonzo-Nthenge, A., Nzomo, M., Bhogoju, S. & Nahashon, S. 2022. "Evaluation of selected bacteria and yeast for probiotic potential in poultry production". Microorganisms, 10(4): 676, ISSN: https://doi.org/10.3390/microorganisms10040676.

Ebeid, T.A., Al-Homidan, I. H. & Fathi, M. M. 2021. "Physiological and immunological benefits of probiotics and their impacts in poultry productivity". World's Poultry Science Journal, 77(4): 883-899, ISSN: 0043-9339. https://doi.org/10.1080/00439339.2021.1960239.

Esteve-Garcia, E., Martinez-Puig, D., Borda, E. & Chetrit C. 2007. Efficacy of a nucleotide preparation in broiler chickens. In Proceedings 16th European Symposium on Poultry Nutrition; 2007; Strasbourg, France. p. 511-14.

Fang, J., Martínez, Y., Deng, C., Zhu, D., Peng, H., Jienag, H. & Li, A. 2017. "Effects of dietary enzymolysis products of wheat gluten on the growth performance, serum biochemical, immune, and antioxidant status of broilers". Food and Agricultural Immunology, 28(6): 1155-1167, ISSN: 0954-0105. https://doi.org/10.1080/09540105.2017.1332009.

Feng, J., Liu, X., Xu, Z. R., Wang, Y. Z. & Liu, J. X. 2007. "Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers". Poultry Science, 86(6): 1149-1154, ISSN: 0032-5791. https://doi.org/10.93/ps/86.6.1149.

Fries-Craft, K., Meyer, M. M. & Bobeck, E. A. 2021. "Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction". Poultry Science, 100(9): 101369, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2021.101369.

García, J., Mandalawi, H. A., Fondevila, G. & Mateos, G. G. 2019. "Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight". Poultry Science, 98(9): 3937-3949, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez129.

Gous, R. M. 2018. "Nutritional and environmental effects on broiler uniformity". World's Poultry Science Journal, 74(1): 21-34, ISSN: 0043-9339. https://doi.org/10.1017/S0043933917001039.

He, S., Yu, Q., He, Y., Hu, R., Xia, S. & He, J. 2019. "Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers". Poultry Science, 98(12): 6378-6387, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez471.

Herrera, S. J. & Moreno, L. P. 2020. Evaluación nutricional del aditivo Mr. Feed® Pro50 Sw en cerdos de engorde desde la etapa de inicio hasta cosecha. [Dissertation]. Tegucigalpa: Zamorano University.

Hou, Y., Wu, Z., Dai, Z., Wang, G. & Wu, G. 2017. "Protein Hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance". Journal of Animal Science and Biotechnology, 8: 24, ISSN: 2049-1891. https://doi.org/10.1186/s40104017-0153-9.

Jacob, J. P. & Pescatore A. J. 2014. "Barley β-glucan in poultry diets". Annals of Translational Medicine 2(2), ISSN: 2305-5839. https://doi.org/10.3978/j.issn.2305-5839.2014.01.02 .

Jung, B. & Batal, A. B. 2012. "Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers". British Poultry Science, 53(1): 98-105, ISSN: 1466-1799. https://doi.org/10.1080/00071668.2012.659654.

Kamel, N. F., Hady, M. M., Ragaa, N. M. & Mohamed, F. F. 2021. "Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density". Livestock Science, 253: 104703, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2021.104703.

Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969.

Landy, N., Kheiri, F. & Faghani, M. 2021. "Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers". Animal Nutrition, 7(1): 134-141, ISSN: 2405-6383. https://doi.org/10.1016/j.aninu.2020.06.008.

Leung, H., Patterson, R., Barta, J., Karrow, N. & Kiarie, E. 2019. "Nucleotide-rich yeast extract fed to broiler chickens challenged with Eimeria: impact on growth performance, jejunal histomorphology, immune system, and apparent retention of dietary components and caloric efficiency". Poultry Science, 98(10): 4375-4383, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez213.

Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.

McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K. & Tran, L. 2020. ";Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge". Aquaculture, 527: 735383, ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735383.

Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.

Nazeer, N., Uribe-Diaz, S., Rodriguez-Lecompte, J.C. & Ahmed, M. 2021. "Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry". British Poultry Science, 62(5): 672-685, ISSN: 0007-1668. https://doi.org/10.1080/00071668.2021.1919993.

Ordoñez, M. F. 2020. Evaluación de la inclusión de MrFeed Pro 50 Ta en dietas para alevines de tilapia (Oreochromis niloticus). (Dissertation). Tegucigalpa: Zamorano University.

Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346.

Ponce, O. M. 2021. Evaluación dietética de MrFeed Pro 10MRC® en el desempeño de terneras Holstein lactantes. (Dissertation). Tegucigalpa: Zamorano University.

Singh, A. K. & Kim, W. K. 2021. "Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities". Animals, 11(1): 181.

Świątkiewicz, S., Arczewska-Włosek, A. & Józefiak, D. 2014. "Immunomodulatory efficacy of yeast cell products in poultry: a current review". World's Poultry Science Journal, 70(1): 57-68, ISSN: 0043-9339. https://doi.org/10.1017/S0043933914000051

Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z. & Lisjak, M. 2021. "Linking abiotic stress, plant metabolites, biostimulants and functional food". Annals of Applied Biology, 178(2): 169-191, ISSN: 1744-7348. https://doi.org/10.1111/aab.12651.

Wang, L. T., Lv, M. J., An, J. Y., Fan, X. H., Dong, M. Z. & Zhang, S. D. 2021. "Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review". Food Function, 12(4): 1432-1451, ISSN: 2042-650X. https://doi.org/10.1039/d0fo02603d.

Wang, Z., Shao, D., Kang, K., Wu, S., Zhong, G., Song, Z. & Shi, S. 2022. "Low protein with high amino acid diets improves the growth performance of yellow feather broilers by improving intestinal health under cyclic heat stress". Journal of Thermal Biology, 105: 103219, ISSN: 0306-4565. https://doi.org/10.1016/j.jtherbio.2022.103219.

Wu, C., Yang, Z., Song, C., Liang, C., Li, H. & Chen, W. 2018. "Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens". Poultry Science, 97(11), 3837-3846, ISSN: 0007-1668. https://doi.org/10.3382/ps/pey268.

Xue, H., Han, J., He, B., Yi, M., Liu, X., Song, H. & Li J. 2021. "Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats". Food & Function, 12(11): 5157-5170, ISSN: 2042-650X. https://doi.org/10.1039/D1FO00356A.

Zuidhof, M. J., Fedorak, M. V., Ouellette, C. A. & Wenger, I. I. 2017. "Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity". Poultry Science, 96(7): 2254-2263, ISSN: 0032-5791. https://doi.org/10.3382/ps/pex013

Cuban Journal of Agricultural Science Vol. 57, January-December 2023, ISSN: 2079-3480
 
Ciencia Animal

Efecto promotor del crecimiento de un ingrediente vegetal procesado en pollitas

 

iDK. D. Coello1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDL. A. Castellanos1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDP. E. Paz2Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

iDM. Valdivié3Centro Nacional para la Producción de Animales de Laboratorio, Santiago de las Vegas, Rancho Boyeros, La Habana, Cuba

iDY. Martínez1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras*✉:ymartinez@zamorano.edu


1Centro de Investigación y Enseñanza Avícola, Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

2Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Honduras

3Centro Nacional para la Producción de Animales de Laboratorio, Santiago de las Vegas, Rancho Boyeros, La Habana, Cuba

 

* Email:ymartinez@zamorano.edu

Un total de 1,500 pollitas Hy-Line W36 de un día de nacidas se aleatorizaron en dos tratamientos, 15 repeticiones y 50 pollitas por repeticiones para evaluar el uso alimentario de un ingrediente vegetal procesado (IVP) como alimento funcional en el comportamiento productivo de las pollitas. Los tratamientos dietéticos consistieron en la inclusión de 10, 8, 5, and 3 % del ingrediente vegetal procesado en el inicio1 (0-3 semanas), inicio 2 (4-6 semanas), crecimiento (7-12 semanas), desarrollo y pre-puesta (13-15; 16-17 semanas, respectivamente). A partir de la tercera semana, el alimento funcional aumentó (P<0.05) el peso corporal de las pollitas en comparación con la dieta control (193.98 vs 204.38 g), sin cambios notables para la viabilidad, uniformidad, y tasa de conversión alimentaria por 17 semanas experimentales (P>0.05). La inclusión dietética con el ingrediente vegetal procesado tuvo un efecto promotor de crecimiento natural en pollitas

Palabras clave: 
peso corporal, inclusión alimentaria, consumo de alimento, alimento funcional, aves

Actualmente, los altos precios de las materias primas para la alimentación de las aves, lo que representa hasta el 75 % del costo de la producción de aves (Dal Bosco 2021Dal Bosco, A., Mattioli, S., Cartoni, A., Cotozzolo, E. & Castellini, C. 2021. "Extensive rearing systems in poultry production: The right chicken for the right farming system. A review of twenty years of scientific research in Perugia University, Italy". Animals, 11(5): 1281, ISSN: 2076-2615. https://doi.org/10.3390/ani11051281.), ha dado lugar a la generación de nuevas ideas para contrarrestar estos problemas actuales. Por lo tanto, una de las estrategias nutricionales es el desarrollo y uso de ingredientes funcionales para mejorar la eficiencia alimentaria en las aves (Fang et al. 2017Fang, J., Martínez, Y., Deng, C., Zhu, D., Peng, H., Jienag, H. & Li, A. 2017. "Effects of dietary enzymolysis products of wheat gluten on the growth performance, serum biochemical, immune, and antioxidant status of broilers". Food and Agricultural Immunology, 28(6): 1155-1167, ISSN: 0954-0105. https://doi.org/10.1080/09540105.2017.1332009. y Fries-Craft et al. 2021Fries-Craft, K., Meyer, M. M. & Bobeck, E. A. 2021. "Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction". Poultry Science, 100(9): 101369, ISSN: 0032-5791. https://doi.org/10.1016/j.psj.2021.101369.). Se conoce que los alimentos funcionales proporcionan uno o más componentes diferenciados para mejorar las funciones fisiológicas del organismo animal (Teklić et al. 2021Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z. & Lisjak, M. 2021. "Linking abiotic stress, plant metabolites, biostimulants and functional food". Annals of Applied Biology, 178(2): 169-191, ISSN: 1744-7348. https://doi.org/10.1111/aab.12651.). Además, la industria avícola tiene gran interés en el uso de productos funcionales, especialmente como una de las estrategias nutricionales para eliminar los antibióticos promotores del crecimiento en estos animales y mejorar la calidad del producto final con un impacto directo en el consumidor moderno (Camacho et al. 2019Camacho, F., Macedo, A. & Malcata, F. 2019. "Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review". Marine Drugs, 17(6): 312, ISSN: 1660-3397. https://doi.org/10.3390/md17060312.). Aunque la mayoría de los estudios están dirigidos a las aves de crecimiento rápido (pollos de engorde), el uso de estos alimentos puede mejorar el comportamiento del crecimiento de las pollitas, principalmente porque estos influyen directamente en el desarrollo del tracto gastrointestinal y en la respuesta inmune (Ayodele et al. 2021Ayodele, A. D., Tayo, G. O., Olumide, M. D., Adeyemi, O. A. & Akanbi, A.S. 2021. "Haematological and serum biochemical responses of pullet chicks fed diets containing single and combined levels of turmeric and clove". Nigerian Journal of Animal Production, 48(3): 71-85, ISSN: 0331-2064. https://doi.org/10.51791/njap.v48i3.2962.).

Mientras muchos alimentos funcionales han sido desarrollados, pocos son derivados de ingredientes vegetales después de un proceso biotecnológico (Wang et al. 2021Wang, L. T., Lv, M. J., An, J. Y., Fan, X. H., Dong, M. Z. & Zhang, S. D. 2021. "Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review". Food Function, 12(4): 1432-1451, ISSN: 2042-650X. https://doi.org/10.1039/d0fo02603d.). El ingrediente vegetal procesado (MrFeed® Pro50 C) es derivado de un proceso biotecnológico sin conservantes artificiales, es altamente digerible y rico en energía metabolizable, proteínas, aminoácidos esenciales, péptidos, nucleótidos, vitaminas, y minerales (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). Para obtener el ingrediente vegetal procesado (MrFeed Pro50® Poultry), tres procesos químicos son aplicados a subproductos orgánicos, conocidos como fermentación, hidrólisis, y oligomerización (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.).

Estudios realizados con el ingrediente vegetal procesado como alimento funcional en la dieta de pollos de engorde, tilapia y camarones encontraron mejor eficiencia alimentaria y salud intestinal, principalmente debido a la concentración de péptidos bioactivos menor que 500 Daltons y ácidos nucleicos, sin embargo, los resultados son inconsistentes en vacas lecheras, terneras y cerdos en crecimiento (McLean et al. 2020McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K. & Tran, L. 2020. ";Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge". Aquaculture, 527: 735383, ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735383., Ordoñez 2020Ordoñez, M. F. 2020. Evaluación de la inclusión de MrFeed Pro 50 Ta en dietas para alevines de tilapia (Oreochromis niloticus). (Dissertation). Tegucigalpa: Zamorano University. , Herrera y Moreno 2020Herrera, S. J. & Moreno, L. P. 2020. Evaluación nutricional del aditivo Mr. Feed® Pro50 Sw en cerdos de engorde desde la etapa de inicio hasta cosecha. [Dissertation]. Tegucigalpa: Zamorano University., Ponce 2021Ponce, O. M. 2021. Evaluación dietética de MrFeed Pro 10MRC® en el desempeño de terneras Holstein lactantes. (Dissertation). Tegucigalpa: Zamorano University. y Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). Por consiguiente, el ingrediente vegetal procesado, debido a su composición química, podría ser utilizado en aves de lento crecimiento para elevar su peso corporal antes de la puesta. Por lo tanto, el objetivo de este estudio fue evaluar el uso alimentario de un ingrediente vegetal procesado como alimento funcional en el comportamiento del crecimiento de pollitas.

Materiales y Métodos

 

Ubicación experimental. El experimento se desarrolló en una nave sin túnel localizada en Poultry Research and Teaching Center of the Pan-American Agricultural School, Zamorano, en el valle de Yegüare, San Antonio de Oriente, departamento Francisco Morazán, ubicado en el kilómetro 30 de la carretera de Tegucigalpa a Danlí, Honduras, coordenadas 1400’9 “N y 86059’31” W, 760 metros sobre el nivel del mar y temperatura media de 26 °C.

Ingrediente vegetal procesado. El ingrediente vegetal procesado (MrFeed® Pro50 C) se suministró por la empresa Menon Renewable Products, Inc. (Escondido, California, USA). Para obtener el ingrediente vegetal procesado, se desarrolló un proceso de fermentación de subproductos mediante un inoculo microbiano para incrementar la concentración de ácido nucleico. Seguido por una hidrolisis enzimática específica considerando el tiempo, temperatura, pH, y enzimas para realizar transformaciones de las propiedades fisicoquímicas, su objetico principal fue la producción de péptidos. El tercer proceso consistió en la oligomerización a través de la catálisis para acelerar el proceso, luego estos fueron agrupados para la producción de las diferentes versiones del ingrediente vegetal procesado (MrFeed® Pro50 C) (Menon Renewable Products, Inc., 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.). De acuerdo con Menon Renewable Products, este ingrediente vegetal procesado (MrFeed® Pro50 C) tiene 51.9 % proteína, 4.47 % lisina, 1.68 % metionina + cistina, 1.82 % treonina, 2.07 % valina y 19.49 MJ/kg de energía metabolizable verdadera (Menon Renewable Products, Inc. 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.).

Animales, diseño experimental, y tratamientos. Un total de 1,500 pollitas Hy-Line W36 de un día de nacidas se aleatorizaron en dos tratamientos, 15 repeticiones y 50 pollitas por repeticiones Los tratamientos alimentarios consistieron en: Inicio 1 (0-3 semanas): control (0 %) y 10 % del ingrediente vegetal procesado (IVP); Inicio 2 (4-6 semanas): control (0 %) y 8 % IVP; Crecimiento (7-12 semanas): control (0 %) y 5 % IVP; Desarrollo (13-15 semanas): control (0 %) y 3 % IVP; Pre-puesta(16-17 semanas): control (0 %) y 3 % IVP según las recomendaciones de Menon Renewable Products, Inc. (2020)Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.. Las dietas experimentales se presentan en la tabla 1.

Table 1.  Ingredients and contributions of basal diets (control treatment) and diets with inclusion levels of a processed vegetable ingredient
Starter 1 Starter 2 Grower Developer Pre-lay
Ingredients (%) Basal diet PVI Basal diet PVI Basal diet PVI Basal diet PVI Basal diet PVI
Corn meal 59.382 61.891 62.566 64.681 61.639 63.818 63.706 64.696 59.252 60.05
Soybean meal 33.706 22.324 28.658 19.687 27.891 20.343 22.482 18.409 24.566 21.098
Wheat bran 00.00 00.00 02.11 01.966 05.168 05.752 08.115 8.335 5.782 05.774
PVI 00.00 10.00 00.00 08.00 00.00 05.00 00.00 3.00 0.00 03.00
Palm oil 02.23 01.69 02.00 01.54 00.00 00.00 00.00 0.00 1.96 01.80
CaCo3 01.69 01.247 01.709 01.355 01.741 01.517 01.772 1.638 5.775 05.643
Molasses 00.00 00.00 00.00 00.00 01.00 01.00 01.50 1.50 0.00 00.00
Biofos 01.658 01.679 01.591 01.608 01.436 01.446 01.306 1.312 01.522 01.529
Sodium chloride 00.268 00.299 00.228 00.277 00.239 00.24 00.237 0.238 00.291 00.292
Sodium bicarbonate 00.248 00.206 00.262 00.198 00.245 00.243 00.28 0.279 00.215 00.213
Premixes 00.23 00.23 00.23 00.23 00.23 00.23 00.23 0.23 00.23 00.23
DL-methionine 00.211 00.161 00.194 00.153 00.164 00.148 00.129 0.118 00.158 00.143
Mycofix plus 5.0 00.15 00.15 00.15 00.15 00.15 00.15 00.15 0.15 00.15 00.15
L- treonine 00.086 00.059 00.106 00.083 00.034 00.049 00.029 0.031 00.035 00.029
L-lysine 00.078 00.00 00.131 00.004 00.00 00.00 00.00 0.00 00.00 00.00
L-tryptophan 00.00 00.00 00.00 00.005 00.00 00.00 00.00 0.00 00.00 00.005
Coccidiostat 00.05 00.05 00.05 00.05 00.05 00.05 00.05 0.05 00.05 00.05
Phytase 00.01 00.01 00.01 00.01 00.01 00.01 00.01 0.01 00.01 00.01
Zn Bacitracin 00.004 00.004 00.004 00.004 00.004 00.004 00.004 0.004 00.004 00.004
Nutritional contributions (%)
ME (MJ/kg) 12.46 12.46 12.46 12.46 12.26 12.26 12.05 12.05 12.05 12.05
Crude protein 20.00 20.00 18.25 18.25 17.50 17.50 16.00 16.00 16.50 16.50
Ca 01.05 01.05 01.00 01.00 00.95 00.95 00.90 0.90 02.50 2.50
Available phosphorus 00.48 00.48 00.47 00.47 00.45 00.45 00.40 0.40 00.43 0.43
Lysine 01.05 01.05 00.98 00.98 00.88 00.88 00.76 0.76 00.78 0.78
Methionine+cystine 00.74 00.74 00.74 00.74 00.67 00.67 00.59 0.59 00.66 0.66
Treonine 00.69 00.69 00.66 00.66 00.60 00.60 00.52 0.52 00.55 0.55

1Each kg contains: vitamin A 11,550 IU, vitamin D3 4,300 IU, vitamin E 27.5 IU, vitamin K3 3.85 mg, vitamin B1 2.75 mg, vitamin B2 9.9 mg, vitamin B6 3.85 mg, vitamin B12 22.0 Mcg, niacin 49.5 mg, pantothenic acid 15.4 mg, folic acid 1.38 mg, biotin 166 Mcg; selenium 0.09 mg, iodine 0.18 mg, copper 3.00 mg, iron 36.0 mg, manganese 54.0 mg, zinc 48.0 mg, cobalt 0.12 mg.

Condiciones experimentales. Las pollitas se alojaron en nave de 400 m2 y jaulas de 1.6 × 3.7 m con ventiladores de techo y sistema de luces artificiales. Cada jaula de 5.92 m2 (1.6 m frente × 3.7 m profundidad), alojó 50 pollitas/corral y 8.78 pollitas/m2. El agua y el alimento se ofrecieron ad libitum en bebederos y comederos tipo campana. Se les proporcionó 16 horas de luz cada día y se usó viruta de madera como cama avícola, además, la temperatura y la humedad relativa dentro de la nave se controlaron. La adaptación pre- experimental a las nuevas dietas fue intencionalmente no utilizada.

Comportamiento del crecimiento. Los indicadores del comportamiento de las pollitas se determinaron semanalmente. La viabilidad se determinó por los animales vivos entre los existentes al inicio del experimento. El peso corporal se midió individualmente en una pesa industrial Mettler Toledo® IND226 con ± 1.00 g de precisión. El consumo de alimento se calculó semanalmente usando el método de oferta y rechazo. Para la tasa de conversión alimentaria por semana, se consideraron el consumo de alimento acumulado y la ganancia de peso. La uniformidad se realizó en el período (0-17 semanas) según el método ±10.

Diseño experimental y análisis estadístico. Los datos se analizaron mediante la prueba Student’s t, según diseño completamente aleotorizado. Anteriormente, la normalidad de los datos se verificó mediante la prueba Kolmogorov-Smirnov y la uniformidad de la varianza por la prueba de Bartlett. La viabilidad se determinó por la comparación de proporciones. Se utilizó la versión estadística 23.0.1.2014 de IBM® SPSS®.

Resultados y Discusión

 

La tabla 2 muestra los efectos del IVP como parte de la dieta en el comportamiento productivo de las pollitas ponedoras de reemplazo Hy-Line W36 hasta las 17 semanas. En las dos primeras semanas, no se encontraron diferencias significativas entre los tratamientos (P>0.05). Sin embargo, a partir de la tercera semana, aumentó el peso corporal (P<0.05) debido a las dietas con el IVP, aunque con cambios no notables en el consumo de alimento y la viabilidad (P>0.05).

Table 2.  Effect of the inclusion in the diet of a processed vegetable ingredient on the growth of pullets in the starter 1 phase (1-3 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 1
Initial body weight (g) 35.02 34.95 0.197 0.813
Final body weight (g) 74.13 75.89 0.754 0.113
Feed intake (g) 95.32 95.70 1.910 0.888
Viability (%) 99.33 99.42 0.335 0.862
Feed conversion ratio 2.44 2.34 0.048 0.059
Week 2
Body weight (g) 115.51 115.08 0.570 0.596
Feed intake (g) 96.08 99.27 1.750 0.211
Viability (%) 98.92 98.50 0.584 0.619
Feed conversion ratio 2.32 2.53 0.079 0.052
Week 3
Body weight (g) 193.98 204.38 2.293 0.004
Feed intake (g) 226.46 216.92 6.060 0.278
Viability (%) 99.67 99.42 0.272 0.523
Feed conversion ratio 2.89 2.42 0.091 0.038

Se conoce que la primera semana de edad de las pollitas ponedoras es la etapa más crítica ya que fisiológicamente ellas no pueden regular su temperatura corporal y tienen un sistema digestivo inmaduro e inmune, por lo que la viabilidad (99.33 a 99.42 %) fue excelente en este experimento. Además, estos resultados concuerdan con Jung y Batal (2012)Jung, B. & Batal, A. B. 2012. "Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers". British Poultry Science, 53(1): 98-105, ISSN: 1466-1799. https://doi.org/10.1080/00071668.2012.659654. quienes no encontraron cambios significativos en el consumo de alimento al emplear dietas nucleótidas en los primeros 10 días de edad. El IVP no parece causar algún daño al usar hasta 10 % de inclusión en las dietas. Otros estudios con ingrediente vegetal procesado en pollos de engorde, cerdos, tilapia, camarones, y vacas lecheras reportaron resultados similares en la viabilidad (McLean et al. 2020McLean, E., Barrows, F. T., Craig, S. R., Alfrey, K. & Tran, L. 2020. ";Complete replacement of fishmeal by soybean and poultry meals in Pacific whiteleg shrimp feeds: Growth and tolerance to EMS/AHPND and WSSV challenge". Aquaculture, 527: 735383, ISSN: 0044-8486. https://doi.org/10.1016/j.aquaculture.2020.735383., Herrera y Moreno 2020Herrera, S. J. & Moreno, L. P. 2020. Evaluación nutricional del aditivo Mr. Feed® Pro50 Sw en cerdos de engorde desde la etapa de inicio hasta cosecha. [Dissertation]. Tegucigalpa: Zamorano University., Ponce 2021Ponce, O. M. 2021. Evaluación dietética de MrFeed Pro 10MRC® en el desempeño de terneras Holstein lactantes. (Dissertation). Tegucigalpa: Zamorano University. y Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.).

A partir de la tercera semana este producto funcional (IVP) incrementa el peso corporal de las pollitas (tabla 2), lo que podría justificar su utilización en la alimentación de las aves en todas las escalas de producción. Este ingrediente vegetal procesado tiene 4800 mg/kg de nucleotides, los más cuantificados monofosfato ciclíco de adenosina (AMPs), monofosfato ciclíco de guanosina (GMP) y difosfato de uridina (UDP) (Menon Renewable Products, Inc., 2020Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/.). Los efectos positivos observados con el IVP pudieran ser porque los nucleótidos participan en la rápida proliferación de la célula y en la actividad antioxidante del organismo, especialmente en pollitas jóvenes debido a los factores del estrés que afectan a los animales (Świątkiewicz et al. 2014Świątkiewicz, S., Arczewska-Włosek, A. & Józefiak, D. 2014. "Immunomodulatory efficacy of yeast cell products in poultry: a current review". World's Poultry Science Journal, 70(1): 57-68, ISSN: 0043-9339. https://doi.org/10.1017/S0043933914000051 ). En este sentido, Esteve-García et al. (2007)Esteve-Garcia, E., Martinez-Puig, D., Borda, E. & Chetrit C. 2007. Efficacy of a nucleotide preparation in broiler chickens. In Proceedings 16th European Symposium on Poultry Nutrition; 2007; Strasbourg, France. p. 511-14. encontraron mejor respuesta productiva en la tercera semana (21 días) de vida de los pollos de engorde al utilizar una dieta basada en nucleótidos como aditivos (500 mg/kg). Sin embargo, estos autores no encontraron una eficacia productiva al usar hasta 1 g/kg, lo que demuestra que un exceso de nucleótidos pude tener un efecto negativo.

Del mismo modo, Nazeer et al. (2021)Nazeer, N., Uribe-Diaz, S., Rodriguez-Lecompte, J.C. & Ahmed, M. 2021. "Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry". British Poultry Science, 62(5): 672-685, ISSN: 0007-1668. https://doi.org/10.1080/00071668.2021.1919993. reportaron que los péptidos tienen actividades antimicrobianas e inmunomodulatorias en el tracto gastrointestinal (GI) de las aves. De acuerdo con Menon Renewable Products, Inc. (2020)Menon. Renewable Products: “MrFeed® Pro50 C”. 2020. [cited 2021 June 15]. Available from: http://menon.us/mrfeed-pro50c/. este ingrediente vegetal procesado muestra que del total de péptidos cuantificados, el 48 % tiene bajo peso molecular entre 25 a 30 kDA más que la harina de soya y la harina de pescado. Aunque hay contradicciones si el peso molecular de péptidos tiene influencia directa en la salud del intestino, esto parece estar asociado además con el tipo de péptidos en la dieta de las aves. Por tanto, los productos alimenticios ricos en beta “defensin” como bajo peso molecular de péptidos microbianos en la dieta de las aves han demostrado elevar el sistema inmune, siendo expresadas en leucocitos y células epiteliales (Jacob y Pescatore 2014Jacob, J. P. & Pescatore A. J. 2014. "Barley β-glucan in poultry diets". Annals of Translational Medicine 2(2), ISSN: 2305-5839. https://doi.org/10.3978/j.issn.2305-5839.2014.01.02 .). Además, se necesitan más estudios para entender la concentración exacta de nucleótidos y péptidos en la dieta, pero parece que el IVP estimula las mayores concentraciones de este en las dietas. Estos resultados pudieran ser el punto de partida para entender el papel de los nucleótidos en los alimentos y su contribución a las dietas.

La tabla 3 muestra el efecto del IVP en el comportamiento de las pollitas ponedoras en el inicio de la fase 2. El peso corporal mejoró (P<0.05) con el uso del alimento funcional (IVP), además este producto disminuye la conversión alimenticia en la semanas 4 y 5, sin cambios en el consumo de alimento y en la viabilidad (P>0.05).

Table 3.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the starter 2 phase (4-6 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 4
Body weight (g) 252.34 279.37 2.956 <0.001
Feed intake (g) 226.63 219.62 8.277 0.556
Viability (%) 99.17 97.92 0.775 0.266
Feed conversion ratio 3.88 2.93 0.128 0.008
Week 5
Body weight (g) 324.23 365.89 1.689 <0.001
Feed intake (g) 204.66 217.67 8.499 0.291
Viability (%) 99.50 99.42 0.325 0.858
Feed conversion ratio 2.85 2.52 0.112 0.052
Week 6
Body weight (g) 373.27 401.95 5.150 0.001
Feed intake (g) 298.71 298.75 11.302 0.708
Viability (%) 99.42 98.08 0.818 0.359
Feed conversion ratio 6.09 8.28 0.524 0.050

El peso vivo de las pollitas aumentó en 27 y 28 g en las semanas 4-5 con el IVP en las dietas, respectivamente. Se debe resaltar que las pollitas tienen un peso similar a lo reportado por las líneas genéticas, excepto en la semana 6 en que las pollitas del grupo control tenían 93.02 % del peso normal. Otros autores como Karimzadeh et al. (2016)Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. encontraron un incremento en el peso vivo en pollos de engorde al utilizar dietas con péptidos para el período de 29-42 días. Además Jung y Batal (2012)Jung, B. & Batal, A. B. 2012. "Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers". British Poultry Science, 53(1): 98-105, ISSN: 1466-1799. https://doi.org/10.1080/00071668.2012.659654. reportaron que las dietas basadas en nucleótidos aceleran la ganancia de peso en comparación con la dieta control. Wu et al. (2018)Wu, C., Yang, Z., Song, C., Liang, C., Li, H. & Chen, W. 2018. "Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific pathogen-free chickens". Poultry Science, 97(11), 3837-3846, ISSN: 0007-1668. https://doi.org/10.3382/ps/pey268. encontraron que la inclusión dietética con nucleótidos aumenta la altura de las vellosidades del tracto gastrointestinal, el cual mejora la salud intestinal. Según Wang et al. (2022)Wang, Z., Shao, D., Kang, K., Wu, S., Zhong, G., Song, Z. & Shi, S. 2022. "Low protein with high amino acid diets improves the growth performance of yellow feather broilers by improving intestinal health under cyclic heat stress". Journal of Thermal Biology, 105: 103219, ISSN: 0306-4565. https://doi.org/10.1016/j.jtherbio.2022.103219. el rápido desarrollo de la mucosa intestinal aumenta la altura de las vellosidades, el cual mejora el uso de nutrientes desde edades tempranas y a su vez el desarrollo y el crecimiento.

En un estudio en pollos de engorde, este IVP cambió marcadamente la altura de las vellosidades (AV) y la profundidad de la cripta (PC), con relación a la dieta principal. Además, en el duodeno y en el íleon, este tratamiento alternativo (IVP) aumentó la proporción AV: PC (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). La proporción vellosidades y criptas es de utilidad para estimar la digestión de nutrientes y la capacidad absorbente del intestino delgado, una alta proporción vellosidades/criptas se traduce en una mayor eficiencia en el proceso digestivo (Singh y Kim 2021Singh, A. K. & Kim, W. K. 2021. "Effects of dietary fiber on nutrients utilization and gut health of poultry: a review of challenges and opportunities". Animals, 11(1): 181.). En este sentido, Ebeid et al. (2021)Ebeid, T.A., Al-Homidan, I. H. & Fathi, M. M. 2021. "Physiological and immunological benefits of probiotics and their impacts in poultry productivity". World's Poultry Science Journal, 77(4): 883-899, ISSN: 0043-9339. https://doi.org/10.1080/00439339.2021.1960239. reportaron que la morfología de la cripta y las vellosidades está asociada con la salud intestinal y el desarrollo en los animales. Autores como Dixon et al. (2022)Dixon, B., Kilonzo-Nthenge, A., Nzomo, M., Bhogoju, S. & Nahashon, S. 2022. "Evaluation of selected bacteria and yeast for probiotic potential in poultry production". Microorganisms, 10(4): 676, ISSN: https://doi.org/10.3390/microorganisms10040676. informaron una relación directa entre la altura de las vellosidades y la absorción de nutrientes, lo que aumenta el crecimiento, este efecto parece haber ocurrido en este, sin embargo se necesitan futuras investigaciones para justificar esta hipótesis.

La inclusión dietética con el IVP aumenta (P>0.05) el peso corporal de las pollitas ponedoras en la fase productiva del crecimiento (7-12 semanas), no obstante, en la semana 12, este producto funcional (IVP) aumentó la tasa de conversión alimentaria (P<0.05). Los otros indicadores no cambiaron debido al efecto de las dietas experimentales (tabla 4).

Table 4.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the grower phase (7-12 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 7
Body weight (g) 470.96 503.19 5.699 0.001
Feed intake (g) 309.93 319.02 20.858 0.761
Viability (%) 100.00 100.00
Feed conversion ratio 3.17 3.15 0.018 0.083
Week 8
Body weight (g) 571.68 602.98 6.725 0.003
Feed intake (g) 518.80 502.04 10.105 0.253
Viability (%) 99.17 98.83 0.582 0.689
Feed conversion ratio 5.15 5.03 0.048 0.058
Week 9
Body weight (g) 646.94 681.54 6.721 0.001
Feed intake (g) 560.14 558.40 19.033 0.949
Viability (%) 98.17 98.75 0.769 0.597
Feed conversion ratio 7.44 7.11 0.134 0.062
Week 10
Body weight (g) 711.98 746.47 5.600 0.001
Feed intake (g) 498.35 502.72 10.930 0.780
Viability (%) 99.50 99.50 0.261 0.999
Feed conversion ratio 7.66 7.74 0.038 0.071
Week 11
Body weight (g) 805.72 844.72 7.098 0.001
Feed intake (g) 567.73 613.20 18.083 0.089
Viability (%) 99.50 98.92 0.337 0.233
Feed conversion ratio 6.06 6.24 0.079 0.086
Week 12
Body weight (g) 870.27 905.75 9.176 0.012
Feed intake (g) 559.47 580.52 15.691 0.353
Viability (%) 99.42 99.75 0.283 0.414
Feed conversion ratio 8.67 9.51 0.249 0.048

También, en la semana 7 se observó que el peso corporal aumentó con la inclusión dietética con IVP en 7.02 %, y estas pollitas tienen un peso corporal similar como recomienda la línea genética. En la semana 8, el uso del IVP marcó diferencia en el peso corporal en relación con el control en 31.3 g. García et al. (2019)García, J., Mandalawi, H. A., Fondevila, G. & Mateos, G. G. 2019. "Influence of beak trimming and inclusion of sodium butyrate in the diet on growth performance and digestive tract traits of brown-egg pullets differing in initial body weight". Poultry Science, 98(9): 3937-3949, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez129. informaron que las pollitas tienen alta tasa de crecimiento que está relacionada con el temprano y rápido desarrollo del tracto gastrointestinal, por lo tanto el uso de nucleótidos y péptidos puede aumentar la salud intestinal y la absorción de nutrientes en las pollitas (Abdollahi et al. 2017Abdollahi, M.R., Zaefarian, F., Gu, Y., Xiao, W., Jia, J. & Ravindran, V. 2017. "Influence of soybean bioactive peptides on growth performance, nutrient utilization, digestive tract development and intestinal histology in broilers". Journal of Applied Animal Nutrition, 5(4): 1-7, ISSN: 1745-039X. https://doi.org/10.1017/JAN.2017.6.). Además, Martínez (2021)Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México. encontró que la inclusión con 5 % del IVP (0 a 10 días de nacidos) para pollos de engorde estimula un mayor desarrollo de la bolsa de Fabricio y el bazo, lo que podría mostrar una estimulación de la inmunidad (He et al. 2019He, S., Yu, Q., He, Y., Hu, R., Xia, S. & He, J. 2019. "Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers". Poultry Science, 98(12): 6378-6387, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez471.).

En las semanas 9 y 10, se encontró que el IVP modificó el peso vivo 4.84 % en relación con la dieta control (tabla 4). Aunque no se observaron diferencias entre tratamientos para el consumo de alimento y la viabilidad (tabla 4). En la semana 11, se encontró que el uso alimentario del IVP aumentó el peso vivo de las pollitas en 39 g, con 97.01 % del peso corporal correspondiente al peso estándar. Estos resultados confirman que las dietas basadas en péptidos aumentan una adecuada ganancia de peso, digestibilidad de nutrientes y absorción. Estudios realizados por Karimzadeh et al. (2016)Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. y Osho et al. (2019)Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346. encontraron que el uso de 200 y 250 mg/kg de péctidos bioactivos en dietas para las aves disminuye el conteo de bacterias gram negativas en el íleon y el intestino ciego comparado con el grupo control, así como mejora la digestibilidad de nutrientes alimenticios. Además, Feng et al. (2007Feng, J., Liu, X., Xu, Z. R., Wang, Y. Z. & Liu, J. X. 2007. "Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers". Poultry Science, 86(6): 1149-1154, ISSN: 0032-5791. https://doi.org/10.93/ps/86.6.1149.) y Landy et al. (2021)Landy, N., Kheiri, F. & Faghani, M. 2021. "Effects of periodical application of bioactive peptides derived from cottonseed on performance, immunity, total antioxidant activity of serum and intestinal development of broilers". Animal Nutrition, 7(1): 134-141, ISSN: 2405-6383. https://doi.org/10.1016/j.aninu.2020.06.008. encontraron que el incremento del crecimiento en las pollitas puede ser debido a la alta actividad enzimática en el intestino por la suplementación de péptidos en la ración.

En la semana 12 se observó 35.48 g como la diferencia encontrada entre los tratamientos para estas pollitas cuando el IVP se usó como alimento funcional, las pollitas tenían 95.26 % del peso ideal de la línea. Al parecer, el incremento de la conversión alimenticia con el IVP fue debido al incremento no significativo en el consumo de alimento con este producto natural (IVP), aún cuando el IVP aumentó el peso vivo (35.48 g). En este sentido, Osho et al. (2019) Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346. encontraron un incremento en ganancia:alimento al usar dietas con péptidos en pollos de engorde.

Al igual que otros resultados, la tabla 5 muestra que el IVP modifica el peso vivo de las pollitas (P<0.05), además, en las semanas 14 y 15 este aumentó el consumo de alimento (P<0.05) y la conversión alimentaria varió entre los tratamientos (P<0.05).

Table 5.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the development phase (13-15 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 13
Body weight (g) 967.05 1019.48 8.230 <0.001
Feed intake (g) 565.97 583.48 15.919 0.445
Viability (%) 99.08 99.25 0.332 0.726
Feed conversion ratio 5.85 5.13 0.159 0.038
Week 14
Body weight (g) 1034.00 1066.38 8.535 0.015
Feed intake (g) 566.56 587.49 2.584 <0.001
Viability (%) 98.00 99.17 0.589 0.175
Feed conversion ratio 8.46 12.53 1.038 0.008
Week 15
Body weight (g) 1109.09 1148.67 9.945 0.010
Feed intake (g) 565.98 582.66 2.401 <0.001
Viability (%) 99.25 98.92 0.541 0.667
Feed conversion ratio 7.54 7.08 0.131 0.048

En la semana 13, el IVP aumentó el peso vivo 52.43 g en correspondencia con el control. Así como, las pollitas tienen un peso vivo como el de la línea genética para la semana 13. En la semana 14, el peso corporal y el consumo de alimento fueron los más altos para el grupo con el IVP en 32 g y 20.93 g, respectivamente. Las pollitas tuvieron 97.80 % del peso ideal de la línea para la semana 14. Se conoce que el IVP tiene un perfil de péptidos menor que 500 Dalton (Martínez 2021Martínez, Y. 2021. Efecto de la inclusión de la dieta de un ingrediente vegetal procesado en el desempeño productivo, características de la canal, peso de los órganos inmunes e integridad intestinal de pollos de engorde. In: XLV Convención Virtual ANECA, Ciudad de México, México.). Según Hou et al. (2017)Hou, Y., Wu, Z., Dai, Z., Wang, G. & Wu, G. 2017. "Protein Hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance". Journal of Animal Science and Biotechnology, 8: 24, ISSN: 2049-1891. https://doi.org/10.1186/s40104017-0153-9. una cantidad pequeña de péptidos provoca resultados positivos en el crecimiento y la salud intestinal debido a una mejor absorción comparado con otros amino ácidos libres. No obstante, Xue et al. (2021)Xue, H., Han, J., He, B., Yi, M., Liu, X., Song, H. & Li J. 2021. "Bioactive peptide release and the absorption tracking of casein in the gastrointestinal digestion of rats". Food & Function, 12(11): 5157-5170, ISSN: 2042-650X. https://doi.org/10.1039/D1FO00356A. indicaron que pequeños péptidos aumenta el número y tamaño de las vellosidades en el intestino delgado comparado con otras proteínas totales.

Esto coincide con el estudio donde las moléculas de los péptidos del IVP son pequeñas, lo que confirma que estas pueden estar involucradas en la salud intestinal y la absorción de nutrientes. En la semana 15, 39.58 g y 16.68 g fueron las diferencias encontradas para el peso corporal y el consumo de alimento, respectivamente, en el grupo de las pollitas que consumieron IVP. Las pollitas tuvieron 99.83 % del peso estándar de la línea para la semana 15. La conversión alimentaria varió dependiendo de la estimulación del consumo y la ganancia de peso en cada semana productiva. El IVP provocó mayor conversión alimenticia en la semana 14, esto fue porque la ganancia de peso en relación al control fue más baja que en la semana anterior (32.38 vs 52.43 g) y el consumo de alimento mantuvo la misma tendencia.

En la fase de pre-puesta, el uso del IVP mejoró (P<0.05) el peso vivo de las pollitas en la semanas 16 y 17. Además, en la semana 16, el grupo con el IVP disminuyó la conversión alimentaria (P<0.05) y los otros indicadores no cambiaron debido al efecto de las dietas (P>0.05).En el período de 1-17 semanas, el IVP mejoró el consumo de alimento (P<0.05), aunque sin cambios (P>0.05) en la conversión alimentaria y la viabilidad (tabla 6).

Table 6.  Effect of dietary inclusion with a processed vegetable ingredient on growth performance of pullets in the pre-lay phase (13-15 weeks)
Items Experimental treatments SEM± P-value
Control Processed vegetable ingredient
Week 16
Body weight (g) 1125.05 1165.16 5.427 0.021
Feed intake (g) 532.53 513.75 16.245 0.422
Viability (%) 99.83 99.83
Feed conversion ratio 33.67 31.16 5.965 0.002
Week 17
Body weight (g) 1162.65 1214.44 7.132 <0.001
Feed intake (g) 485.78 497.10 19.428 0.684
Viability (%) 100.00 100.00
Feed conversion ratio 12.92 10.09 0.276 0.089
Week 1-17
Feed intake (g) 6879.10 7639.75 21.528 0.050
Viability (%) 99.30 99.14 0.084 0.860
Feed conversion ratio 6.10 6.48 0.136 0.058
Uniformity (%)* 89.90 90.42 0.357 0.089

*According to method±10

En la semana 16, se observó que el IVP mejoró el peso vivo de las pollitas en 40 g. Las pollitas están en el 97.90 % del peso estándar de la línea para la semana 16. En la semana 17 se observó que el IVP mejoró el peso vivo de las pollitas en 51.79 g. Las pollitas tienen 98.70 % del peso estándar de la línea para esta semana y la conversión alimenticia no aumentó estadísticamente. Por consiguiente, se conoce que las pollitas pueden estar sujetas a diferentes stress, especialmente cuando las condiciones de producción no son óptimas, las cuales afectan directamente la respuesta productiva y la viabilidad. Kamel et al. (2021)Kamel, N. F., Hady, M. M., Ragaa, N. M. & Mohamed, F. F. 2021. "Effect of nucleotides on growth performance, gut health, and some immunological parameters of broiler chicken exposed to high stocking density". Livestock Science, 253: 104703, ISSN: 1871-1413. https://doi.org/10.1016/j.livsci.2021.104703. aseguran que las condiciones estresantes pueden mejorar el efecto de los nucleótidos en la morfología intestinal.

En este sentido, Leung et al. (2019)Leung, H., Patterson, R., Barta, J., Karrow, N. & Kiarie, E. 2019. "Nucleotide-rich yeast extract fed to broiler chickens challenged with Eimeria: impact on growth performance, jejunal histomorphology, immune system, and apparent retention of dietary components and caloric efficiency". Poultry Science, 98(10): 4375-4383, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez213. informaron mejores resultados con el uso de nucleótidos en pollitas sujetas a Eimeria spp. Se debe dar a conocer que aunque las condiciones de producción sean óptimas, este nuevo producto alimenticio provoca un efecto funcional debido al aumento del crecimiento.

Globalmente (1-17 semanas), se observó que a pesar de que el uso del IVP causó estimulación del consumo de las aves, la eficiencia alimentaria fue similar en ambos grupos, porque el peso vivo aumentó en 4.08 % comparado con el control. Aunque hay pocos estudios que evalúan alimentos ricos en péptidos en pollitas, otros estudios en aves de rápido crecimiento muestran resultados similares (Feng et al. 2007Feng, J., Liu, X., Xu, Z. R., Wang, Y. Z. & Liu, J. X. 2007. "Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers". Poultry Science, 86(6): 1149-1154, ISSN: 0032-5791. https://doi.org/10.93/ps/86.6.1149., Karimzadeh et al. 2016Karimzadeh, S., Rezaei, M. & Teimouri-Yansari, A. 2016. "Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens". Poultry Science Journal, 4(1): 27-36, ISSN: https://doi.org/10.22069/PSJ.2016.2969. y Osho et al. 2019Osho, S. O., Xiao, W. W. & Adeola, O. 2019. "Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge". Poultry Science, 98(11): 5669-5678, ISSN: 0032-5791. https://doi.org/10.3382/ps/pez346.). Por lo tanto, el IVP se puede considerar como una alternativa para antibióticos subterapéuticos, aunque se necesitan futuros estudios para confirmar esta hipótesis.

Por otro lado, Zuidhof et al. (2017)Zuidhof, M. J., Fedorak, M. V., Ouellette, C. A. & Wenger, I. I. 2017. "Precision feeding: Innovative management of broiler breeder feed intake and flock uniformity". Poultry Science, 96(7): 2254-2263, ISSN: 0032-5791. https://doi.org/10.3382/ps/pex013 mencionaron que una multitud heterogénea puede causar retraso en el inicio de la puesta, baja producción de huevo y variabilidad en el peso del huevo. En este sentido, el uso del IVP no disminuyó el desarrollo homogéneo de la masa avícola, lo cual puede favorecer la sincronización de la llegada a la madurez sexual con la producción de huevo. Es importante señalar que Gous (2018)Gous, R. M. 2018. "Nutritional and environmental effects on broiler uniformity". World's Poultry Science Journal, 74(1): 21-34, ISSN: 0043-9339. https://doi.org/10.1017/S0043933917001039. refiere que una buena homogeneidad es mayor que 80 %, según la tabla 2, los resultados demuestran altos porcentajes de acuerdo al método ±10 (89.90 vs 90.42 %).

Conclusiones

 

La inclusión dietética con el ingrediente vegetal procesado (MrFeed® Pro50 C) promueve naturalmente el crecimiento de las pollitas a partir de la tercera semana, sin cambios en la viabilidad, uniformidad, consumo de alimento y la conversión alimentaria en el período de 0 a 17 semanas.