Cuban Journal of Agricultural Science Vol. 56, No. 2, April-June, 2022, ISSN: 2079-3480
Código QR
CU-ID: https://cu-id.com/1996/v56n2e06
Review Article

Rhizobacteria and their contribution to plant tolerance to drought and salinity

 

iDC. J. Bécquer Granados*✉:cjbecquerg@gmail.com


Instituto de Investigaciones de Pastos y Forrajes, Estación Experimental Sancti Spíritus, Apdo. 2228, Sancti Spíritus, Cuba

 

*Email:cjbecquerg@gmail.com

ABSTRACT

The positive effect of plant growth promoting rhizobacteria on plants that are subjected to environmental stress has been studied for decades. This review fundamentally deals with aspects related to the theoretical basis of the physiological-biochemical mechanism of these microorganisms, and that have to do with tolerance to drought and salinity by plants, which includes the production of phytohormones, enzymes and osmolytes, among others. Information is also compiled about the progress made on this subject in recent years, in the world and in Cuba, especially in relation to cereals, legumes and grasses. It is considered that water stress, as well as saline stress, limits the growth and productivity of crops, but the use of microbial inoculants highlighted among the ways that exist to reverse the consequences of these stressful environmental factors. Proven results are cited with the application of bioinoculants from rhizobacteria and other beneficial microorganisms that show their usefulness, by increasing the productivity of different crops, under drought and salinity stress conditions. Future researches are needed to develop and apply novel bioinoculants in agriculture so that the threats of drought and salinity can be counteracted. This objective can be achieved through the applied study of plant-microorganism interactions, under environmental stress conditions.

Key words: 
rhizobacteria, grasses, tolerance, productivity

Received: 29/6/2021; Accepted: 29/4/2022

Author’s contribution: Carlos J. Bécquer Granados: Conceptualization, Research, Writing- original draft

CONTENT

Introduction

 

Drought-induced water stress is known to limit crop growth and productivity (Nakashima and Yamaguchi-Shinozaki 2013Nakashima, K. & Yamaguchi-Shinozaki, K. 2013. “ABA signaling in stress-response and seed development”. Plant Cell Reports, 32: 959-970, ISSN:. 1432-203X. https://doi.org/10.1007/s00299-013-1418-1.), and the most important environmental stress affecting agriculture. Prolonged water stress decreases the water potential of leaves, their size and opening of the stomata, stops root growth, reduces the number of seeds, their size and viability, delays flowering and fruiting and limits the plant growth and its productivity (Osakabe et al. 2014Osakabe, Y., Osakabe, K., Shinozaki, K. &Tran, L.-S. P. 2014. “Response of plants to water stress”. Frontiers in Plant Science, 5: 86, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00086. and Xu et al. 2016Xu, Z., Jiang, Y., Jia, B. & Zhou, G. 2016. “Elevated-CO2 response of stomata and its dependence on environmental factors”. Frontiers in Plant Science, 7: 657, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2016.00657. ).

The excessive presence of salts in the soil is another of the major factors responsible for the reduction of plant growth and the productivity of crops throughout the planet. Salinity creates an osmotic stress, which can be considered as a physiological drought; however, higher salt accumulation can cause ionic toxicity, which induces leaves senescence (Munns and Tester 2008Munns, R. & Tester, M. 2008. “Mechanisms of Salinity Tolerance”. Annual Review of Plant Biology, 59(1): 651-681, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.59.032607.092911. ). Some of the effects of water stress caused by drought in plants can also be found under salt stress conditions.

The problem of saline soils is frequent in arid and semi-arid zones, due to the irrational use of chemical fertilizers and the inappropriate use of irrigation systems (Bharti et al. 2013Bharti, N., Yadav, D., Barnawal, D., Maji, D. & Kalra, A. 2013. "Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress". World Journal of Microbiology and Biotechnology, 29: 379-387, ISSN: 1573-0972. https://doi.org/10.1007/s11274-012-1192-1. ), so both types of stress are highly correlated. . This type of environmental stress has turned agronomically useful land into unproductive land, and reaches an impact of 20 % in the world (Liu et al. 2020Liu, X., Ji, C., Tian, H., Wang, X., Hao, L., Wang, C., Zhou, Y., Xu, R., Song, X., Liu, Y., Du, J. & Liu, X. 2020. “Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in Wheat (Triticum aestivum)”. Research Square,https://doi.org/10.21203/rs.3.rs-19695/v1. ).

According to Saikia et al. (2018)Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K. & Saikia, R. 2018. “Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India”. Available: https://www.nature.com/scientificreports , in addition to the classical or transgenic hybridization approaches in plant species, the application of plant growth promoting rhizobacteria (PGPR) is an alternative strategy to improve plant health under stressful environmental conditions. Glick (2016)Glick, B. 2016. Alleviating plant stress using bacteria. III Taller Latinoamericano de PGPR. Pucón, Chile. p. 13. stated that PGPRs not only directly promote plant growth, but also protect plants against a wide range of abiotic stresses, including drought and salinity.

In this material, a set of conceptual elements will be analyzed first. Then, some research results about the beneficial effect of PGPR on crops, under stress conditions due to drought and salinity, will be deal with.

The objective of this review is to synthesize knowledge about the effect of drought and salinity on crops. Research results on this subject are showed, with emphasis on cereals, legumes and grasses, as well as on the use of PGPR. Some achievements in this line of research in the international arena and in Cuba are also showed.

Conceptual elements: effect of drought on plants

 

Drought stress is considered the most damaging abiotic stress for crop productivity (Mir et al. 2012Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R. & Varshney, R.K. 2012. “Integrated genomics: physiology and breeding approaches for improving drought tolerance in crops”. Theor. Appl. Genet. 125: 625-645. https://doi.org/10.1007/s00122-012-1904-9. ). Water stress caused by drought increases the production of reactive oxygen species (ROS), which can cause damage to cellular structures, as well as oxidative stress. Oxidative molecules initially damage chloroplasts and cause deleterious effects, including chlorophyll destruction, lipid peroxidation, and protein loss (Zhang and Kirkham 1994Zhang, J.X. & Kirkham, M.B. 1994. “Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species”. Plant and Cell Physiology, 35(5): 785-791, ISSN: 1471-9053. https://doi.org/10.1093/oxfordjournals.pcp.a078658. ). The generation of ROS, such as hydrogen peroxide (H2O2), is one of the earliest biochemical responses to stress and helps trigger subsequent defense reactions in plants (Apel and Hirt 2004Apel, K. & Hirt, H. 2004: “Reactive oxygen species: metabolism, oxidative stress, and signal transduction”. Annual Review of Plant Biology, 55: 373-399, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.55.031903.141701. ). According to Noctor et al. (2014)Noctor, G., Mhamdi, A. & Foyer, C.H. 2014: “The roles of reactive oxygen metabolism in drought: not so cut and dried”. Plant Physiology, 164: 1636-1648, ISSN: 1532-2548. https://doi.org/10.1104/pp.113.233478. , maintaining the balance of ROS production and extraction is crucial for drought tolerance. Enzymatic and non-enzymatic defense systems reduce the damaging effects of these compounds. The enzyme defense system includes superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase, monodihydroascorbate reductase, and dihydroascorbate reductase (Munns and Tester 2008Munns, R. & Tester, M. 2008. “Mechanisms of Salinity Tolerance”. Annual Review of Plant Biology, 59(1): 651-681, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.59.032607.092911. ).

One of the mechanisms that plants develop to counteract the effect of drought stress is the accumulation of osmolytes or osmoprotectors (Anjum et al. 2017Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I. & Wang, L.C. 2017. “Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids”. Frontiers in Plant Science, 8: 69, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00069. and Tarveer et al. 2019Tanveer, M., Shahzad, B., Sharma, A. & Khan, E.A. 2019. “24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants”. Plant Physiology and Biochemistry, 135: 295-303, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2018.12.013. ). A variety of osmotically active molecules (sugars, proline, glycine betaine, and organic acids) are accumulated to balance water relations during drought stress. The amino acid proline is the key osmolyte, which acts as a protector of enzymes and the cell membrane. This well-known osmoprotector promotes plant protection against drought, salinity and other types of stress (Peng et al. 2008Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X. & Wang, D.L. 2008. “Eco-physiological characteristics of Alfalfa seedlings in response to various mixed salt-alkaline stresses”. Journal of Integrative Plant Biology, 50(1): 29-39, ISSN: 1744-7909. https://doi.org/10.1111/j.1744-7909.2007.00607.x. ). According to Szabados and Savoure (2010)Szabados, L. & Savoure, A. 2010. “Proline: a multifunctional amino acid”. Trends in Plant Science, 15(2): 89-97, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.009. , the increase in proline levels can be attributed to the increase in synthesis and decrease in degradation under conditions of saline or water stress. Rezayian et al. (2018) observed that the content of H2O2 and proline is increased in rapeseed plants subjected to water stress, compared to the control. The increase of this amino acid under water stress conditions helps the plant through osmotic fits.

Abscisic acid (ABA) is important in many physiological processes in plants. This hormone is necessary for the regulation of various events during the last stage of seminal development, and it is crucial for the response to environmental stress (dryness, salinity and cold). Likewise, it controls plant growth and inhibits root elongation (Pilet and Chanson 1981Pilet, P.E. & Chanson, A. 1981. “Effect of abscisic acid on maize root growth: a critical examination”. Plant Science Letters, 21(2): 99-106, ISSN: 0304-4211. https://doi.org/10.1016/0304-4211(81)90175-9. ), which means that there is a negative correlation between growth and endogenous ABA content in plants (Pilet and Saugy 1987Pilet, P.E. & Saugy, M. 1987. “Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination”. Plant Physiology, 83(1):33-38, ISSN: 1532-2548. https://doi.org/10.1104/pp.83.1.33. ). It also plays a central role in cellular signaling and that between the roots and the aerial part of the plant during drought stress; in addition to participating in the regulation of growth and stomatal conductance (Davies et al. 2005Davies, W. J., Kudoyarova, G. & Hartung, W. 2005. “Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought”. Journal of Plant Growth Regulation, 24(4): 285-295, ISSN: 1435-8107. https://doi.org/10.1007/s00344-005-0103-1. ).

According to Villagra et al. (2011)Villagra, P. E., Giordano, C., Alvarez, J., Bruno, J., Guevara, A., Sartor, C., Passera, C. & Greco, S. 2011. “Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina”. Ecología Austral, 21: 29-42, ISSN: 1667-7838. , the meadow grasses of the central mount of Argentina, in the dry season, regulate water loss through stomatal closure, and later through changes in leaf architecture, by folding the leaves over the central vein or folding the leaf blade in half, as is the case of Pappophorum caespitosum and Trichloris crinita, respectively.

Cenchrus ciliaris, another meadow grass, has been classified as resistant to water stress (Ruiz and Terenti 2012Ruiz, M. & Terenti, O. 2012. “Germinación de cuatro pastos bajo condiciones de estrés salino”. Phyton, 81(2): 169-176, ISSN: 1851-5657. ). This species is cultivated extensively in arid and semi-arid ecosystems in several countries, and is used to stabilize soils and increase the productivity of grasslands that have experienced the effect of drought combined with overgrazing (Lyons et al. 2013Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. 2013. “Community and Ecosystem Effects of Buffelgrass (Pennisetum ciliare) and Nitrogen Deposition in the Sonoran Desert”. Invasive Plant Science and Management, 6(1): 65-78, ISSN: 1939-7291, https://doi.org/10.1614/IPSM-D-11-00071.1. ).

The induction of volatile oils takes place when plants are exposed to various types of stress (Loreto and Schnitzler 2010Loreto, F. & Schnitzler, J. P. 2010. “Abiotic stresses and induced BVOCs”. Trends in Plant Science, 15: 154-166. ISSN: 1360-1385.). These stress-induced volatile oils are useful as signals to develop primary and systemic responses in the plant and its surroundings (Niinemets 2010Niinemets, U. 2010. “Mild versus severe stress and BVOCs: thresholds, priming and consequences”. Trends in Plant Science, 15(3): 145-153, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.008. ). According to Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. , volatile oils are promising candidates in a non-invasive technique to assess drought stress and its mitigation during stress development.

In plants, through the ethylene biosynthetic pathway, the amino acid methionine is converted to S-adenosyl methionine (S-AdoMet, or SAM) by the enzyme S-adenosyl-L-methionine synthetase (SAM synthetase). The S-AdoMet, in turn, is transformed by 1-aminocyclopropane-1-carboxylate synthetase (ACS) into 1-aminocyclopropane-1-carboxylate (ACC), an immediate precursor of ethylene (Vurukonda et al. 2015Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M. & SkZ, A. 2015. “Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria”. Microbiological Research, 184: 13-24, ISSN 0944-5013. http://dx.doi.org/10.1016/j.micres.2015.12.003 ).

Ethylene is a plant hormone related to the regulation of various physiological processes in plants, but its production in plants, due to climate change, inflicts a significant reduction on plant growth and development, and if not properly controlled, can lead to in plant death (Iqbal et al. 2017Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A. & Khan, M. 2017. “Ethylene role in plant growth, development and senescence: interaction with other phytohormones”. Frontiers in Plant Science, 8: 475, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00475. and Dubois et al. 2018Dubois, M., Van Den Broeck, L. & Inzé, D. 2018. “The pivotal role of ethylene in plant growth”. Trends in Plant Science, 23(4): 311-323, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2018.01.003. ). Therefore, the increase in ethylene production in a large number of plants (figure 1) is an indicator of susceptibility to various types of environmental stress, among which drought and salinity stress can be mentioned (Glick 2014Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , Müller and Munné-Bosch 2015Müller, M. & Munné-Bosch, S. 2015. “Ethylene response factors: a key regulatory hub in hormone and stress signaling”. Plant Physiology, 169(1): 32-41, ISSN: 1532-2548. https://doi.org/10.1104/pp.15.00677. , Liu et al. 2015Liu, J., Xie, B., Shi, X., Ma, J. & Guo, C. 2015. “Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil”. International Journal Environmental Science Technology, 12: 3887-3894. https://doi.org/10.1007/s13762-015-0798-x. and Abiri et al. 2017Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z.N.B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hana, M.M. 2017. “Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions”. Environmental and Experimental Botany, 134: 33-44, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2016.10.015.).

Figure 1.  Ethylene plant hormone affects a great number of different processes growth and development of the plant

Effect of salinity on plants

 

Saline soils are high in electrical conductivity, low in water potential and have an excess of ionic salts, which makes it difficult for plants and other life forms to survive (Mishra et al. 2018Mishra, J., Fatima, T. & Arora, N. K. 2018. Plant Microbiome: Stress Response. In: Egamberdieva, D., Ahmad, P. eds. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Singapore: Springer; p. 127-163. https://doi.org/10.1007/978-981-10-5514-0_6. and Egamberdieva et al. 2019Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. & Arora, N.K. 2019. “Salttolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils”. Frontiers in Microbiology, 10: 2791, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02791.).

The central problem faced by plants subjected to high concentration of salt (NaCl) is the osmotic retention of water and specific ionic effects of toxicity on the proteins of the cytoplasm and membranes. Water is osmotically retained in saline solutions, in such a way that as the salt concentration increases, the water becomes less and less available to the plant (Benavides 2002Benavides, A. 2002. Estrés por factores abióticos. Pp. 52-73. En: Ecofisiología y bioquímica del estrés en las plantas. Dr. Adalberto Benavides Mendoza (Editor). Departamento de Horticultura. Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coah, México. 228 p.). According to Glick (2014)Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , it is important to highlight that many of the early effects of salt stress are attributed to water stress caused by salt in plants. Due to the increased concentration of osmolytes in cells subjected to osmotic stress and water stress, the osmotic potential becomes negative and causes water endosmosis, which maintains turgor pressure and cell integrity (Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.).

Like water stress, salinity increase an ionic imbalance in plants, which causes nutritional deficiency, disturbances in carbon (C) and nitrogen (N), assimilatory pathways, reduced photosynthetic generation rate, generation of ROS, osmotic and oxidative stress, which retards crop growth and yield (Hashem et al. 2016Hashem, A.; Abd_Allah, E.; Alqarawi, A.; Al-Huqail, A. & Shah, M. 2016. “Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71)”. BioMed Research International, Article ID 6294098, ISSN: 2314-6141. https://doi.org/10.1155/2016/6294098. and Pan et al. 2019Pan, J., Peng, F., Xue, X., You, Q., Zhang, W., Wang, T. & Huang, C. 2019. “The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis”. Sustainability, 11(2): 378, ISSN: 2071-1050. https://doi.org/10.3390/su11020378. ). The K+/Na+ ratio is very important for plants and salt stress causes alterations in the balance between these ions, which reduces this ratio and decreases the availability of nutrients (Reich et al. 2017Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M.J. & De Kok, L.J. 2017. “Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa”. Plant Soil, 411(1): 319-332, ISSN: 1573-5036. https://doi.org/10.1007/s11104-016-3026-7. ).

Proline accumulation is one of the response mechanisms of many plants during various types of stress (Anjum et al. 2016Anjum, S.A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, W., Jan, S., Khan, I., Saleem, M.F., Bajwa, A.A., Wang, L., Mahmood, A., Samad, R.A. & Tung, S.A. 2016. “Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress”. Environmental Science and Pollution Research, 23: 11864-11875, ISSN: 0944-1344. https://doi.org/10.1007/s11356-016-6382-1. , 2017Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I. & Wang, L.C. 2017. “Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids”. Frontiers in Plant Science, 8: 69, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00069. ), including saline. The formation of this amino acid in plants occurs mainly from glutamate (Khan et al. 2015Khan, M. I., Nazir, F., Asgher, M., Per, T. S. & Khan, N. A. 2015. "Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat”. Journal of Plant Physiology, 173: 9-18. https://doi.org/10.1016/j.jplph.2014.09.011. ).

Plants tolerate salinity by accumulating low molecular weight osmolytes such as proline, glycine betaine (GB), and polyamines, which help maintain membrane stability. These osmoprotectors improve the germination rate, growth and development of the plant, which induces tolerance towards saline stress (Sudhakar et al. 2001Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity”. Plant Science, 161(3): 613-619, ISSN: 0168-9452. https://doi.org/10.1016/S0168-9452(01)00450-2. ) and also towards water stress (Kubis et al. 2014Kubis, J., Floryszak-Wieczorek, J. & Arasimowicz-Jelonek, M. 2014. “Polyamines induce adaptive responses in water deficit stressed cucumber roots”. Journal of Plant Research,127: 151-158. https://doi.org/10.1007/s10265-013-0585-z. ). The first step in the formation of ethylene is the formation of S-adenosylmethionine (SAM) from methionine (figure 2). The SAM, which is formed during ethylene synthesis, is also a precursor for GB biosynthesis (Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.). Polyamines are related to the biosynthesis of ethylene, since its precursor (SAM) is common to both compounds (Petruzzelli et al. 2000Petruzzelli, L., Coraggio, I. & Leubner-Metzger, G. 2000. “Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase”. Planta, 211(1): 144-149, ISSN: 1432-2048. https://doi.org/10.1007/s004250000274. ).

Figure 2.  Role of ethylene, glycine betaine (GB), and polyamines that form under salinity stress. ACC: 1-amino-cyclo-propane-1- carboxylic acid; SAM: S-adenosyl methionine; dcSAM: enzyme SAM decarboxylase (Petruzzelli et al. 2000Petruzzelli, L., Coraggio, I. & Leubner-Metzger, G. 2000. “Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase”. Planta, 211(1): 144-149, ISSN: 1432-2048. https://doi.org/10.1007/s004250000274. , Sudhakar et al. 2001Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity”. Plant Science, 161(3): 613-619, ISSN: 0168-9452. https://doi.org/10.1016/S0168-9452(01)00450-2. and Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.).

The high concentration of salt in plants not only increases the excessive production of ethylene, but also induces ionic toxicity and oxidative stress, in addition to affecting the osmotic potential of plants. All physiological processes, such as respiration, photosynthesis and nitrogen fixation, among others, are affected by soil salinity, which leads to a decrease in crop productivity (Paul and Lade 2014Paul, D. & Lade, H. 2014. “Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review”. Agronomy for Sustainable Development, 34: 737-752, ISSN: 1773-0155. https://doi.org/10.1007/s13593-014-0233-6. and Acosta-Motos et al. 2017Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sánchez-Blanco, M. J. & Hernández, J.A. 2017. “Plant responses to salt stress: adaptive mechanisms”. Agronomy, 7(1): 18, ISSN: 2073-4395. https://doi.org/10.3390/agronomy7010018. ).

As explained in the previous section, the increase in ethylene production in plants is an indicator of susceptibility, not only to drought stress, but also to salinity stress (Glick 2014Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , Müller and Munné-Bosch 2015Müller, M. & Munné-Bosch, S. 2015. “Ethylene response factors: a key regulatory hub in hormone and stress signaling”. Plant Physiology, 169(1): 32-41, ISSN: 1532-2548. https://doi.org/10.1104/pp.15.00677. , Liu et al. 2015Liu, J., Xie, B., Shi, X., Ma, J. & Guo, C. 2015. “Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil”. International Journal Environmental Science Technology, 12: 3887-3894. https://doi.org/10.1007/s13762-015-0798-x. and Abiri et al. 2017Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z.N.B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hana, M.M. 2017. “Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions”. Environmental and Experimental Botany, 134: 33-44, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2016.10.015.).

Importance of pgpr against environmental stress

 

Microbial interactions with plant crops are fundamental for the adaptation and survival of microorganisms as well as plants, in any abiotic environment. Induced systemic tolerance (IST) is the term used to define the induction of responses to abiotic stress by microorganisms (Meena et al. 2017Meena, K.K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. 2017. “Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies”. Frontiers in Plant Science, 8:172, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00172.). The function of microorganisms to relieve abiotic stress in plants has been an area of great interest for a few decades (de Zelicourt et al. 2013de Zelicourt, A., Al-Yousif, M. & Hirt, H. 2013. “Rhizosphere microbes as essential partners for plant stress tolerance”. Molecular Plant, 6(2): 242-245, ISSN: 1752-9867. https://doi.org/10.1093/mp/sst028. , Nadeem et al. 2014Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. & Ashraf, M. 2014. “The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments”. Biotechnology Advances, 32(2): 429-448, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2013.12.005. and Souza et al. 2015Souza, R.D., Ambrosini, A. & Passaglia, L.M.P. 2015. “Plant growth-promoting bacteria as inoculants in agricultural soils”. Genetics and Molecular Biology, 38(4): 401-419, ISSN: 1678-4685. https://doi.org/10.1590/S1415-475738420150053. ). According to Gopalakrishnan et al. (2015)Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L. & Krishnamurthy, L. 2015. “Plant growth promoting rhizobia: challenges and opportunities”. 3Biotech, 5(4): 355-377, ISSN: 2190-5738. https://doi.org/10.1007/s13205-014-0241-x. , microorganisms, with their intrinsic metabolic and genetic capacities, contribute to alleviating the effect of abiotic stress on plants.

This section explains the role played by PGPR, as inducers of tolerance to water stress due to drought and saline stress in plants. As both can cause similar responses in plants, PGPR can induce tolerance to water and salt stress, indistinctly, through similar metabolic mechanisms.

Importance of pgpr against water stress

 

The PGPR are highly efficient in promoting plant growth through direct and indirect mechanisms (Hassan et al. 2015Hassan, W., Hussain, M., Bashir, S., Shah, A. N., Bano, R. & David, J. 2015. “ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.)”. Journal of Soil Science and Plant Nutrition, 15(1): 232-248, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000019. ). The direct effects are related to the synthesis of phytohormones by PGPR (auxins, gibberellins and cytokinins), either in the rhizosphere or in plant tissues. These phytohormones stimulate higher root development, which facilitates the absorption of nutrients in plants and provides protection against different types of environmental stress (figure 2) (Kumari et al. 2009Kumari, B. S., Ram, M. R. & Mallaiah, K. V. 2009. “Studies on exopolysaccharide and indole acetic acid production by Rhizobium strains from Indigofera”. African Journal of Microbiology Research, 3(1): 10-14, ISSN: 1996-1808. and García-Fraile et al. 2015García-Fraile, P., Menéndez, E. & Rivas, R. 2015. “Role of bacterial biofertilizers in agriculture and forestry”. AIMS Bioengineering, 2(3): 183-205, ISSN: 2375-1495. https://doi.org/10.3934/bioeng.2015.3.183. ). Ahmad et al. (2008)Ahmad, F., Ahmad, I. & Khan, M. S. 2008. "Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities". Microbiological Research, 163(2): 173-181. ISSN: 0944-5013, https://doi.org/10.101G/j:micres.2006.04.001. found that 80% of the dinitrogen-fixing bacteria produce indoleacetic acid, a growth substance that leads to an increase in total phenols, calcium content and activity of the polyphenol oxidase enzyme, which protects the plant against pathogens and improves its growth through removal of ROS (Chowdhury 2003Chowdhury, A. K. 2003. “Control of Sclerotium blight of groundnut by growth substances”. Crop Research, 25(2): 355-359, ISSN: 0970-4884.).

The production of the enzyme ACC-deaminase by bacteria (figure 3), by inhibiting the production of ethylene in plants (Yang et al. 2008Yang, J., Kloepper, J. W. & Ryu, C. 2008. “Rhizosphere bacteria help plants tolerate abiotic stress”. Trends in Plant Science. 14(1): 1-4. ISSN: 1360-1383, https://doi.org/10.101G1j.tplants.2008.10.004. ) by dividing ACC ethylene into α-ketobutyrate and ammonium, allows the root system develops without the inhibition of this compound, which favors greater absorption of nutrients. There are many reports about the enhancement of plant development by inoculating bacterial strains that are positive for ACC-deaminase production during drought states (Sarma and Saikia 2014Sarma, R.K. & Saikia, R. 2014. “Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21”. Plant and Soil, 377: 111-126, ISSN: 1573-5036. https://doi.org/10.1007/s11104-013-1981-9. ), hypersalinity (Nadeem et al. 2007Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. "Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity". Canadian Journal of Microbiology, 53(10): 1141-1149, ISSN: 1480-3275. http://dx.doi.org/10.1139/W07-081. ) and other types of stress.

Figure 3.  IST caused by PGPR against drought and salinity stress. Block arrows show plant compounds that originate from environmental stress, dashed arrows show bioactive compounds secreted by PGPRs, solid arrows show plant compounds that are affected by bacterial components. IST (Induced Systemic Tolerance). PGPR (Plant Growth Promoting Rhizobacteria). ABA (Absicic Acid). ROS (Reactive Organic Species). ACC (1-aminocyclopropane-1-carboxylase). HKT1: high-affinity K+ transporter. IAA: Indoleacetic Acid

Various authors also refer to the activity of cytokinins and catalase, which act as antioxidants, such as catalase (ROS degradation factor), or which prevent the presence of other compounds that hinder the normal development of the plant subjected to water stress, as is the case of cytokinins (figure 3), which counteract the negative effect of ABA in leaves, produced by the plant against this type of stress (Yang et al. 2008Yang, J., Kloepper, J. W. & Ryu, C. 2008. “Rhizosphere bacteria help plants tolerate abiotic stress”. Trends in Plant Science. 14(1): 1-4. ISSN: 1360-1383, https://doi.org/10.101G1j.tplants.2008.10.004. ).

The formation of bacterial thin layer or extracellular matrix (figure 3) is another of the mechanisms that PGPR can use in favor of plants (Dimkpa et al. 2009Dimkpa, C., Weinand, T. & Asch, F. 2009. “Plant-rhizobacteria interactions alleviate abiotic stress conditions”. Plant, Cell and Environment, 32(12): 1682-1694, ISSN: 1365-3040. https://doi.org/10.1111/j.1365-040.2009.02028.x. and Timmusk and Nevo 2011Timmusk, S. & Nevo, E. 2011. Plant root associated biofilms. In: Maheshwari D. K. editor. Bacteria in agrobiology (vol 3): Plant nutrient management. Berlin: Springer Verlag. pp. 285-300.). In particular, an extracellular matrix, formed by a bacterial thin layer, can provide an almost infinite range of beneficial macromolecules for plant development and it growth. Thin layer contain sugars, as well as oligo and polysaccharides, which can play different roles in bacteria-plant interactions, such as improving water availability in roots. The water-holding capacity of some polysaccharides can exceed up to seven times their mass (Timmusk and Nevo 2011Timmusk, S. & Nevo, E. 2011. Plant root associated biofilms. In: Maheshwari D. K. editor. Bacteria in agrobiology (vol 3): Plant nutrient management. Berlin: Springer Verlag. pp. 285-300.).

Cho et al. (2008)Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.Y., Lee, Y. H., Cho, B.H., Yang, Kwang-Yeol., Ryu, Choong-Min; Kim, Y. C. 2008. “2R, 3R-Butanediol, a bacterial volatile produced by Pseudo monas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana”. Molecular Plant-Microbe Interactions, 21: 1067-1075, ISSN: 0894-0282. https://doi.org/10.1094/MPMI-21-8-1067 observed that root colonization of Arabidopsis thaliana with Pseudomonas chlororaphis O6 prevents water loss caused by stomatal closure, due to the effect of 2R, 3R-butanediol, a volatile metabolite produced by P. chlororaphis O6. Meanwhile, bacteria deficient in the production of 2R, 3R-butanediol, did not show induction of drought tolerance. According to the cited authors, the increase in free salicylic acid (SA) in plants colonized by P. chlororaphis O6, under water stress conditions, after a treatment with 2R, 3R-butanediol, suggests the primary function of the signals of the SA in the induction of drought tolerance, which coincides with the criteria of Hussain et al. (2020)Hussain, I., Rasheed, R., Ashraf, M.A., Mohsin, M., Ali Shah, S.M., Rashid, A., Akram, M., Nisar, J. & Riaz, M. 2020. “Foliar applied acetylsalicylic acid induced growth and key-biochemical changes in Chickpea (Cicer arietinum L.) under drought stress. Dose-Response: An International Journal. 1: 1-13. https://doi.org/10.1177/1559325820956801. about the beneficial effect of SA on Cicer arietinum L.

Importance of pgpr against saline stress

 

According to Kumar Arora et al. (2020)Kumar Arora, N., Tahmish, F., Mishra, J., Mishra, I., Verma, S., Verma, R., Vermad, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, Ch. 2020. “Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils”. Journal of Advanced Research, 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003 , it is probable that the mitigation of salt stress by PGPRs, which are halo tolerant, involves an action intertwined at three levels, such as the survival of the bacteria by itself in a hyperosmotic environment, the induction of tolerant mechanisms to salt in plants and the improvement of soil quality through various mechanisms.

Plants regulate the synthesis of phytohormones, but bacteria are also capable of producing phytohormones and releasing them outside the cell, either in the rhizosphere (rhizobacteria) (figure 3) or inside the plant tissues (endophytes). The excretion of these molecules by bacteria positively affects the performance of plants under salt stress, since, in some situations, plants do not generate enough quantities to achieve optimal development (Egamberdieva et al. 2017Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd_Allah, E.F. & Hashem, A. 2017. “Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness”. Frontiers in Microbiology, 8: 2104, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2017.02104. ).

Etesami and Maheswari (2018)Etesami, H. & Maheshwari, D.K. 2018. “Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects”. Ecotoxicology and Environmental Safety, 156: 225-246, ISSN: 1090-2414. https://doi.org/10.1016/j.ecoenv.2018.03.013 assure that the main aspect of tolerance to salt stress in plants through halotolerant PGPRs (PGPR-HT) involves the generation of receptive machinery, which eliminates toxicity and establishes a state of osmotic balance to avoid desiccation and flaccidity in plant cells. These authors assure that PGPR-HT limit the acquisition of Na+ by changing the composition of the cell wall/membrane. Likewise, the PGPR-HT can promote plant growth and indirectly develop tolerance against salt stress, by altering the selectivity of Na+, K+ and Ca2+ to support a higher K+/Na+ ratio, thus regulating the levels of various antioxidant enzymes in the cells. These enzymes not only detoxify harmful substances, but also reduce undesirable physiological changes caused by stress (Sukweenadhi et al. 2018Sukweenadhi, J., Balusamy, S.R., Kim, Y.J., Lee, C.H., Kim, Y.J., Koh, S.C. & Yang, D.C. 2018. “Growth- promoting bacteria, Paenibacillus yonginensis DCY84T, enhanced salt stress tolerance by activating defense-related systems in Panax ginseng”. Frontiers in Plant Science, 9: 1-17, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2018.00001 ).

Volatile organic compounds (VOCs), such as N-acylhomoserine lactone and cyclodipeptides, that are produced by PGPR-HT (figure 3) can also increase the induction of the high-affinity K+ (HKT1) transporter in the branches and the reduction of HKT1 in the roots, which limits the entry of Na+ into the roots and facilitates the recirculation of Na+ between branches and roots (Qin et al. 2016Qin, Y., Druzhinina, I. S., Pan, X. & Yuan, Z. 2016. “Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture”. Biotechnology Advances, 34(7): 1245-1259, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2016.08.005., Schikora et al. 2016Schikora, A., Schenk, S.T. & Hartmann, A. 2016. “Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acylhomoserine lactone group”. Plant Molecular Biology, 90(6): 605-612, ISSN 1573-5028. https://doi.org/10.1007/s11103-016-0457-8., Rosier et al. 2018Rosier, A., Medeiros, F.H. & Bais, H.P. 2018. “Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plantmicrobe interactions”. Plant and Soil, 428(1-2): 35-55, ISSN: 1573-5036. https://doi.org/10.1007/s11104-018-3679-5. and Hartmann et al. 2019Hartmann, A., Fischer, D., Kinzel, L., Chowdhury, S. P., Hofmann, A., Baldani, J. I. & Rothballerd, M. 2019. “Assessment of the structural and functional diversities of plant microbiota: achievements and challenges - a review”. Journal of Advanced Research, 19: 3-13, ISSN: 2090-1232. https://doi.org/10.1016/j.jare.2019.04.007.).

The PGPR-HTs are also known to stimulate antioxidant defense machinery in plants that are involved in the synthesis of antioxidant enzymes (figure 3) against oxidative stress caused by ROS during salt stress (Islam et al. 2016Islam, F., Ali, B., Wang, J., Farooq, M. A., Gill, R. A., Ali, S., Wang, D. & Zhou, W. 2016. “Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars”. Plant Physiology and Biochemistry, 107: 82-95, ISSN: 0981-9428. https://doi.org/10.1007/s13205-017-1074-1 ). These include superoxide dismutase, peroxidase, catalase, nitrate reductase, glutathione reductase, polyphenol oxidase, guaiacol peroxidase, monohydrate dehydrogenase and dihydroascorbate reductase.

According to Belimov et al. (2014)Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G. & Davies, W. J. 2014. “Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth”. Plant Physiology and Biochemistry, 74: 84-91, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2013.10.032. and with Maksimov et al. (2015)Maksimov, I., Veselova, S., Nuzhnaya, T., Sarvarova, E. & Khairullin, R. 2015. “Plant growth-promoting bacteria in regulation of plant resistance to stress factors”. Russian Journal of Plant Physiology, 62(6): 715-26., the ability to synthesize ABA, particularly under stressful conditions, such as salinity, and to affect the level of ABA in plants, occurs in PGPR of the genera Azospirillum, Bacillus, Pseudomonas, Brevibacterium and Lysinibacillus, so this characteristic of these rhizobacteria is useful to confer tolerance to plants in against environmental stress.

Different biopolymers are secreted by microbial cells (polysaccharides, polyesters, polyamides) into the surrounding environment. Biopolymers play an irreplaceable role in plant-microorganism relations, especially in alleviating salt stress in plants (Etesami and Maheshwari 2018Etesami, H. & Maheshwari, D.K. 2018. “Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects”. Ecotoxicology and Environmental Safety, 156: 225-246, ISSN: 1090-2414. https://doi.org/10.1016/j.ecoenv.2018.03.013 and Gupta et al. 2019Gupta, J., Rathour, R., Singh, R. & Thakur, I.S. 2019. “Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7”. Bioresource Technology, 282: 417-424, ISSN: 1873-2976. https://doi.org/10.1016/j.biortech.2019.03.054. ), as they excrete out of cells and join cations such as Na+ in decreasing bioavailable concentrations. They also serve as signal molecules for the defensive response to infection. These polysaccharides help PGPR to survive in saline environments, and thus most halotolerant bacteria have the ability to excrete this type of compound (Etesami and Glick 2020Etesami, H. & Glick, B.R. 2020. “Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants”. Environmental and Experimental Botany, 178: 104124, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2020.104124. ). According to Vaishnav et al. (2016)Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N. & Choudhary, D.K. 2016. “PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside”. Journal of Basic Microbiology, 56(11): 1274-1288, ISSN: 1521-4028. https://doi.org/10.1002/jobm.201600188. , extracellular polysaccharides, as thin layer, function as a physical barrier around the roots, which helps plant growth under saline stress conditions (figure 2).

When studying the response to salt stress in wheat by inoculation of Enterobacter cloacae SBP-8, Singh et al. (2017)Singh, R. P., Runthala, A., Khan, S. & Jha, P.N. 2017. “Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8”. PLoS One. 12(9): e0183513, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0183513. reported an increase in the level of proteins related to plant defense, photosynthesis, and proteins associated with ion transport. The cited study also showed that bacterial inoculation regulate the expression of proteins involved in cell wall strengthening and membrane integrity to prevent cell damage and lateral diffusion of molecules into the endodermis. A similar mechanism of tolerance was reported in hard wheat when inoculated with PGPR-HT under drought stress and heat stress, resulting in better plant adaptation (Tenhaken 2015Tenhaken, R. 2015. “Cell wall remodeling under abiotic stress”. Frontiers in Plant Science, 5: 771, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00771.). These results suggest that there is a correlation between salinity and drought through common mechanisms at the molecular level, with the purpose of combating these types of stress with the help of PGPR-HT.

Some results of the application of pgpr in plants, under water or saline stress conditions

 

Khan et al. (2019)Khan N., Bano, A. & Babar, M. A. 2019. “Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L”. PLoS One 14(3): e0213040, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0213040 reported that two genotypes of Cicer arietinum, treated with PGPR consortia under drought stress conditions, had better results in the relative content of water in leaves, higher biomass in leaves and stems, as well as higher accumulation of protein, sugars and phenolic compounds. In grain legumes, Vigna mungo L. and Pisum sativum L., Saikia et al. (2018)Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K. & Saikia, R. 2018. “Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India”. Available: https://www.nature.com/scientificreports found that proline levels significantly increased when plants were inoculated with a collection made up of different PGPRs. Also Garcia et al. (2017)García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R. Ramirez-Trujillo, J.A. & Groppa, M.D. 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202: 21-29, ISSN: 2328-4137. http://dx.doi.org/10.1016/j.micres.2017.04.007. noted that the inoculation of corn with the Az19 strain of Azospirillum spp., under water stress, increased the proline content in the plants.

Jochum et al. (2019)Jochum, M. D., McWilliams, K. L, Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A. & Jo, Y-K. 2019. “Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses”. Frontiers in Microbiology, 10: 2106, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02106. showed the superior effect of two PGPR strains, when applied to wheat and corn, under simulated water stress conditions, by significantly increasing variables related to root architecture and leaves and stems elongation, compared to the control not inoculated. Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. observed that in wheat subjected to water stress, the inoculation of Bacillus thuringiensis AZP2 led to higher plant biomass and five times higher survival to drought, due to the significant reduction in the emission of volatile oils and higher photosynthesis.

Curá et al. (2017)Curá, J. A., Franz, D. R., Filosofía, J. E., Balestrasse, K. B. & Burgueño, L. E. 2017. “Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of Maize to drought stress”. Microorganisms, 5(3): 41, ISSN: 2076-2607. https://doi.org/10.3390/microorganisms5030041 found that the inoculation of corn plants with the strains Azospirillum brasilense, SP-7 or Herbaspirillum seropedicae, Z-152, resulted in a decrease in ABA and ethylene content, as well as a reduction in proline content. This was associated with a lower perception of water stress by the plant, which resulted in lower lipid peroxidation and a higher content of carbon, nitrogen, chlorophylls and relative water content at the foliar level; in addition to a higher biomass production.

The inoculation with a mixture of Bacillus sp. and Pseudomonassp. proved to be the most efficient treatment to improve tolerance to water deficit in two wheat genotypes, by increasing plant biomass and other morphological and physiological parameters (Mutumba et al. 2018Mutumba, F.A., Zagal, E., Gerding, M., Castillo-Rosales, D., Paulino, L. & Schoebitz, M. 2018. “Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes”. Journal of Soil Science and Plant Nutrition, 18 (4): 1080-1096, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162018005003003. ).

Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. found through electron microscopy the formation of thin layers in root hairs of wheat seedlings, under simulated water stress conditions. In general, it was determined that the efficiency of water use in plants inoculated with B. thuringiensis, strain AZP2, increased by 63 % compared to control plants.

Zhang et al. (2020)Zhang, M., Yang, L., Hao, R., Bai, X., Wang, Y. & Yu, X. 2020. “Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance”. Plant and Soil, 452 (1-2): 423-440, ISSN 1573-5036. https://doi.org/10.1007/s11104-020-04582-5. , when isolating different rhizobacteria from the rhizosphere of Ziziphus jujuba, observed that Pseudomonas lini and Serratia plymuthica, under simulated drought stress conditions, increased the height of Z. jujuba, as well as its radical dry mass, aerial dry mass and the relative water content. Also, ABA levels decreased. In addition, the antioxidant enzyme activity increased, especially with mixed inoculation.

Agronomic studies by Bécquer et al. (2016Bécquer, C.J., Puentes, A.B., Ávila, U., Quintana, M., Galdo, Y., Medinilla, F. & Mirabales, A. 2016. “Efecto de la inoculación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía”. Pastos y Forrajes. 39 (1): 19-26, ISSN 2078-8452., 2017a)Bécquer, C. J., Ávila, U., Galdo, Y., Quintana, M., Álvarez, O., Puentes, A., Medinilla, F. & Mirabal, A. 2017a. “Selection of Bradyrhizobium sp. isolates due to their effect on maize under agricultural drought conditions in Sancti Spíritus, Cuba”. Cuban Journal of Agricultural Science, 51(1): 129-138, ISSN: 2079-3480. in triticale and corn, respectively, show the stimulating effect of Bradyrhizobium sp., alone or in combination with Trichoderma harzianum, on the growth and development of these species, cultivated under agricultural drought conditions. Also Becquer et al. 2017bBécquer, C. J., Ávila, U., Puentes, A., Nápoles, J.A., Cancio, T., Medinilla, F., Muir, I. & Madrigal, Y. 2017b. “Respuesta de Cenchrus ciliaris L. (Buffel cv. Formidable), inoculado con Bradyrhizobium sp. y Trichoderma harzianum, bajo estrés de sequía”. Cuban Journal of Agricultural Science, 51(2): 1-10, ISSN: 2079-3480., (2018Bécquer, C. J., Nápoles, J. A., Ávila, U., Yaldreisy Galdo; María Hernández; Ivón Muir; Orquidia Álvarez & F. Medinilla. 2018. “Productividad de bermuda Tifton 85, inoculada con Bradyrhizobium sp. y Trichoderma harzianum, sometida a estrés de sequía agrícola”. Pastos y Forrajes, 41 (3): 196-201, ISSN: 2078-8452., 2019bBécquer, C. J., Reyes, R., Fernández, D., González, P.J. & Medinilla, F. 2019b. “Rendimiento de pasto Mulato II inoculado con Bradyrhizobium sp. y Glomus cubense, en condiciones de sequía agrícola”. Cuban Journal of Agricultural Science, 53(3): 1-12, ISSN: 2079-3480. obtained promising results with the application of Bradyrhizobium sp., combined with beneficial fungi, in different meadow grasses (Cenchrus ciliaris, Cynodon dactylon and Brachiaria hibrido, respectively) under drought stress conditions. From this it is inferred that there has been positive microbial interaction between Bradyrhizobium sp. and Trichoderma harzianum, as well as between Bradyrhizobium sp. and Glomus cubense (figures 4 and 5). Likewise, Becquer et al. (2019a)Bécquer, C. J., González, P. J., Ávila, U., Nápoles, J. A., Galdo, Y., Muir, I., Hernández, M., Quintana, M. & Medinilla, F. 2019a. “Efecto de la inoculación de microorganismos benéficos y Quitomax® en Cenchrus ciliaris L., en condiciones de sequía agrícola”. Pastos y Forrajes, 42(1): 52-60, ISSN: 2078-8452. , when inoculating C. ciliaris with Bradyrhizobium sp., Funneliformis mosseae and a biostimulant under drought stress conditions, they obtained highly promising results.

Figure. 4.  Effect of Bradyrhizobium sp. Ho13 and Trichoderma harzianum A-34, on the aerial biomass of Cenchrus ciliaris L. (Buffel Formidable), under drought stress conditions.
Figure. 5.  Effect of Bradyrhizobium sp. Ho13 and Trichoderma harzianum A-34, on the aerial biomass of Cynodon dactylon Tifton 85, under drought stress conditions.

The isolates of Bradyrhizobium sp. used in these studies come from livestock ecosystems affected by drought and other stressful environmental factors (Bécquer et al. 2000Bécquer, C.J., Prévost, Danielle & Prieto, A. 2000. Caracterización fisiológica-bioquímica de rizobios aislados de leguminosas forrajeras. Biología. 14(1): 57-65, ISSN: 0864-3490., 2001Bécquer, C. J.; Prévost, Danielle & Cloutier, J. 2001. Aspectos fisiológicos y genéticos de rizobios aislados de leguminosas forrajeras. Pastos y Forrajes. 24(2): 123-130, ISSN 2078-8452., 2002Bécquer, C.J., Prévost, Danielle, Cloutier, J. & Laguerre, G. 2002. Enfoque taxonómico de rizobios aislados de leguminosas forrajeras. Biología. 16: 137-145. ISSN: 1545-2123., 2016Bécquer, C.J., Galdo, Y., Ramos, Y., Peña, M.D., Almaguer, N., Peña, Y. F., Mirabal, A., Quintana, M. & Puentes, A. 2016. “Rizobios aislados de leguminosas forrajeras de un ecosistema ganadero árido de Holguín, Cuba. Nodulación y evaluación morfocultural (fase I)”. Cuban Journal of Agricultural Science, 50 (4): 607-617, ISSN: 2079-3480., 2017cBécquer, C. J., Galdo, Y., Mirabal, A., Quintana, M. & Puentes, A. 2017c. “Rizobios aislados de leguminosas forrajeras de un ecosistema ganadero árido de Holguín, Cuba. Tolerancia a estrés abiótico y producción de catalasa (Fase II)”. Cuban Journal of Agricultural Science, 51(1): 117-127, ISSN: 2079-3480.), which suggests the influence of these factors on the positive effect of this PGPR in crops affected by environmental stress.

Abril et al. (2017)Abril, J. L., Roncallo, B. & Bonilla, R. 2017. “Efecto de la inoculación del género Bacillus sobre el crecimiento de Megathyrsus maximus Jacq, en condiciones de estrés hídrico”. Revista Agronómica del Noroeste Argentino, 37(1): 25-37, ISSN: 2314-369X. confirmed that the co-inoculation of Bacillus and Azotobacter contributed to promote the growth of Megathyrsus maximus under drought conditions.

Mapelli et al. (2013)Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchi, D. & Borin, S. 2013. “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils”. BioMed Research International, Article ID 248078. https://doi.org/10.1155/2013/248078. observed that the bacterial microbiome of Salicornia plants, cultivated in hypersaline ecosystems in Tunisia, showed resistance to a wide range of abiotic stress and do different plant growth promotion activities, as well as greater root colonization. This suggests that PGPR-HT that inhabits arid and saline ecosystems have the potential to promote plant growth in plants that are under hydric or saline stress.

Mayak et al. (2004)Mayak, S., Tirosh, T. & Glick, B.R. 2004. “Plant growth-promoting bacteria that confer resistance in tomato to salt stress”. Plant Physiology and Biochemistry, 42(6): 565-572, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2004.05.009. reported highly satisfactory results of inoculation with PGPR Achromobacter piechaudii ARV8 to stimulate the growth of plants subjected to salt stress. These authors consider that ACC-deaminase, produced by A. piechaudii, may be the cause of protection against salt stress in plants, by inhibiting the ethylene precursor, the ACC.

In studies by Zhang et al. (2008)Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. & Paré, P. W. 2008. “Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1”. Molecular Plant-Microbe Interactions, 21(6): 737-744, ISSN: 1943-7706. https://doi.org/10.1094/MPMI -21-6-07. it was showed that PGPR-HT Bacillus subtilis reduced Na+ uptake in Arabidopsis thaliana roots by inhibiting HKT1 under salt-affected conditions. Likewise, Yasmin et al. (2020)Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S. & Hassan, M.N. 2020. “Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress”. PLoS ONE, 15(4), ISSN: 1932-6203 https://doi.org/10.1371/journal.pone.0231348e0231348. reported that the inoculation of soybean plants under salt stress with Pseudomonas pseudoalcaligenes increased the synthesis of main defense enzymes, which reduced the concentration of Na+ in roots and foliage. At the same time, cell condition was balanced by increasing intracellular K+ levels.

Atouei et al. (2019)Atouei, M.T., Pourbabaee, A.A. & Shorafa, M. 2019. “Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria”. Iranian Journal of Science and Technology, Transactions A: Science, 43: 2725-2733, ISSN: 1028-6276. https://doi.org/10.1007/s40995-019-00753-x. reported that the PGPR-HT Bacillus subtilis subsp. inaquosorum, which produces exopolysaccharides, as well as Marinobacter lipolyticus SM19, reduced the adverse effects of salinity and drought on wheat.

Ullah and Bano (2015)Ullah, S. & Bano, A. 2015. “Isolation of PGPRs from rhizospheric soil of halophytes and its impact on maize (Zea mays L.) under induced soil salinity”. Canadian Journal of Microbiology, 61: 307-313, ISSN: 0008-4166. https://doi.org/10.1139/cjm-2014-0668. inoculated strains of Bacillus sp. and Arthrobacter pascens, able to solubilizing phosphorus and producing siderophores in corn plants induced by salinity stress, and observed that co-inoculation significantly improved biomass production, increased proline accumulation and increased the response of antioxidant enzymes, such as superoxide dismutase, catalase and ascorbate peroxidase.

Rajput et al. (2018)Rajput, L., Imran, A., Mubeen, F. & Hafeez, F.Y. 2018. “Wheat (Triticum aestivum L.) growth promotion by halo-tolerant PGPR-consortium”. Soil and Environment, 37(2): 178-189, ISSN: 2075-1141. https://doi.org/10.25252/SE/18/61522. found that a collection of halotolerant strains of Aeromonas spp., with indoleacetic acid (IAA) production, ACC-deaminase activity and ability to solubilize P-/Zn, when applied to wheat with a reduced dose of NPK, resulted in superior to non-halotolerant strains of Azospirillum sp. and Pseudomonas sp., in terms of plant growth, biomass production and grain yield. This collection showed significant potential in promoting wheat growth at germination, vegetative stage, and maturity under normal conditions, induced salinity, and natural salinity.

Lopez et al. (2011)López, R. C., Samson, R., Vandamme, P., Bettina, Eichler-Löbermann & Gómez, E. 2011. “Respuesta de combinaciones Rhizobium- Clitoria ternatea en condiciones de estrés salino en el Valle del Cauto en Cuba”. Revista Mexicana de Ciencias Pecuarias, 2(2): 199-207., when inoculating the forage legume Clitoria ternatea with a strain of Rhizobium sp., previously isolated in soils affected by salinity, observed that the effectiveness index of the inoculation based on aerial dry mass was higher, when they were compared with commercial strains.

Gupka and Pandey (2019)Gupta, S. & Pandey, S. 2019. “ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) Plants”. Frontiers in Microbiology, 10: 1506, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.01506. , when inoculating beans (Phaseolus vulgaris L.) with strains of Aneurinibacillus aneurinilyticus and Paenibacillus sp., highly producers of ACC-deaminase, confirmed its effect significantly superior to the control under simulated salinity conditions.

In a research carried out by Hidri et al. (2019)Hidri, R., Metoui-Ben Mahmoud, O., Debez, A., Abdelly, C., Barea, J.-M. & Azcon, R. 2019. “Modulation of C: N: P stoichiometry is involved in the eff ectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances”. Applied Soil Ecology, 143: 161-172, ISSN: 0929-1393. https://doi.org/10.1016/j.apsoil.2019.06.014. with the legume Sulla carnosa, which is an important forage resource for animals feeding in areas affected by salinity, the plants received a positive effect from the inoculation with Bacillus subtilis, simply as combined with the actinomycorrhizal fungus Rhizophagus intraradices. These authors suggest that the efficiency of B. subtilis was due to the high production of AIA, under salinity stress conditions.

Use of pgpr to combat water stress and salt stress in the future

 

Agriculture is considered the most vulnerable sector to climate change. By exploiting the benefits of plant-microbe interaction, a relevant approach is made to increase food production for a growing population in the current scenario of climate change. According to Kaushal and Wani (2015)Kaushal, M. & Wani, S. P. 2016. “Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands”. Annals of Microbiology, 66: 35-42, ISSN: 1590-4261. https://doi.org/10.1007/s13213-015-1112-3. , future research should seek an efficient microbial formulation to stimulate the yield of plants subjected to drought stress, in a way that substantially reduces the use of chemical fertilizers and pesticides.

The isolation of PGPR in areas that are subject to environmental stress is crucial for the formulation of bioinoculants that can be applied to crops that grow in stressful ecosystems. The results of Marasco et al. (2013), Mapelli et al. (2013)Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchi, D. & Borin, S. 2013. “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils”. BioMed Research International, Article ID 248078. https://doi.org/10.1155/2013/248078. , Becquer et al. (2017bBécquer, C. J., Ávila, U., Puentes, A., Nápoles, J.A., Cancio, T., Medinilla, F., Muir, I. & Madrigal, Y. 2017b. “Respuesta de Cenchrus ciliaris L. (Buffel cv. Formidable), inoculado con Bradyrhizobium sp. y Trichoderma harzianum, bajo estrés de sequía”. Cuban Journal of Agricultural Science, 51(2): 1-10, ISSN: 2079-3480., 2018Bécquer, C. J., Nápoles, J. A., Ávila, U., Yaldreisy Galdo; María Hernández; Ivón Muir; Orquidia Álvarez & F. Medinilla. 2018. “Productividad de bermuda Tifton 85, inoculada con Bradyrhizobium sp. y Trichoderma harzianum, sometida a estrés de sequía agrícola”. Pastos y Forrajes, 41 (3): 196-201, ISSN: 2078-8452., 2019aBécquer, C. J., González, P. J., Ávila, U., Nápoles, J. A., Galdo, Y., Muir, I., Hernández, M., Quintana, M. & Medinilla, F. 2019a. “Efecto de la inoculación de microorganismos benéficos y Quitomax® en Cenchrus ciliaris L., en condiciones de sequía agrícola”. Pastos y Forrajes, 42(1): 52-60, ISSN: 2078-8452. ) 2019bBécquer, C. J., Reyes, R., Fernández, D., González, P.J. & Medinilla, F. 2019b. “Rendimiento de pasto Mulato II inoculado con Bradyrhizobium sp. y Glomus cubense, en condiciones de sequía agrícola”. Cuban Journal of Agricultural Science, 53(3): 1-12, ISSN: 2079-3480.), among other authors, corroborate this hypothesis.

Barea (2015)Barea, J. M. 2015. “Future challenges and perspectives for applying microbial biotechnology in sustainable agricultura base don a better understanding of plant-microbiome interactions”. Journal of Soil Science and Plant Nutrition, 15: 261-282, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000021. assures that many of the mechanisms underlying plant-microbe interactions in the rhizosphere are still poorly explained. According to this author, the difficulties are mainly in describing the wide range of processes involved in microbial communities. The understanding of this exchange of signals is essential to optimize the adaptation mechanisms of plants and to improve the ability of soil microorganisms, so that stress in crops can be relieved.

Although still in an incipient phase, current research shows that the application of PGPR-HT represents an effective and sustainable solution for the rescue of saline soils. With the progress of methodologies and techniques, a wide range of PGPR metabolites and genes, which respond to salt stress, have been identified. However, new knowledges into the metabolomics of PGPR-HT during their interaction with plants in normal and stress environments are needed (Meena et al. 2017Meena, K.K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. 2017. “Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies”. Frontiers in Plant Science, 8:172, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00172.). According to Kumar Arora et al. (2020)Kumar Arora, N., Tahmish, F., Mishra, J., Mishra, I., Verma, S., Verma, R., Vermad, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, Ch. 2020. “Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils”. Journal of Advanced Research, 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003 , novel bioformulations can be developed by using various PGPR-HT or its metabolites to improve the productivity and quality of saline soils.

Conclusions

 

Water stress, caused by drought, as well as stress due to excess salts, limit the growth and productivity of plants. However, there are various ways to combat these types of environmental stress, and among the most innovative is the use of microbial inoculants.

There may be several mechanisms of action of bacteria to induce tolerance to stress, among which is the action of the enzyme ACC, the activity of catalase, the production of AIA, gibberellins and cytokinins, as well as other useful substances. There are proven results with the application of bioinoculants based on rhizobacteria and other beneficial microorganisms, which have showed their usefulness in increasing the productivity of different crops under environmental stress conditions. Many of the PGPRs that have been effective in transferring ISTs to plants have been isolated in ecosystems that are affected by different types of stress.

Future researches are needed to develop and apply novel bioinoculants in agriculture that neutralize the threats of drought and salinity. This objective can be achieved through the applied study of plant-microorganism interactions, under environmental stress conditions. It should not be ignored that several of defense mechanisms that exist in PGPR, and to transfer stress tolerance to plants, are indistinctly common to counteract the consequences of drought or salinity.

References

 

Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z.N.B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hana, M.M. 2017. “Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions”. Environmental and Experimental Botany, 134: 33-44, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2016.10.015.

Abril, J. L., Roncallo, B. & Bonilla, R. 2017. “Efecto de la inoculación del género Bacillus sobre el crecimiento de Megathyrsus maximus Jacq, en condiciones de estrés hídrico”. Revista Agronómica del Noroeste Argentino, 37(1): 25-37, ISSN: 2314-369X.

Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sánchez-Blanco, M. J. & Hernández, J.A. 2017. “Plant responses to salt stress: adaptive mechanisms”. Agronomy, 7(1): 18, ISSN: 2073-4395. https://doi.org/10.3390/agronomy7010018.

Ahmad, F., Ahmad, I. & Khan, M. S. 2008. "Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities". Microbiological Research, 163(2): 173-181. ISSN: 0944-5013, https://doi.org/10.101G/j:micres.2006.04.001.

Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I. & Wang, L.C. 2017. “Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids”. Frontiers in Plant Science, 8: 69, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00069.

Anjum, S.A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, W., Jan, S., Khan, I., Saleem, M.F., Bajwa, A.A., Wang, L., Mahmood, A., Samad, R.A. & Tung, S.A. 2016. “Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress”. Environmental Science and Pollution Research, 23: 11864-11875, ISSN: 0944-1344. https://doi.org/10.1007/s11356-016-6382-1.

Apel, K. & Hirt, H. 2004: “Reactive oxygen species: metabolism, oxidative stress, and signal transduction”. Annual Review of Plant Biology, 55: 373-399, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

Atouei, M.T., Pourbabaee, A.A. & Shorafa, M. 2019. “Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria”. Iranian Journal of Science and Technology, Transactions A: Science, 43: 2725-2733, ISSN: 1028-6276. https://doi.org/10.1007/s40995-019-00753-x.

Barea, J. M. 2015. “Future challenges and perspectives for applying microbial biotechnology in sustainable agricultura base don a better understanding of plant-microbiome interactions”. Journal of Soil Science and Plant Nutrition, 15: 261-282, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000021.

Bécquer, C. J., Ávila, U., Galdo, Y., Quintana, M., Álvarez, O., Puentes, A., Medinilla, F. & Mirabal, A. 2017a. “Selection of Bradyrhizobium sp. isolates due to their effect on maize under agricultural drought conditions in Sancti Spíritus, Cuba”. Cuban Journal of Agricultural Science, 51(1): 129-138, ISSN: 2079-3480.

Bécquer, C. J., González, P. J., Ávila, U., Nápoles, J. A., Galdo, Y., Muir, I., Hernández, M., Quintana, M. & Medinilla, F. 2019a. “Efecto de la inoculación de microorganismos benéficos y Quitomax® en Cenchrus ciliaris L., en condiciones de sequía agrícola”. Pastos y Forrajes, 42(1): 52-60, ISSN: 2078-8452.

Bécquer, C. J., Galdo, Y., Mirabal, A., Quintana, M. & Puentes, A. 2017c. “Rizobios aislados de leguminosas forrajeras de un ecosistema ganadero árido de Holguín, Cuba. Tolerancia a estrés abiótico y producción de catalasa (Fase II)”. Cuban Journal of Agricultural Science, 51(1): 117-127, ISSN: 2079-3480.

Bécquer, C.J., Galdo, Y., Ramos, Y., Peña, M.D., Almaguer, N., Peña, Y. F., Mirabal, A., Quintana, M. & Puentes, A. 2016. “Rizobios aislados de leguminosas forrajeras de un ecosistema ganadero árido de Holguín, Cuba. Nodulación y evaluación morfocultural (fase I)”. Cuban Journal of Agricultural Science, 50 (4): 607-617, ISSN: 2079-3480.

Bécquer, C. J., Nápoles, J. A., Ávila, U., Yaldreisy Galdo; María Hernández; Ivón Muir; Orquidia Álvarez & F. Medinilla. 2018. “Productividad de bermuda Tifton 85, inoculada con Bradyrhizobium sp. y Trichoderma harzianum, sometida a estrés de sequía agrícola”. Pastos y Forrajes, 41 (3): 196-201, ISSN: 2078-8452.

Bécquer, C. J.; Prévost, Danielle & Cloutier, J. 2001. Aspectos fisiológicos y genéticos de rizobios aislados de leguminosas forrajeras. Pastos y Forrajes. 24(2): 123-130, ISSN 2078-8452.

Bécquer, C.J., Prévost, Danielle & Prieto, A. 2000. Caracterización fisiológica-bioquímica de rizobios aislados de leguminosas forrajeras. Biología. 14(1): 57-65, ISSN: 0864-3490.

Bécquer, C.J., Prévost, Danielle, Cloutier, J. & Laguerre, G. 2002. Enfoque taxonómico de rizobios aislados de leguminosas forrajeras. Biología. 16: 137-145. ISSN: 1545-2123.

Bécquer, C.J., Puentes, A.B., Ávila, U., Quintana, M., Galdo, Y., Medinilla, F. & Mirabales, A. 2016. “Efecto de la inoculación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía”. Pastos y Forrajes. 39 (1): 19-26, ISSN 2078-8452.

Bécquer, C. J., Reyes, R., Fernández, D., González, P.J. & Medinilla, F. 2019b. “Rendimiento de pasto Mulato II inoculado con Bradyrhizobium sp. y Glomus cubense, en condiciones de sequía agrícola”. Cuban Journal of Agricultural Science, 53(3): 1-12, ISSN: 2079-3480.

Bécquer, C. J., Ávila, U., Puentes, A., Nápoles, J.A., Cancio, T., Medinilla, F., Muir, I. & Madrigal, Y. 2017b. “Respuesta de Cenchrus ciliaris L. (Buffel cv. Formidable), inoculado con Bradyrhizobium sp. y Trichoderma harzianum, bajo estrés de sequía”. Cuban Journal of Agricultural Science, 51(2): 1-10, ISSN: 2079-3480.

Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G. & Davies, W. J. 2014. “Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth”. Plant Physiology and Biochemistry, 74: 84-91, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2013.10.032.

Benavides, A. 2002. Estrés por factores abióticos. Pp. 52-73. En: Ecofisiología y bioquímica del estrés en las plantas. Dr. Adalberto Benavides Mendoza (Editor). Departamento de Horticultura. Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coah, México. 228 p.

Bharti, N., Yadav, D., Barnawal, D., Maji, D. & Kalra, A. 2013. "Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress". World Journal of Microbiology and Biotechnology, 29: 379-387, ISSN: 1573-0972. https://doi.org/10.1007/s11274-012-1192-1.

Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.Y., Lee, Y. H., Cho, B.H., Yang, Kwang-Yeol., Ryu, Choong-Min; Kim, Y. C. 2008. “2R, 3R-Butanediol, a bacterial volatile produced by Pseudo monas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana”. Molecular Plant-Microbe Interactions, 21: 1067-1075, ISSN: 0894-0282. https://doi.org/10.1094/MPMI-21-8-1067

Chowdhury, A. K. 2003. “Control of Sclerotium blight of groundnut by growth substances”. Crop Research, 25(2): 355-359, ISSN: 0970-4884.

Curá, J. A., Franz, D. R., Filosofía, J. E., Balestrasse, K. B. & Burgueño, L. E. 2017. “Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of Maize to drought stress”. Microorganisms, 5(3): 41, ISSN: 2076-2607. https://doi.org/10.3390/microorganisms5030041

Davies, W. J., Kudoyarova, G. & Hartung, W. 2005. “Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought”. Journal of Plant Growth Regulation, 24(4): 285-295, ISSN: 1435-8107. https://doi.org/10.1007/s00344-005-0103-1.

de Zelicourt, A., Al-Yousif, M. & Hirt, H. 2013. “Rhizosphere microbes as essential partners for plant stress tolerance”. Molecular Plant, 6(2): 242-245, ISSN: 1752-9867. https://doi.org/10.1093/mp/sst028.

Dimkpa, C., Weinand, T. & Asch, F. 2009. “Plant-rhizobacteria interactions alleviate abiotic stress conditions”. Plant, Cell and Environment, 32(12): 1682-1694, ISSN: 1365-3040. https://doi.org/10.1111/j.1365-040.2009.02028.x.

Dubois, M., Van Den Broeck, L. & Inzé, D. 2018. “The pivotal role of ethylene in plant growth”. Trends in Plant Science, 23(4): 311-323, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2018.01.003.

Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd_Allah, E.F. & Hashem, A. 2017. “Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness”. Frontiers in Microbiology, 8: 2104, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2017.02104.

Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. & Arora, N.K. 2019. “Salttolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils”. Frontiers in Microbiology, 10: 2791, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02791.

Etesami, H. & Glick, B.R. 2020. “Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants”. Environmental and Experimental Botany, 178: 104124, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2020.104124.

Etesami, H. & Maheshwari, D.K. 2018. “Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects”. Ecotoxicology and Environmental Safety, 156: 225-246, ISSN: 1090-2414. https://doi.org/10.1016/j.ecoenv.2018.03.013

García-Fraile, P., Menéndez, E. & Rivas, R. 2015. “Role of bacterial biofertilizers in agriculture and forestry”. AIMS Bioengineering, 2(3): 183-205, ISSN: 2375-1495. https://doi.org/10.3934/bioeng.2015.3.183.

García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R. Ramirez-Trujillo, J.A. & Groppa, M.D. 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202: 21-29, ISSN: 2328-4137. http://dx.doi.org/10.1016/j.micres.2017.04.007.

Glick, B. 2016. Alleviating plant stress using bacteria. III Taller Latinoamericano de PGPR. Pucón, Chile. p. 13.

Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009.

Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L. & Krishnamurthy, L. 2015. “Plant growth promoting rhizobia: challenges and opportunities”. 3Biotech, 5(4): 355-377, ISSN: 2190-5738. https://doi.org/10.1007/s13205-014-0241-x.

Gupta, J., Rathour, R., Singh, R. & Thakur, I.S. 2019. “Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7”. Bioresource Technology, 282: 417-424, ISSN: 1873-2976. https://doi.org/10.1016/j.biortech.2019.03.054.

Gupta, S. & Pandey, S. 2019. “ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) Plants”. Frontiers in Microbiology, 10: 1506, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.01506.

Hartmann, A., Fischer, D., Kinzel, L., Chowdhury, S. P., Hofmann, A., Baldani, J. I. & Rothballerd, M. 2019. “Assessment of the structural and functional diversities of plant microbiota: achievements and challenges - a review”. Journal of Advanced Research, 19: 3-13, ISSN: 2090-1232. https://doi.org/10.1016/j.jare.2019.04.007.

Hashem, A.; Abd_Allah, E.; Alqarawi, A.; Al-Huqail, A. & Shah, M. 2016. “Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71)”. BioMed Research International, Article ID 6294098, ISSN: 2314-6141. https://doi.org/10.1155/2016/6294098.

Hassan, W., Hussain, M., Bashir, S., Shah, A. N., Bano, R. & David, J. 2015. “ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.)”. Journal of Soil Science and Plant Nutrition, 15(1): 232-248, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000019.

Hidri, R., Metoui-Ben Mahmoud, O., Debez, A., Abdelly, C., Barea, J.-M. & Azcon, R. 2019. “Modulation of C: N: P stoichiometry is involved in the eff ectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances”. Applied Soil Ecology, 143: 161-172, ISSN: 0929-1393. https://doi.org/10.1016/j.apsoil.2019.06.014.

Hussain, I., Rasheed, R., Ashraf, M.A., Mohsin, M., Ali Shah, S.M., Rashid, A., Akram, M., Nisar, J. & Riaz, M. 2020. “Foliar applied acetylsalicylic acid induced growth and key-biochemical changes in Chickpea (Cicer arietinum L.) under drought stress. Dose-Response: An International Journal. 1: 1-13. https://doi.org/10.1177/1559325820956801.

Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A. & Khan, M. 2017. “Ethylene role in plant growth, development and senescence: interaction with other phytohormones”. Frontiers in Plant Science, 8: 475, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00475.

Islam, F., Ali, B., Wang, J., Farooq, M. A., Gill, R. A., Ali, S., Wang, D. & Zhou, W. 2016. “Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars”. Plant Physiology and Biochemistry, 107: 82-95, ISSN: 0981-9428. https://doi.org/10.1007/s13205-017-1074-1

Jochum, M. D., McWilliams, K. L, Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A. & Jo, Y-K. 2019. “Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses”. Frontiers in Microbiology, 10: 2106, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02106.

Kaushal, M. & Wani, S. P. 2016. “Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands”. Annals of Microbiology, 66: 35-42, ISSN: 1590-4261. https://doi.org/10.1007/s13213-015-1112-3.

Khan N., Bano, A. & Babar, M. A. 2019. “Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L”. PLoS One 14(3): e0213040, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0213040

Khan, M. I., Nazir, F., Asgher, M., Per, T. S. & Khan, N. A. 2015. "Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat”. Journal of Plant Physiology, 173: 9-18. https://doi.org/10.1016/j.jplph.2014.09.011.

Kubis, J., Floryszak-Wieczorek, J. & Arasimowicz-Jelonek, M. 2014. “Polyamines induce adaptive responses in water deficit stressed cucumber roots”. Journal of Plant Research,127: 151-158. https://doi.org/10.1007/s10265-013-0585-z.

Kumar Arora, N., Tahmish, F., Mishra, J., Mishra, I., Verma, S., Verma, R., Vermad, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, Ch. 2020. “Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils”. Journal of Advanced Research, 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003

Kumari, B. S., Ram, M. R. & Mallaiah, K. V. 2009. “Studies on exopolysaccharide and indole acetic acid production by Rhizobium strains from Indigofera”. African Journal of Microbiology Research, 3(1): 10-14, ISSN: 1996-1808.

Liu, J., Xie, B., Shi, X., Ma, J. & Guo, C. 2015. “Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil”. International Journal Environmental Science Technology, 12: 3887-3894. https://doi.org/10.1007/s13762-015-0798-x.

Liu, X., Ji, C., Tian, H., Wang, X., Hao, L., Wang, C., Zhou, Y., Xu, R., Song, X., Liu, Y., Du, J. & Liu, X. 2020. “Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in Wheat (Triticum aestivum)”. Research Square,https://doi.org/10.21203/rs.3.rs-19695/v1.

López, R. C., Samson, R., Vandamme, P., Bettina, Eichler-Löbermann & Gómez, E. 2011. “Respuesta de combinaciones Rhizobium- Clitoria ternatea en condiciones de estrés salino en el Valle del Cauto en Cuba”. Revista Mexicana de Ciencias Pecuarias, 2(2): 199-207.

Loreto, F. & Schnitzler, J. P. 2010. “Abiotic stresses and induced BVOCs”. Trends in Plant Science, 15: 154-166. ISSN: 1360-1385.

Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. 2013. “Community and Ecosystem Effects of Buffelgrass (Pennisetum ciliare) and Nitrogen Deposition in the Sonoran Desert”. Invasive Plant Science and Management, 6(1): 65-78, ISSN: 1939-7291, https://doi.org/10.1614/IPSM-D-11-00071.1.

Maksimov, I., Veselova, S., Nuzhnaya, T., Sarvarova, E. & Khairullin, R. 2015. “Plant growth-promoting bacteria in regulation of plant resistance to stress factors”. Russian Journal of Plant Physiology, 62(6): 715-26.

Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchi, D. & Borin, S. 2013. “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils”. BioMed Research International, Article ID 248078. https://doi.org/10.1155/2013/248078.

Mayak, S., Tirosh, T. & Glick, B.R. 2004. “Plant growth-promoting bacteria that confer resistance in tomato to salt stress”. Plant Physiology and Biochemistry, 42(6): 565-572, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2004.05.009.

Meena, K.K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. 2017. “Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies”. Frontiers in Plant Science, 8:172, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00172.

Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R. & Varshney, R.K. 2012. “Integrated genomics: physiology and breeding approaches for improving drought tolerance in crops”. Theor. Appl. Genet. 125: 625-645. https://doi.org/10.1007/s00122-012-1904-9.

Mishra, J., Fatima, T. & Arora, N. K. 2018. Plant Microbiome: Stress Response. In: Egamberdieva, D., Ahmad, P. eds. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Singapore: Springer; p. 127-163. https://doi.org/10.1007/978-981-10-5514-0_6.

Müller, M. & Munné-Bosch, S. 2015. “Ethylene response factors: a key regulatory hub in hormone and stress signaling”. Plant Physiology, 169(1): 32-41, ISSN: 1532-2548. https://doi.org/10.1104/pp.15.00677.

Munns, R. & Tester, M. 2008. “Mechanisms of Salinity Tolerance”. Annual Review of Plant Biology, 59(1): 651-681, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.59.032607.092911.

Mutumba, F.A., Zagal, E., Gerding, M., Castillo-Rosales, D., Paulino, L. & Schoebitz, M. 2018. “Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes”. Journal of Soil Science and Plant Nutrition, 18 (4): 1080-1096, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162018005003003.

Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. "Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity". Canadian Journal of Microbiology, 53(10): 1141-1149, ISSN: 1480-3275. http://dx.doi.org/10.1139/W07-081.

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. & Ashraf, M. 2014. “The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments”. Biotechnology Advances, 32(2): 429-448, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2013.12.005.

Nakashima, K. & Yamaguchi-Shinozaki, K. 2013. “ABA signaling in stress-response and seed development”. Plant Cell Reports, 32: 959-970, ISSN:. 1432-203X. https://doi.org/10.1007/s00299-013-1418-1.

Niinemets, U. 2010. “Mild versus severe stress and BVOCs: thresholds, priming and consequences”. Trends in Plant Science, 15(3): 145-153, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.008.

Noctor, G., Mhamdi, A. & Foyer, C.H. 2014: “The roles of reactive oxygen metabolism in drought: not so cut and dried”. Plant Physiology, 164: 1636-1648, ISSN: 1532-2548. https://doi.org/10.1104/pp.113.233478.

Osakabe, Y., Osakabe, K., Shinozaki, K. &Tran, L.-S. P. 2014. “Response of plants to water stress”. Frontiers in Plant Science, 5: 86, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00086.

Pan, J., Peng, F., Xue, X., You, Q., Zhang, W., Wang, T. & Huang, C. 2019. “The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis”. Sustainability, 11(2): 378, ISSN: 2071-1050. https://doi.org/10.3390/su11020378.

Paul, D. & Lade, H. 2014. “Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review”. Agronomy for Sustainable Development, 34: 737-752, ISSN: 1773-0155. https://doi.org/10.1007/s13593-014-0233-6.

Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X. & Wang, D.L. 2008. “Eco-physiological characteristics of Alfalfa seedlings in response to various mixed salt-alkaline stresses”. Journal of Integrative Plant Biology, 50(1): 29-39, ISSN: 1744-7909. https://doi.org/10.1111/j.1744-7909.2007.00607.x.

Petruzzelli, L., Coraggio, I. & Leubner-Metzger, G. 2000. “Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase”. Planta, 211(1): 144-149, ISSN: 1432-2048. https://doi.org/10.1007/s004250000274.

Pilet, P.E. & Chanson, A. 1981. “Effect of abscisic acid on maize root growth: a critical examination”. Plant Science Letters, 21(2): 99-106, ISSN: 0304-4211. https://doi.org/10.1016/0304-4211(81)90175-9.

Pilet, P.E. & Saugy, M. 1987. “Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination”. Plant Physiology, 83(1):33-38, ISSN: 1532-2548. https://doi.org/10.1104/pp.83.1.33.

Qin, Y., Druzhinina, I. S., Pan, X. & Yuan, Z. 2016. “Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture”. Biotechnology Advances, 34(7): 1245-1259, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2016.08.005.

Rajput, L., Imran, A., Mubeen, F. & Hafeez, F.Y. 2018. “Wheat (Triticum aestivum L.) growth promotion by halo-tolerant PGPR-consortium”. Soil and Environment, 37(2): 178-189, ISSN: 2075-1141. https://doi.org/10.25252/SE/18/61522.

Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M.J. & De Kok, L.J. 2017. “Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa”. Plant Soil, 411(1): 319-332, ISSN: 1573-5036. https://doi.org/10.1007/s11104-016-3026-7.

Rosier, A., Medeiros, F.H. & Bais, H.P. 2018. “Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plantmicrobe interactions”. Plant and Soil, 428(1-2): 35-55, ISSN: 1573-5036. https://doi.org/10.1007/s11104-018-3679-5.

Ruiz, M. & Terenti, O. 2012. “Germinación de cuatro pastos bajo condiciones de estrés salino”. Phyton, 81(2): 169-176, ISSN: 1851-5657.

Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K. & Saikia, R. 2018. “Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India”. Available: https://www.nature.com/scientificreports

Sarma, R.K. & Saikia, R. 2014. “Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21”. Plant and Soil, 377: 111-126, ISSN: 1573-5036. https://doi.org/10.1007/s11104-013-1981-9.

Schikora, A., Schenk, S.T. & Hartmann, A. 2016. “Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acylhomoserine lactone group”. Plant Molecular Biology, 90(6): 605-612, ISSN 1573-5028. https://doi.org/10.1007/s11103-016-0457-8.

Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.

Singh, R. P., Runthala, A., Khan, S. & Jha, P.N. 2017. “Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8”. PLoS One. 12(9): e0183513, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0183513.

Souza, R.D., Ambrosini, A. & Passaglia, L.M.P. 2015. “Plant growth-promoting bacteria as inoculants in agricultural soils”. Genetics and Molecular Biology, 38(4): 401-419, ISSN: 1678-4685. https://doi.org/10.1590/S1415-475738420150053.

Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity”. Plant Science, 161(3): 613-619, ISSN: 0168-9452. https://doi.org/10.1016/S0168-9452(01)00450-2.

Sukweenadhi, J., Balusamy, S.R., Kim, Y.J., Lee, C.H., Kim, Y.J., Koh, S.C. & Yang, D.C. 2018. “Growth- promoting bacteria, Paenibacillus yonginensis DCY84T, enhanced salt stress tolerance by activating defense-related systems in Panax ginseng”. Frontiers in Plant Science, 9: 1-17, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2018.00001

Szabados, L. & Savoure, A. 2010. “Proline: a multifunctional amino acid”. Trends in Plant Science, 15(2): 89-97, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.009.

Tanveer, M., Shahzad, B., Sharma, A. & Khan, E.A. 2019. “24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants”. Plant Physiology and Biochemistry, 135: 295-303, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2018.12.013.

Tenhaken, R. 2015. “Cell wall remodeling under abiotic stress”. Frontiers in Plant Science, 5: 771, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00771.

Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086.

Timmusk, S. & Nevo, E. 2011. Plant root associated biofilms. In: Maheshwari D. K. editor. Bacteria in agrobiology (vol 3): Plant nutrient management. Berlin: Springer Verlag. pp. 285-300.

Ullah, S. & Bano, A. 2015. “Isolation of PGPRs from rhizospheric soil of halophytes and its impact on maize (Zea mays L.) under induced soil salinity”. Canadian Journal of Microbiology, 61: 307-313, ISSN: 0008-4166. https://doi.org/10.1139/cjm-2014-0668.

Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N. & Choudhary, D.K. 2016. “PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside”. Journal of Basic Microbiology, 56(11): 1274-1288, ISSN: 1521-4028. https://doi.org/10.1002/jobm.201600188.

Villagra, P. E., Giordano, C., Alvarez, J., Bruno, J., Guevara, A., Sartor, C., Passera, C. & Greco, S. 2011. “Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina”. Ecología Austral, 21: 29-42, ISSN: 1667-7838.

Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M. & SkZ, A. 2015. “Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria”. Microbiological Research, 184: 13-24, ISSN 0944-5013. http://dx.doi.org/10.1016/j.micres.2015.12.003

Xu, Z., Jiang, Y., Jia, B. & Zhou, G. 2016. “Elevated-CO2 response of stomata and its dependence on environmental factors”. Frontiers in Plant Science, 7: 657, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2016.00657.

Yang, J., Kloepper, J. W. & Ryu, C. 2008. “Rhizosphere bacteria help plants tolerate abiotic stress”. Trends in Plant Science. 14(1): 1-4. ISSN: 1360-1383, https://doi.org/10.101G1j.tplants.2008.10.004.

Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S. & Hassan, M.N. 2020. “Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress”. PLoS ONE, 15(4), ISSN: 1932-6203 https://doi.org/10.1371/journal.pone.0231348e0231348.

Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. & Paré, P. W. 2008. “Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1”. Molecular Plant-Microbe Interactions, 21(6): 737-744, ISSN: 1943-7706. https://doi.org/10.1094/MPMI -21-6-07.

Zhang, J.X. & Kirkham, M.B. 1994. “Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species”. Plant and Cell Physiology, 35(5): 785-791, ISSN: 1471-9053. https://doi.org/10.1093/oxfordjournals.pcp.a078658.

Zhang, M., Yang, L., Hao, R., Bai, X., Wang, Y. & Yu, X. 2020. “Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance”. Plant and Soil, 452 (1-2): 423-440, ISSN 1573-5036. https://doi.org/10.1007/s11104-020-04582-5.

Cuban Journal of Agricultural Science Vol. 56, No. 2, April-June, 2022, ISSN: 2079-3480
 
Artículo de Revisión

Las rizobacterias y su contribución a la tolerancia de las plantas a la sequía y a la salinidad

 

iDC. J. Bécquer Granados*✉:cjbecquerg@gmail.com


Instituto de Investigaciones de Pastos y Forrajes, Estación Experimental Sancti Spíritus, Apdo. 2228, Sancti Spíritus, Cuba

 

*Email:cjbecquerg@gmail.com

RESUMEN

El efecto positivo de las rizobacterias promotoras del crecimiento vegetal en las plantas que se encuentran sometidas a estrés ambiental se ha estudiado durante décadas. Esta reseña aborda, fundamentalmente, los aspectos relacionados con la base teórica del mecanismo fisiológico-bioquímico de estos microorganismos, y que tienen que ver con la tolerancia a la sequía y a la salinidad por parte de las plantas, donde se incluye la producción de fitohormonas, enzimas y osmolitos, entre otros. Se recopila, además, información acerca de los avances alcanzados en esta temática en los últimos años, en el mundo y en Cuba, sobre todo en lo relacionado con cereales, leguminosas y pastos. Se considera que el estrés hídrico, así como el salino, limita el crecimiento y la productividad de los cultivos, pero la utilización de inoculantes microbianos se destaca, entre las formas que existen para revertir las consecuencias de esos factores ambientales estresantes. Se citan resultados probados con la aplicación de bioinoculantes a partir de rizobacterias y otros microorganismos benéficos que demuestran su utilidad, al incrementar la productividad de diferentes cultivos, en condiciones de estrés por sequía y salinidad. Se hacen necesarias investigaciones futuras que desarrollen y apliquen bioinoculantes novedosos en la agricultura, de modo que se puedan contrarrestar las amenazas de la sequía y la salinidad. Este objetivo se puede lograr mediante el estudio aplicado de las interacciones planta-microorganismo, en condiciones de estrés ambiental.

Palabras clave: 
rizobacterias, pastos, tolerancia, productividad

Introducción

 

Se conoce que el estrés hídrico provocado por la sequía limita el crecimiento y la productividad de los cultivos (Nakashima y Yamaguchi-Shinozaki 2013Nakashima, K. & Yamaguchi-Shinozaki, K. 2013. “ABA signaling in stress-response and seed development”. Plant Cell Reports, 32: 959-970, ISSN:. 1432-203X. https://doi.org/10.1007/s00299-013-1418-1.), y es por mucho el más importante estrés ambiental que afecta a la agricultura. El estrés hídrico prolongado disminuye el potencial de agua de las hojas, su tamaño y apertura de los estomas, detiene el crecimiento de las raíces, reduce el número de semillas, su tamaño y viabilidad, demora la floración y la fructificación y limita el crecimiento de la planta y su productividad (Osakabe et al. 2014Osakabe, Y., Osakabe, K., Shinozaki, K. &Tran, L.-S. P. 2014. “Response of plants to water stress”. Frontiers in Plant Science, 5: 86, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00086. y Xu et al. 2016Xu, Z., Jiang, Y., Jia, B. & Zhou, G. 2016. “Elevated-CO2 response of stomata and its dependence on environmental factors”. Frontiers in Plant Science, 7: 657, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2016.00657. ).

La presencia excesiva de sales en el suelo es otro de los mayores factores responsables de la reducción del crecimiento vegetal y la productividad de los cultivos en todo el planeta. La salinidad crea un estrés osmótico, que se puede considerar como una sequía fisiológica; sin embargo, una acumulación de sales más alta puede causar una toxicidad iónica, que induce a una senescencia de las hojas (Munns y Tester 2008Munns, R. & Tester, M. 2008. “Mechanisms of Salinity Tolerance”. Annual Review of Plant Biology, 59(1): 651-681, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.59.032607.092911. ). Algunos de los efectos del estrés hídrico causados por la sequía en las plantas se pueden encontrar también en condiciones de estrés salino.

El problema de los suelos salinos es frecuente en las zonas áridas y semiáridas, debido al uso irracional de fertilizantes químicos y a la utilización inapropiada de sistemas de riego (Bharti et al. 2013Bharti, N., Yadav, D., Barnawal, D., Maji, D. & Kalra, A. 2013. "Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress". World Journal of Microbiology and Biotechnology, 29: 379-387, ISSN: 1573-0972. https://doi.org/10.1007/s11274-012-1192-1. ), por lo que ambos tipos de estrés se encuentran altamente correlacionados. Este tipo de estrés ambiental ha convertido tierras agronómicamente útiles en tierras improductivas, y alcanza una afectación del 20 % en el mundo (Liu et al. 2020Liu, X., Ji, C., Tian, H., Wang, X., Hao, L., Wang, C., Zhou, Y., Xu, R., Song, X., Liu, Y., Du, J. & Liu, X. 2020. “Bacillus subtilis HG-15, a halotolerant rhizoplane bacterium, promotes growth and salinity tolerance in Wheat (Triticum aestivum)”. Research Square,https://doi.org/10.21203/rs.3.rs-19695/v1. ).

Según Saikia et al. (2018)Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K. & Saikia, R. 2018. “Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India”. Available: https://www.nature.com/scientificreports , además de los enfoques clásicos o transgénicos de hibridación en especies vegetales, la aplicación de las rizobacterias promotoras del crecimiento vegetal (PGPR, por sus siglas en inglés) es una estrategia alternativa para mejorar la salud de la planta en condiciones ambientales estresantes. Glick (2016)Glick, B. 2016. Alleviating plant stress using bacteria. III Taller Latinoamericano de PGPR. Pucón, Chile. p. 13. afirmó que las PGPR no solo promueven directamente el crecimiento de las plantas, sino que las protegen contra un amplio rango de estreses abióticos, que incluyen la sequía y la salinidad.

En este material se analizarán, primeramente, un conjunto de elementos conceptuales. Después se abordarán algunos resultados investigativos acerca del efecto beneficioso de las PGPR en los cultivos, en condiciones de estrés por sequía y por salinidad.

El objetivo de esta revisión es sintetizar conocimientos acerca del efecto de la sequía y la salinidad en los cultivos. Se exponen resultados investigativos sobre esta temática, con énfasis en cereales, leguminosas y pastos, así como en la utilización de los PGPR. Se presentan además, algunos logros en esta línea de investigación en el ámbito internacional y en Cuba.

Elementos conceptuales: efecto de la sequía en las plantas

 

El estrés por sequía se considera el estrés abiótico más dañino para la productividad de los cultivos (Mir et al. 2012Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R. & Varshney, R.K. 2012. “Integrated genomics: physiology and breeding approaches for improving drought tolerance in crops”. Theor. Appl. Genet. 125: 625-645. https://doi.org/10.1007/s00122-012-1904-9. ). El estrés hídrico provocado por la sequía incrementa la producción de las especies reactivas del oxígeno (ROS, por sus siglas en inglés), lo que puede causar daño en estructuras celulares, así como estrés oxidativo. Las moléculas oxidativas dañan en un inicio los cloroplastos y causan efectos perjudiciales, que incluyen la destrucción de la clorofila, peroxidación de los lípidos y pérdida de proteínas (Zhang y Kirkham 1994Zhang, J.X. & Kirkham, M.B. 1994. “Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species”. Plant and Cell Physiology, 35(5): 785-791, ISSN: 1471-9053. https://doi.org/10.1093/oxfordjournals.pcp.a078658. ). La generación de las ROS, como el peróxido de hidrógeno (H2O2), es una de las más tempranas respuestas bioquímicas al estrés y ayuda a desencadenar las reacciones subsecuentes de defensa en las plantas (Apel y Hirt 2004Apel, K. & Hirt, H. 2004: “Reactive oxygen species: metabolism, oxidative stress, and signal transduction”. Annual Review of Plant Biology, 55: 373-399, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.55.031903.141701. ). Según Noctor et al. (2014)Noctor, G., Mhamdi, A. & Foyer, C.H. 2014: “The roles of reactive oxygen metabolism in drought: not so cut and dried”. Plant Physiology, 164: 1636-1648, ISSN: 1532-2548. https://doi.org/10.1104/pp.113.233478. , el mantenimiento del balance de la producción y extracción de las ROS es crucial para la tolerancia a la sequía. Los sistemas de defensa enzimáticos y no enzimáticos reducen los efectos dañinos de estos compuestos. El sistema de defensa enzimático incluye al superóxido dismutasa, catalasa, guayacol peroxidasa, ascorbato peroxidasa, glutatión reductasa, monodihidroascorbato reductasa y dihidroascorbato reductasa (Munns y Tester 2008Munns, R. & Tester, M. 2008. “Mechanisms of Salinity Tolerance”. Annual Review of Plant Biology, 59(1): 651-681, ISSN: 1545-2123. https://doi.org/10.1146/annurev.arplant.59.032607.092911. ).

Uno de los mecanismos que las plantas desarrollan para contrarrestar el efecto del estrés por sequía es la acumulación de osmolitos u osmoprotectores (Anjum et al. 2017Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I. & Wang, L.C. 2017. “Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids”. Frontiers in Plant Science, 8: 69, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00069. y Tarveer et al. 2019Tanveer, M., Shahzad, B., Sharma, A. & Khan, E.A. 2019. “24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants”. Plant Physiology and Biochemistry, 135: 295-303, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2018.12.013. ). Una variedad de moléculas osmóticamente activas (azúcares, prolina, glicina betaína y ácidos orgánicos) se acumulan para balancear las relaciones hídricas durante el estrés por sequía. El aminoácido prolina es el osmolito clave, que actúa como protector de las enzimas y de la membrana celular. Este conocido osmoprotector promociona la protección de la planta ante la sequía, salinidad y otros tipos de estrés (Peng et al. 2008Peng, Y. L., Gao, Z. W., Gao, Y., Liu, G. F., Sheng, L. X. & Wang, D.L. 2008. “Eco-physiological characteristics of Alfalfa seedlings in response to various mixed salt-alkaline stresses”. Journal of Integrative Plant Biology, 50(1): 29-39, ISSN: 1744-7909. https://doi.org/10.1111/j.1744-7909.2007.00607.x. ). Según Szabados y Savoure (2010)Szabados, L. & Savoure, A. 2010. “Proline: a multifunctional amino acid”. Trends in Plant Science, 15(2): 89-97, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.009. , el incremento en los niveles de prolina se puede atribuir al aumento en síntesis y decrecimiento en degradación en condiciones de estrés salino o hídrico. Rezayian et al. (2018) observaron que el contenido de H2O2 y de prolina se incrementa en plantas de colza sometidas a estrés hídrico, en comparación con el control. El incremento de dicho aminoácido en condiciones de estrés hídrico ayuda a la planta mediante ajustes osmóticos.

El ácido abscísico (ABA, por sus siglas en inglés) es importante en muchos procesos fisiológicos en las plantas. Esta hormona es necesaria para la regulación de varios acontecimientos durante la última etapa del desarrollo seminal, y es crucial para la respuesta al estrés ambiental (desecación, salinidad y frío). Asimismo, controla el crecimiento de la planta e inhibe la elongación radical (Pilet y Chanson 1981Pilet, P.E. & Chanson, A. 1981. “Effect of abscisic acid on maize root growth: a critical examination”. Plant Science Letters, 21(2): 99-106, ISSN: 0304-4211. https://doi.org/10.1016/0304-4211(81)90175-9. ), lo que significa que existe una correlación negativa entre el crecimiento y el ABA endógeno contenido en las plantas (Pilet y Saugy 1987Pilet, P.E. & Saugy, M. 1987. “Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination”. Plant Physiology, 83(1):33-38, ISSN: 1532-2548. https://doi.org/10.1104/pp.83.1.33. ). También desempeña una función central en la señal celular y la que existe entre las raíces y la parte aérea de la planta durante el estrés por sequía; además de participar en la regulación del crecimiento y conductancia estomática (Davies et al. 2005Davies, W. J., Kudoyarova, G. & Hartung, W. 2005. “Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought”. Journal of Plant Growth Regulation, 24(4): 285-295, ISSN: 1435-8107. https://doi.org/10.1007/s00344-005-0103-1. ).

Según Villagra et al. (2011)Villagra, P. E., Giordano, C., Alvarez, J., Bruno, J., Guevara, A., Sartor, C., Passera, C. & Greco, S. 2011. “Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina”. Ecología Austral, 21: 29-42, ISSN: 1667-7838. , las gramíneas pratenses del monte central de Argentina, en el período seco, regulan la pérdida de agua mediante el cierre estomático, y posteriormente mediante cambios en la arquitectura foliar, al plegar las hojas sobre la nervadura central o plegando la lámina foliar por la mitad, como es el caso de Pappophorum caespitosum y Trichloris crinita, respectivamente.

Cenchrus ciliaris, otra gramínea pratense, se ha catalogado como resistente al estrés hídrico (Ruiz y Terenti 2012Ruiz, M. & Terenti, O. 2012. “Germinación de cuatro pastos bajo condiciones de estrés salino”. Phyton, 81(2): 169-176, ISSN: 1851-5657. ). Esta especie se cultiva de forma extensiva en ecosistemas áridos y semiáridos en varios países, y se utiliza para estabilizar suelos e incrementar la productividad de praderas que han experimentado el efecto de la sequía combinado con el sobrepastoreo (Lyons et al. 2013Lyons, K. G., Maldonado-Leal, B. G. & Owen, G. 2013. “Community and Ecosystem Effects of Buffelgrass (Pennisetum ciliare) and Nitrogen Deposition in the Sonoran Desert”. Invasive Plant Science and Management, 6(1): 65-78, ISSN: 1939-7291, https://doi.org/10.1614/IPSM-D-11-00071.1. ).

La inducción de aceites volátiles tiene lugar cuando las plantas se exponen a varios tipos de estrés (Loreto y Schnitzler 2010Loreto, F. & Schnitzler, J. P. 2010. “Abiotic stresses and induced BVOCs”. Trends in Plant Science, 15: 154-166. ISSN: 1360-1385.). Estos aceites volátiles inducidos por estrés sirven como señales para desarrollar respuestas primarias y sistémicas en la planta y en las circundantes (Niinemets, 2010Niinemets, U. 2010. “Mild versus severe stress and BVOCs: thresholds, priming and consequences”. Trends in Plant Science, 15(3): 145-153, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2009.11.008. ). Según Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. , los aceites volátiles son candidatos prometedores en una técnica no invasiva para evaluar el estrés por sequía y su mitigación durante el desarrollo del estrés.

En las plantas, a través de la vía biosintética del etileno, el aminoácido metionina se convierte en S-adenosil metionina (S-AdoMet, o SAM) por la enzima S-adenosil-L-metionina sintetasa (SAM sintetasa). La S-AdoMet, a su vez, se transforma por la 1-aminociclopropano-1-carboxilato sintetasa (ACS) en 1-aminociclopropano-1-carboxilato (ACC), precursor inmediato del etileno (Vurukonda et al. 2015Vurukonda, S.S.K.P., Vardharajula, S., Shrivastava, M. & SkZ, A. 2015. “Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria”. Microbiological Research, 184: 13-24, ISSN 0944-5013. http://dx.doi.org/10.1016/j.micres.2015.12.003 ).

El etileno es una hormona vegetal relacionada con la regulación de varios procesos fisiológicos en las plantas, pero su producción en ellas, debido al cambio climático, inflige una reducción significativa en el crecimiento vegetal y su desarrollo, y si no se controla correctamente, puede derivar en la muerte de la planta (Iqbal et al. 2017Iqbal, N., Khan, N. A., Ferrante, A., Trivellini, A., Francini, A. & Khan, M. 2017. “Ethylene role in plant growth, development and senescence: interaction with other phytohormones”. Frontiers in Plant Science, 8: 475, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00475. y Dubois et al. 2018Dubois, M., Van Den Broeck, L. & Inzé, D. 2018. “The pivotal role of ethylene in plant growth”. Trends in Plant Science, 23(4): 311-323, ISSN: 1360-1385. https://doi.org/10.1016/j.tplants.2018.01.003. ). Por tanto, el aumento en la producción de etileno en un gran número de plantas (figura 1) es un indicador de susceptibilidad hacia varios tipos de estrés ambiental, entre los que se pueden citar el estrés por sequía y por salinidad (Glick 2014Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , Müller y Munné-Bosch 2015Müller, M. & Munné-Bosch, S. 2015. “Ethylene response factors: a key regulatory hub in hormone and stress signaling”. Plant Physiology, 169(1): 32-41, ISSN: 1532-2548. https://doi.org/10.1104/pp.15.00677. , Liu et al. 2015Liu, J., Xie, B., Shi, X., Ma, J. & Guo, C. 2015. “Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil”. International Journal Environmental Science Technology, 12: 3887-3894. https://doi.org/10.1007/s13762-015-0798-x. y Abiri et al. 2017Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z.N.B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hana, M.M. 2017. “Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions”. Environmental and Experimental Botany, 134: 33-44, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2016.10.015.).

Figure 1.  Ethylene plant hormone affects a great number of different processes growth and development of the plant

Efecto de la salinidad en las plantas

 

Los suelos salinos son altos en conductividad eléctrica, bajos en potencial hídrico y tienen exceso de sales iónicas, lo que hace difícil la supervivencia de las plantas y otras formas de vida (Mishra et al. 2018Mishra, J., Fatima, T. & Arora, N. K. 2018. Plant Microbiome: Stress Response. In: Egamberdieva, D., Ahmad, P. eds. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Singapore: Springer; p. 127-163. https://doi.org/10.1007/978-981-10-5514-0_6. y Egamberdieva et al. 2019Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. & Arora, N.K. 2019. “Salttolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils”. Frontiers in Microbiology, 10: 2791, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02791.).

El problema central que enfrentan las plantas sometidas a alta concentración de sal (NaCl) es la retención osmótica de agua y efectos iónicos de toxicidad específicos en las proteínas del citoplasma y las membranas. El agua se retiene osmóticamente en las soluciones salinas, de tal forma, que conforme aumenta la concentración de sal, el agua se encuentra cada vez menos disponible para la planta (Benavides 2002Benavides, A. 2002. Estrés por factores abióticos. Pp. 52-73. En: Ecofisiología y bioquímica del estrés en las plantas. Dr. Adalberto Benavides Mendoza (Editor). Departamento de Horticultura. Universidad Autónoma Agraria Antonio Narro. Buenavista, Saltillo, Coah, México. 228 p.). Según Glick (2014)Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , vale la pena observar que muchos de los primeros efectos del estrés salino se atribuyen al estrés hídrico causado por la sal en las plantas. Debido al incremento de la concentración de osmolitos en las células sometidas a estrés osmótico y a estrés hídrico, el potencial osmótico se vuelve negativo y causa endosmosis de agua, la cual mantiene así la presión de turgencia y la integridad de las células (Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.).

Al igual que el estrés hídrico, la salinidad dispara un desbalance iónico en las plantas, lo que causa deficiencia nutricional, perturbaciones en el carbono (C) y nitrógeno (N), senderos asimilatorios, índice de generación fotosintética reducido, generación de las ROS, estrés osmótico y oxidativo, por lo que retarda el crecimiento y rendimiento de los cultivos (Hashem et al. 2016Hashem, A.; Abd_Allah, E.; Alqarawi, A.; Al-Huqail, A. & Shah, M. 2016. “Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71)”. BioMed Research International, Article ID 6294098, ISSN: 2314-6141. https://doi.org/10.1155/2016/6294098. y Pan et al. 2019Pan, J., Peng, F., Xue, X., You, Q., Zhang, W., Wang, T. & Huang, C. 2019. “The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis”. Sustainability, 11(2): 378, ISSN: 2071-1050. https://doi.org/10.3390/su11020378. ). La proporción K+/Na+ es muy importante para las plantas y el estrés salino causa alteraciones en el balance entre estos iones, lo que reduce esta proporción y hace decrecer la disponibilidad de nutrientes (Reich et al. 2017Reich, M., Aghajanzadeh, T., Helm, J., Parmar, S., Hawkesford, M.J. & De Kok, L.J. 2017. “Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa”. Plant Soil, 411(1): 319-332, ISSN: 1573-5036. https://doi.org/10.1007/s11104-016-3026-7. ).

La acumulación de prolina es uno de los mecanismos de respuesta de muchas plantas durante varios tipos de estrés (Anjum et al. 2016Anjum, S.A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, W., Jan, S., Khan, I., Saleem, M.F., Bajwa, A.A., Wang, L., Mahmood, A., Samad, R.A. & Tung, S.A. 2016. “Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress”. Environmental Science and Pollution Research, 23: 11864-11875, ISSN: 0944-1344. https://doi.org/10.1007/s11356-016-6382-1. , 2017Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I. & Wang, L.C. 2017. “Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids”. Frontiers in Plant Science, 8: 69, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00069. ), entre los que se incluye el salino. La formación de este aminoácido en las plantas ocurre, principalmente, a partir del glutamato (Khan et al. 2015Khan, M. I., Nazir, F., Asgher, M., Per, T. S. & Khan, N. A. 2015. "Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat”. Journal of Plant Physiology, 173: 9-18. https://doi.org/10.1016/j.jplph.2014.09.011. ).

Las plantas toleran la salinidad mediante la acumulación de osmolitos de bajo peso molecular como prolina, glicina betaína (GB) y poliaminas, que ayudan a mantener la estabilidad de la membrana. Estos osmoprotectores mejoran la tasa de germinación, el crecimiento y el desarrollo de la planta, lo que induce tolerancia hacia el estrés salino (Sudhakar et al. 2001Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity”. Plant Science, 161(3): 613-619, ISSN: 0168-9452. https://doi.org/10.1016/S0168-9452(01)00450-2. ) y también hacia el hídrico (Kubis et al. 2014Kubis, J., Floryszak-Wieczorek, J. & Arasimowicz-Jelonek, M. 2014. “Polyamines induce adaptive responses in water deficit stressed cucumber roots”. Journal of Plant Research,127: 151-158. https://doi.org/10.1007/s10265-013-0585-z. ). El primer paso en la formación de etileno es la formación de S-adenosilmetionina (SAM) a partir de la metionina (figura 2). El SAM, que se forma durante la síntesis de etileno, es también precursor de la biosíntesis de GB (Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.). Las poliaminas se relacionan con la biosíntesis del etileno, ya que su precursor (SAM) es común para ambos compuestos (Petruzzelli et al. 2000Petruzzelli, L., Coraggio, I. & Leubner-Metzger, G. 2000. “Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase”. Planta, 211(1): 144-149, ISSN: 1432-2048. https://doi.org/10.1007/s004250000274. ).

Figure 2.  Role of ethylene, glycine betaine (GB), and polyamines that form under salinity stress. ACC: 1-amino-cyclo-propane-1- carboxylic acid; SAM: S-adenosyl methionine; dcSAM: enzyme SAM decarboxylase (Petruzzelli et al. 2000Petruzzelli, L., Coraggio, I. & Leubner-Metzger, G. 2000. “Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase”. Planta, 211(1): 144-149, ISSN: 1432-2048. https://doi.org/10.1007/s004250000274. , Sudhakar et al. 2001Sudhakar, C., Lakshmi, A. & Giridarakumar, S. 2001. “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity”. Plant Science, 161(3): 613-619, ISSN: 0168-9452. https://doi.org/10.1016/S0168-9452(01)00450-2. and Sharma et al. 2019Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R. & Zheng, B. 2019. “Phytohormones regulate accumulation of osmolytes under abiotic stress”. Biomolecules. 9(7): 285, ISSN: 2218-273X. https://doi.org/10.3390/biom9070285.).

La alta concentración de sal en las plantas no solo aumenta la producción excesiva de etileno, sino induce a una toxicidad iónica y al estrés oxidativo, además de afectar el potencial osmótico de las plantas. Todos los procesos fisiológicos, como la respiración, la fotosíntesis y la fijación del nitrógeno, entre otros, se afectan por la salinidad del suelo, lo que conlleva al decrecimiento de la productividad de los cultivos (Paul y Lade 2014Paul, D. & Lade, H. 2014. “Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review”. Agronomy for Sustainable Development, 34: 737-752, ISSN: 1773-0155. https://doi.org/10.1007/s13593-014-0233-6. y Acosta-Motos et al. 2017Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sánchez-Blanco, M. J. & Hernández, J.A. 2017. “Plant responses to salt stress: adaptive mechanisms”. Agronomy, 7(1): 18, ISSN: 2073-4395. https://doi.org/10.3390/agronomy7010018. ).

Como se explicó en el acápite anterior, el aumento de la producción de etileno en las plantas es un indicador de susceptibilidad, no solo hacia el estrés por sequía, sino hacia el estrés por salinidad (Glick 2014Glick, B. R. 2014. “Bacteria with ACC deaminase can promote plant growth and help to feed the world”. Microbiological Research, 169(1): 30-39, ISSN: 2328-4137. https://doi.org/10.1016/j.micres.2013.09.009. , Müller y Munné-Bosch 2015Müller, M. & Munné-Bosch, S. 2015. “Ethylene response factors: a key regulatory hub in hormone and stress signaling”. Plant Physiology, 169(1): 32-41, ISSN: 1532-2548. https://doi.org/10.1104/pp.15.00677. , Liu et al. 2015Liu, J., Xie, B., Shi, X., Ma, J. & Guo, C. 2015. “Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil”. International Journal Environmental Science Technology, 12: 3887-3894. https://doi.org/10.1007/s13762-015-0798-x. y Abiri et al. 2017Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z.N.B., Atabaki, N., Sahebi, M., Valdiani, A., Kalhori, N., Azizi, P. & Hana, M.M. 2017. “Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions”. Environmental and Experimental Botany, 134: 33-44, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2016.10.015.).

Importancia de las pgpr ante el estrés ambiental

 

Las interacciones microbianas con los cultivos de plantas son fundamentales para la adaptación y supervivencia de microorganismos como de plantas, en cualquier ambiente abiótico. La tolerancia sistémica inducida (IST, por sus siglas en inglés) es el término que se usa para definir la inducción de respuestas al estrés abiótico a través de los microorganismos (Meena et al. 2017Meena, K.K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. 2017. “Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies”. Frontiers in Plant Science, 8:172, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00172.). La función de los microrganismos para aliviar el estrés abiótico en plantas ha sido un área de gran interés desde hace unas pocas décadas (de Zelicourt et al. 2013de Zelicourt, A., Al-Yousif, M. & Hirt, H. 2013. “Rhizosphere microbes as essential partners for plant stress tolerance”. Molecular Plant, 6(2): 242-245, ISSN: 1752-9867. https://doi.org/10.1093/mp/sst028. , Nadeem et al. 2014Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A. & Ashraf, M. 2014. “The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments”. Biotechnology Advances, 32(2): 429-448, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2013.12.005. y Souza et al. 2015Souza, R.D., Ambrosini, A. & Passaglia, L.M.P. 2015. “Plant growth-promoting bacteria as inoculants in agricultural soils”. Genetics and Molecular Biology, 38(4): 401-419, ISSN: 1678-4685. https://doi.org/10.1590/S1415-475738420150053. ). Según Gopalakrishnan et al. (2015)Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R.K., Gowda, C.L. & Krishnamurthy, L. 2015. “Plant growth promoting rhizobia: challenges and opportunities”. 3Biotech, 5(4): 355-377, ISSN: 2190-5738. https://doi.org/10.1007/s13205-014-0241-x. , los microorganismos, con sus capacidades metabólicas y genéticas intrínsecas, contribuyen a aliviar el efecto del estrés abiótico en las plantas.

En este acápite se explica la función que desempeñan las PGPR, como inductoras de tolerancia al estrés hídrico por sequía y al estrés salino en las plantas. Como ambos pueden provocar respuestas similares en las plantas, las PGPR pueden inducir tolerancia al estrés hídrico y al salino, indistintamente, mediante mecanismos metabólicos similares.

Importancia de las pgpr ante el estrés hídrico

 

Las PGPR son altamente eficientes en la promoción del crecimiento de las plantas mediante mecanismos directos e indirectos (Hassan et al. 2015Hassan, W., Hussain, M., Bashir, S., Shah, A. N., Bano, R. & David, J. 2015. “ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.)”. Journal of Soil Science and Plant Nutrition, 15(1): 232-248, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000019. ). Los efectos directos están relacionados con la síntesis de fitohormonas por las PGP (auxinas, giberelinas y citoquininas), sea en la rizosfera o en los tejidos de las plantas. Estas fitohormonas estimulan el mayor desarrollo radical, lo que facilita la absorción de nutrientes en las plantas y proveen protección contra diferentes tipos de estrés ambiental (figura 2) (Kumari et al. 2009Kumari, B. S., Ram, M. R. & Mallaiah, K. V. 2009. “Studies on exopolysaccharide and indole acetic acid production by Rhizobium strains from Indigofera”. African Journal of Microbiology Research, 3(1): 10-14, ISSN: 1996-1808. y García-Fraile et al. 2015García-Fraile, P., Menéndez, E. & Rivas, R. 2015. “Role of bacterial biofertilizers in agriculture and forestry”. AIMS Bioengineering, 2(3): 183-205, ISSN: 2375-1495. https://doi.org/10.3934/bioeng.2015.3.183. ). Ahmad et al. (2008)Ahmad, F., Ahmad, I. & Khan, M. S. 2008. "Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities". Microbiological Research, 163(2): 173-181. ISSN: 0944-5013, https://doi.org/10.101G/j:micres.2006.04.001. encontraron que 80 % de las bacterias fijadoras de dinitrógeno producen ácido indolacético, sustancia de crecimiento que conlleva al aumento de fenoles totales, contenido de calcio y actividad de la enzima polifenol oxidasa, que protege la planta contra patógenos y mejora su crecimiento mediante la eliminación de las ROS (Chowdhury 2003Chowdhury, A. K. 2003. “Control of Sclerotium blight of groundnut by growth substances”. Crop Research, 25(2): 355-359, ISSN: 0970-4884.).

La producción de la enzima ACC-desaminasa por parte de las bacterias (figura 3), al inhibir la producción de etileno en las plantas (Yang et al. 2008Yang, J., Kloepper, J. W. & Ryu, C. 2008. “Rhizosphere bacteria help plants tolerate abiotic stress”. Trends in Plant Science. 14(1): 1-4. ISSN: 1360-1383, https://doi.org/10.101G1j.tplants.2008.10.004. ) mediante la división de ACC etileno en α-cetobutirato y amonio, permite que el sistema radical se desarrolle sin la inhibición propia de dicho compuesto, lo que propicia mayor absorción de nutrientes. Existen muchos informes acerca del mejoramiento del desarrollo de la planta, al inocular cepas bacterianas que son positivas a la producción de ACC-desaminasa durante estados de sequía (Sarma y Saikia 2014Sarma, R.K. & Saikia, R. 2014. “Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21”. Plant and Soil, 377: 111-126, ISSN: 1573-5036. https://doi.org/10.1007/s11104-013-1981-9. ), hipersalinidad (Nadeem et al. 2007Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2007. "Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity". Canadian Journal of Microbiology, 53(10): 1141-1149, ISSN: 1480-3275. http://dx.doi.org/10.1139/W07-081. ) y otros tipos de estrés.

Figure 3.  IST caused by PGPR against drought and salinity stress. Block arrows show plant compounds that originate from environmental stress, dashed arrows show bioactive compounds secreted by PGPRs, solid arrows show plant compounds that are affected by bacterial components. IST (Induced Systemic Tolerance). PGPR (Plant Growth Promoting Rhizobacteria). ABA (Absicic Acid). ROS (Reactive Organic Species). ACC (1-aminocyclopropane-1-carboxylase). HKT1: high-affinity K+ transporter. IAA: Indoleacetic Acid

Diversos autores se refieren también a la actividad de las citoquininas y de la catalasa, que actúan como antioxidantes, como la catalasa (factor de degradación de las ROS), o que impiden la presencia de otros compuestos que obstaculizan el desarrollo normal de la planta sometida a estrés hídrico, como es el caso de las citoquininas (figura 3), que contrarrestan el efecto negativo del ABA en las hojas, producido por la planta ante este tipo de estrés (Yang et al. 2008Yang, J., Kloepper, J. W. & Ryu, C. 2008. “Rhizosphere bacteria help plants tolerate abiotic stress”. Trends in Plant Science. 14(1): 1-4. ISSN: 1360-1383, https://doi.org/10.101G1j.tplants.2008.10.004. ).

La formación de biopelículas bacterianas o matriz extracelular (figura 3) es otro de los mecanismos que las PGPR pueden utilizar a favor de las plantas (Dimkpa et al. 2009Dimkpa, C., Weinand, T. & Asch, F. 2009. “Plant-rhizobacteria interactions alleviate abiotic stress conditions”. Plant, Cell and Environment, 32(12): 1682-1694, ISSN: 1365-3040. https://doi.org/10.1111/j.1365-040.2009.02028.x. y Timmusk y Nevo 2011Timmusk, S. & Nevo, E. 2011. Plant root associated biofilms. In: Maheshwari D. K. editor. Bacteria in agrobiology (vol 3): Plant nutrient management. Berlin: Springer Verlag. pp. 285-300.). En particular, una matriz extracelular, formada por una biopelícula bacteriana, puede proveer un rango casi infinito de macromoléculas beneficiosas para el desarrollo de la planta y su crecimiento. Las biopelículas contienen azúcares, así como oligo y polisacáridos, que pueden desempeñar diferentes funciones en las interacciones bacteria-planta, como mejorar la disponibilidad de agua en las raíces. La capacidad de retención de agua de algunos polisacáridos puede exceder hasta siete veces su masa (Timmusk y Nevo 2011Timmusk, S. & Nevo, E. 2011. Plant root associated biofilms. In: Maheshwari D. K. editor. Bacteria in agrobiology (vol 3): Plant nutrient management. Berlin: Springer Verlag. pp. 285-300.).

Cho et al. (2008)Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.Y., Lee, Y. H., Cho, B.H., Yang, Kwang-Yeol., Ryu, Choong-Min; Kim, Y. C. 2008. “2R, 3R-Butanediol, a bacterial volatile produced by Pseudo monas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana”. Molecular Plant-Microbe Interactions, 21: 1067-1075, ISSN: 0894-0282. https://doi.org/10.1094/MPMI-21-8-1067 observaron que la colonización radical de Arabidopsis thaliana con Pseudomonas chlororaphis O6 previene la pérdida de agua provocada por el cierre de los estomas, debido al efecto de 2R, 3R-butanediol, un metabolito volátil que lo produce P. chlororaphis O6. En tanto, las bacterias deficientes en la producción de 2R, 3R-butanediol, no mostraron inducción a tolerancia ante la sequía. De acuerdo con los autores citados, el incremento de ácido salicílico (AS) libre en plantas colonizadas por P. chlororaphis O6, en condiciones de estrés hídrico, después de un tratamiento con 2R, 3R-butanediol, sugiere la función primaria de las señales del AS en la inducción de tolerancia a sequía, lo que coincide con criterios de Hussain et al. (2020)Hussain, I., Rasheed, R., Ashraf, M.A., Mohsin, M., Ali Shah, S.M., Rashid, A., Akram, M., Nisar, J. & Riaz, M. 2020. “Foliar applied acetylsalicylic acid induced growth and key-biochemical changes in Chickpea (Cicer arietinum L.) under drought stress. Dose-Response: An International Journal. 1: 1-13. https://doi.org/10.1177/1559325820956801. acerca del efecto beneficioso del AS en plantas de Cicer arietinum L.

Importancia de las pgpr ante el estrés salino

Según Kumar Arora et al. (2020)Kumar Arora, N., Tahmish, F., Mishra, J., Mishra, I., Verma, S., Verma, R., Vermad, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, Ch. 2020. “Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils”. Journal of Advanced Research, 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003 , es probable que la mitigación del estrés salino por las PGPR, que son halo tolerantes, implique una acción entrelazada en tres niveles, como lo es la supervivencia de la bacteria por sí misma en un ambiente hiperosmótico, la inducción de mecanismos tolerantes a la sal en las plantas y la mejora de la calidad del suelo mediante diversos mecanismos.

Las plantas regulan la síntesis de fitohormonas, pero las bacterias son capaces también de producir fitohormonas y liberarlas fuera de la célula, ya sea en la rizosfera (rizobacterias) (figura 3) o en el interior de los tejidos de la planta (endófitos). La excreción de esas moléculas por las bacterias afecta positivamente el comportamiento de las plantas bajo estrés salino, ya que, en algunas situaciones, las plantas no generan suficientes cantidades para lograr su desarrollo óptimo (Egamberdieva et al. 2017Egamberdieva, D., Wirth, S.J., Alqarawi, A.A., Abd_Allah, E.F. & Hashem, A. 2017. “Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness”. Frontiers in Microbiology, 8: 2104, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2017.02104. ).

Etesami y Maheswari (2018)Etesami, H. & Maheshwari, D.K. 2018. “Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects”. Ecotoxicology and Environmental Safety, 156: 225-246, ISSN: 1090-2414. https://doi.org/10.1016/j.ecoenv.2018.03.013 aseguran que el principal aspecto de la tolerancia al estrés salino en las plantas mediante las PGPR halotolerantes (PGPR-HT) implica la generación de una maquinaria receptiva, que elimine la toxicidad y establezca un estado de equilibrio osmótico para evitar la desecación y flacidez en las células vegetales. Estos autores aseguran que las PGPR-HT limitan la adquisición de Na+ mediante el cambio de la composición de la pared/membrana celular. Así mismo, las PGPR-HT pueden promover el crecimiento de las plantas e indirectamente desarrollar tolerancia contra el estrés salino, al alterar la selectividad de Na+, K+ y Ca2+ para sostener una proporción K+/Na+ superior, regulando así los niveles de varias enzimas antioxidantes en las células. Estas enzimas no solo detoxifican las sustancias dañinas, sino que reducen los cambios fisiológicos indeseables derivados del estrés (Sukweenadhi et al. 2018Sukweenadhi, J., Balusamy, S.R., Kim, Y.J., Lee, C.H., Kim, Y.J., Koh, S.C. & Yang, D.C. 2018. “Growth- promoting bacteria, Paenibacillus yonginensis DCY84T, enhanced salt stress tolerance by activating defense-related systems in Panax ginseng”. Frontiers in Plant Science, 9: 1-17, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2018.00001 ).

Los compuestos volátiles orgánicos (VOC, por sus siglas en inglés), como N-acilhomoserina lactona y ciclodipéptidos, que se producen por las PGPR- HT (figura 3) pueden también disparar la inducción del transportador de alta afinidad de K+ (HKT1) en las ramas y la reducción del HKT1 en las raíces, lo que limita la entrada de Na+ en las raíces y facilita la recirculación de Na+ entre ramas y raíces (Qin et al. 2016Qin, Y., Druzhinina, I. S., Pan, X. & Yuan, Z. 2016. “Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture”. Biotechnology Advances, 34(7): 1245-1259, ISSN: 1873-1899. https://doi.org/10.1016/j.biotechadv.2016.08.005., Schikora et al. 2016Schikora, A., Schenk, S.T. & Hartmann, A. 2016. “Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acylhomoserine lactone group”. Plant Molecular Biology, 90(6): 605-612, ISSN 1573-5028. https://doi.org/10.1007/s11103-016-0457-8., Rosier et al. 2018Rosier, A., Medeiros, F.H. & Bais, H.P. 2018. “Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plantmicrobe interactions”. Plant and Soil, 428(1-2): 35-55, ISSN: 1573-5036. https://doi.org/10.1007/s11104-018-3679-5. y Hartmann et al. 2019Hartmann, A., Fischer, D., Kinzel, L., Chowdhury, S. P., Hofmann, A., Baldani, J. I. & Rothballerd, M. 2019. “Assessment of the structural and functional diversities of plant microbiota: achievements and challenges - a review”. Journal of Advanced Research, 19: 3-13, ISSN: 2090-1232. https://doi.org/10.1016/j.jare.2019.04.007.).

Las PGPR-HT son conocidas también por estimular la maquinaria de defensa antioxidante en las plantas que están involucradas en la síntesis de enzimas antioxidantes (figura 3) contra el estrés oxidativo causado por las ROS durante el estrés salino (Islam et al. 2016Islam, F., Ali, B., Wang, J., Farooq, M. A., Gill, R. A., Ali, S., Wang, D. & Zhou, W. 2016. “Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars”. Plant Physiology and Biochemistry, 107: 82-95, ISSN: 0981-9428. https://doi.org/10.1007/s13205-017-1074-1 ). Entre ellas se pueden citar la superóxido dismutasa, peroxidasa, catalasa, nitrato reductasa, glutatión reductasa, polifenol oxidasa, guayacol peroxidasa, monohidrato dehidrogenasa y dihidroascorbato reductasa,

De acuerdo con Belimov et al. (2014)Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G. & Davies, W. J. 2014. “Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth”. Plant Physiology and Biochemistry, 74: 84-91, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2013.10.032. y con Maksimov et al. (2015)Maksimov, I., Veselova, S., Nuzhnaya, T., Sarvarova, E. & Khairullin, R. 2015. “Plant growth-promoting bacteria in regulation of plant resistance to stress factors”. Russian Journal of Plant Physiology, 62(6): 715-26., la habilidad para sintetizar ABA, particularmente en condiciones estresantes, como la salinidad, y para afectar el nivel de ABA en las plantas, tiene lugar en PGPR de los géneros Azospirillum, Bacillus, Pseudomonas, Brevibacterium y Lysinibacillus, por lo que esta característica de dichas rizobacterias resulta útil para conferir tolerancia a las plantas ante el estrés ambiental.

Diferentes biopolímeros se secretan por las células microbianas (polisacáridos, poliésteres, poliamidas) hacia el ambiente circundante. Los biopolímeros desempeñan una función irremplazable en las relaciones planta-microorganismos, especialmente en el alivio del estrés salino en las plantas (Etesami y Maheshwari 2018Etesami, H. & Maheshwari, D.K. 2018. “Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects”. Ecotoxicology and Environmental Safety, 156: 225-246, ISSN: 1090-2414. https://doi.org/10.1016/j.ecoenv.2018.03.013 y Gupta et al. 2019Gupta, J., Rathour, R., Singh, R. & Thakur, I.S. 2019. “Production and characterization of extracellular polymeric substances (EPS) generated by a carbofuran degrading strain Cupriavidus sp. ISTL7”. Bioresource Technology, 282: 417-424, ISSN: 1873-2976. https://doi.org/10.1016/j.biortech.2019.03.054. ), ya que se excretan fuera de las células y unen cationes como Na+ en concentraciones biodisponibles decrecientes. También sirven como moléculas de señal para la respuesta defensiva a las infecciones. Estos polisacáridos ayudan a las PGPR a sobrevivir en ambientes salinos, y así la mayor parte de las bacterias halotolerantes poseen la habilidad de excretar este tipo de compuesto (Etesami y Glick 2020Etesami, H. & Glick, B.R. 2020. “Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants”. Environmental and Experimental Botany, 178: 104124, ISSN: 0098-8472. https://doi.org/10.1016/j.envexpbot.2020.104124. ). Según Vaishnav et al. (2016Vaishnav, A., Kumari, S., Jain, S., Varma, A., Tuteja, N. & Choudhary, D.K. 2016. “PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside”. Journal of Basic Microbiology, 56(11): 1274-1288, ISSN: 1521-4028. https://doi.org/10.1002/jobm.201600188. ), los polisacáridos extracelulares, en forma de biopelícula, funcionan como una barrera física alredededor de las raíces, que ayuda al crecimiento de las plantas en condiciones de estrés salino (figura 2).

Al estudiar la respuesta al estrés salino en trigo mediante la inoculación de Enterobacter cloacae SBP-8, Singh et al. (2017)Singh, R. P., Runthala, A., Khan, S. & Jha, P.N. 2017. “Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8”. PLoS One. 12(9): e0183513, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0183513. informaron incremento del nivel de las proteínas relacionadas con la defensa de la planta, con la fotosíntesis y con las proteínas asociadas al transporte de iones. El estudio citado también demostró que la inoculación bacteriana reguló la expresión de las proteínas implicadas en el fortalecimiento de la pared celular y la integridad de la membrana para prevenir el daño celular y la difusión lateral de moléculas en la endodermis. Un mecanismo similar de tolerancia se informó en trigo duro al inocularse con PGPR-HT en estrés por sequía y estrés de calor, lo que resultó en una mejor adaptación de las plantas (Tenhaken 2015Tenhaken, R. 2015. “Cell wall remodeling under abiotic stress”. Frontiers in Plant Science, 5: 771, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2014.00771.). Estos resultados sugieren que existe una correlación entre salinidad y sequía mediante mecanismos comunes a nivel molecular, con el propósito de combatir esos tipos de estrés mediante la ayuda de las PGPR-HT.

Algunos resultados de la aplicación de las pgpr en plantas, en condiciones de estrés hídrico o salino

 

Khan et al. (2019)Khan N., Bano, A. & Babar, M. A. 2019. “Metabolic and physiological changes induced by plant growth regulators and plant growth promoting rhizobacteria and their impact on drought tolerance in Cicer arietinum L”. PLoS One 14(3): e0213040, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0213040 informaron que dos genotipos de Cicer arietinum, tratados con consorcios de PGPR en condiciones de estrés por sequía, tuvieron mejores resultados en el contenido relativo de agua en hojas, mayor biomasa en hojas y tallos, así como mayor acumulación de proteína, azúcares y compuestos fenólicos. En las leguminosas de grano, Vigna mungo L. y Pisum sativum L., Saikia et al. (2018)Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K. & Saikia, R. 2018. “Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India”. Available: https://www.nature.com/scientificreports encontraron que los niveles de prolina se incrementaron significativamente, al inocular las plantas con un consorcio formado por diferentes PGPR. También García et al. (2017)García, J.E., Maroniche, G., Creus, C., Suárez-Rodríguez, R. Ramirez-Trujillo, J.A. & Groppa, M.D. 2017. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202: 21-29, ISSN: 2328-4137. http://dx.doi.org/10.1016/j.micres.2017.04.007. notaron que la inoculación de maíz con la cepa Az19 de Azospirillum spp., en estrés hídrico incrementó el contenido de prolina en las plantas.

Jochum et al. (2019)Jochum, M. D., McWilliams, K. L, Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A. & Jo, Y-K. 2019. “Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses”. Frontiers in Microbiology, 10: 2106, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.02106. demostraron el efecto superior de dos cepas de PGPR, al aplicarlas en trigo y maíz, en condiciones simuladas de estrés hídrico, al incrementarse significativamente variables relacionadas con la arquitectura de la raíz y elongación de hojas y tallos, en comparación con el control no inoculado. Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. observaron que en trigo sometido a estrés hídrico, la inoculación de Bacillus thuringiensis AZP2 conllevó a una biomasa vegetal mayor y a una supervivencia a la sequía cinco veces mayor, debido a la reducción significativa de la emisión de aceites volátiles y a una fotosíntesis superior.

Curá et al. (2017)Curá, J. A., Franz, D. R., Filosofía, J. E., Balestrasse, K. B. & Burgueño, L. E. 2017. “Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of Maize to drought stress”. Microorganisms, 5(3): 41, ISSN: 2076-2607. https://doi.org/10.3390/microorganisms5030041 encontraron que la inoculación de plantas de maíz con las cepas Azospirillum brasilense, SP-7 o Herbaspirillum seropedicae, Z-152, resultó en disminución en el contenido de ABA y etileno, así como reducción en el contenido de prolina. Esto se asoció con la menor percepción del estrés hídrico por la planta, que resultó en menor peroxidación de lípidos y mayor contenido de carbono, nitrógeno, clorofilas y contenido relativo de agua a nivel foliar; además de mayor producción de biomasa.

La inoculación con una mezcla de Bacillus sp. y Pseudomonas sp. demostró ser el tratamiento más eficiente para mejorar la tolerancia al deficit de agua en dos genotipos de trigo, al incrementar la biomasa de la planta y otros parámetros morfológicos y fisiológicos (Mutumba et al. 2018Mutumba, F.A., Zagal, E., Gerding, M., Castillo-Rosales, D., Paulino, L. & Schoebitz, M. 2018. “Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes”. Journal of Soil Science and Plant Nutrition, 18 (4): 1080-1096, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162018005003003. ).

Timmusk et al. (2014)Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kännaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenström, E. & Niinemets, Ü. 2014. “Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles”. PLoS One, 9(5): e96086, ISSN: 1932-6203. https://doi.org/10.1371/journal.pone.0096086. encontraron a través de microscopía electrónica la formación de biopelículas en pelos radicales de plántulas de trigo, en condiciones simuladas de estrés hídrico. Se determinó, en general, que la eficiencia de uso de agua en las plantas inoculadas con B. thuringiensis, cepa AZP2, se incrementó en 63 % con respecto a las plantas control.

Zhang et al. (2020)Zhang, M., Yang, L., Hao, R., Bai, X., Wang, Y. & Yu, X. 2020. “Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance”. Plant and Soil, 452 (1-2): 423-440, ISSN 1573-5036. https://doi.org/10.1007/s11104-020-04582-5. , al aislar diferentes rizobacterias de la rizosfera de Ziziphus jujuba, observaron que Pseudomonas lini y Serratia plymuthica, en condiciones simuladas de estrés por sequía, incrementaron la altura de Z. jujuba, así como su masa seca radical, la masa seca aérea y el contenido relativo de agua. También, los niveles de ABA disminuyeron. Además, la actividad enzimática antioxidante se incrementó, sobre todo con inoculación mixta.

Estudios agronómicos de Bécquer et al. (2016Bécquer, C.J., Puentes, A.B., Ávila, U., Quintana, M., Galdo, Y., Medinilla, F. & Mirabales, A. 2016. “Efecto de la inoculación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía”. Pastos y Forrajes. 39 (1): 19-26, ISSN 2078-8452., 2017a)Bécquer, C. J., Ávila, U., Galdo, Y., Quintana, M., Álvarez, O., Puentes, A., Medinilla, F. & Mirabal, A. 2017a. “Selection of Bradyrhizobium sp. isolates due to their effect on maize under agricultural drought conditions in Sancti Spíritus, Cuba”. Cuban Journal of Agricultural Science, 51(1): 129-138, ISSN: 2079-3480. en triticale y maíz, respectivamente, demuestran el efecto estimulante de Bradyrhizobium sp., solo o combinado con Trichoderma harzianum en el crecimiento y desarrollo de esas especies, cultivadas en condiciones de sequía agrícola. También Bécquer et al. (2017bBécquer, C. J., Ávila, U., Puentes, A., Nápoles, J.A., Cancio, T., Medinilla, F., Muir, I. & Madrigal, Y. 2017b. “Respuesta de Cenchrus ciliaris L. (Buffel cv. Formidable), inoculado con Bradyrhizobium sp. y Trichoderma harzianum, bajo estrés de sequía”. Cuban Journal of Agricultural Science, 51(2): 1-10, ISSN: 2079-3480., 2018Bécquer, C. J., Nápoles, J. A., Ávila, U., Yaldreisy Galdo; María Hernández; Ivón Muir; Orquidia Álvarez & F. Medinilla. 2018. “Productividad de bermuda Tifton 85, inoculada con Bradyrhizobium sp. y Trichoderma harzianum, sometida a estrés de sequía agrícola”. Pastos y Forrajes, 41 (3): 196-201, ISSN: 2078-8452., 2019bBécquer, C. J., Reyes, R., Fernández, D., González, P.J. & Medinilla, F. 2019b. “Rendimiento de pasto Mulato II inoculado con Bradyrhizobium sp. y Glomus cubense, en condiciones de sequía agrícola”. Cuban Journal of Agricultural Science, 53(3): 1-12, ISSN: 2079-3480.) obtuvieron resultados promisorios con la aplicación de Bradyrhizobium sp., combinado con hongos benéficos, en diferentes gramíneas pratenses (Cenchrus ciliaris, Cynodon dactylon y Brachiaria hibrido, respectivamente) en condiciones de estrés por sequía. De esto se infiere que haya existido interacción microbiana positiva entre Bradyrhizobium sp. y Trichoderma harzianum, así como entre Bradyrhizobium sp. y Glomus cubense (figuras 4 y 5). Asimismo, Bécquer et al. (2019a)Bécquer, C. J., González, P. J., Ávila, U., Nápoles, J. A., Galdo, Y., Muir, I., Hernández, M., Quintana, M. & Medinilla, F. 2019a. “Efecto de la inoculación de microorganismos benéficos y Quitomax® en Cenchrus ciliaris L., en condiciones de sequía agrícola”. Pastos y Forrajes, 42(1): 52-60, ISSN: 2078-8452. , al inocular C. ciliaris con Bradyrhizobium sp., Funneliformis mosseae y un bioestimulante en condiciones de estrés por sequía, obtuvieron resultados altamente promisorios.

Figure. 4.  Effect of Bradyrhizobium sp. Ho13 and Trichoderma harzianum A-34, on the aerial biomass of Cenchrus ciliaris L. (Buffel Formidable), under drought stress conditions.
Figure. 5.  Effect of Bradyrhizobium sp. Ho13 and Trichoderma harzianum A-34, on the aerial biomass of Cynodon dactylon Tifton 85, under drought stress conditions.

Los aislados de Bradyrhizobium sp. utilizados en estos estudios provienen de ecosistemas ganaderos afectados por la sequía y otros factores ambientales estresantes (Bécquer et al. 2000Bécquer, C.J., Prévost, Danielle & Prieto, A. 2000. Caracterización fisiológica-bioquímica de rizobios aislados de leguminosas forrajeras. Biología. 14(1): 57-65, ISSN: 0864-3490., 2001Bécquer, C. J.; Prévost, Danielle & Cloutier, J. 2001. Aspectos fisiológicos y genéticos de rizobios aislados de leguminosas forrajeras. Pastos y Forrajes. 24(2): 123-130, ISSN 2078-8452., 2002Bécquer, C.J., Prévost, Danielle, Cloutier, J. & Laguerre, G. 2002. Enfoque taxonómico de rizobios aislados de leguminosas forrajeras. Biología. 16: 137-145. ISSN: 1545-2123., 2016Bécquer, C.J., Puentes, A.B., Ávila, U., Quintana, M., Galdo, Y., Medinilla, F. & Mirabales, A. 2016. “Efecto de la inoculación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía”. Pastos y Forrajes. 39 (1): 19-26, ISSN 2078-8452., 2017cBécquer, C. J., Galdo, Y., Mirabal, A., Quintana, M. & Puentes, A. 2017c. “Rizobios aislados de leguminosas forrajeras de un ecosistema ganadero árido de Holguín, Cuba. Tolerancia a estrés abiótico y producción de catalasa (Fase II)”. Cuban Journal of Agricultural Science, 51(1): 117-127, ISSN: 2079-3480.), lo que sugiere la influencia de estos factores en el efecto positivo de esta PGPR en los cultivos afectados por estrés ambiental.

Abril et al. (2017)Abril, J. L., Roncallo, B. & Bonilla, R. 2017. “Efecto de la inoculación del género Bacillus sobre el crecimiento de Megathyrsus maximus Jacq, en condiciones de estrés hídrico”. Revista Agronómica del Noroeste Argentino, 37(1): 25-37, ISSN: 2314-369X. comprobaron que la coinoculación de Bacillus y Azotobacter contribuyó a promover el crecimiento de Megathyrsus maximus en condiciones de sequía.

Mapelli et al. (2013)Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchi, D. & Borin, S. 2013. “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils”. BioMed Research International, Article ID 248078. https://doi.org/10.1155/2013/248078. observaron que el microbioma bacteriano de plantas de Salicornia, cultivadas en ecosistemas hipersalinos de Túnez, mostró resistencia hacia un amplio rango de estrés abiótico y realizó diferentes actividades de promoción del crecimiento vegetal, así como mayor colonización radical. Esto sugiere que las PGPR-HT que habitan los ecosistemas áridos y salinos tienen potencial para promover el crecimiento vegetal en plantas que se encuentren bajo estrés hídrico o salino.

Mayak et al. (2004)Mayak, S., Tirosh, T. & Glick, B.R. 2004. “Plant growth-promoting bacteria that confer resistance in tomato to salt stress”. Plant Physiology and Biochemistry, 42(6): 565-572, ISSN: 0981-9428. https://doi.org/10.1016/j.plaphy.2004.05.009. informaron resultados altamente satisfactorios de la inoculación con PGPR Achromobacter piechaudii ARV8 para estimular el crecimiento de plantas sometidas a estrés salino. Estos autores consideran que la ACC-desaminasa, producida por A. piechaudii, puede ser la causa de protección contra el estrés salino en las plantas, al inhibir al precursor del etileno, la ACC.

En estudios de Zhang et al. (2008)Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. & Paré, P. W. 2008. “Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1”. Molecular Plant-Microbe Interactions, 21(6): 737-744, ISSN: 1943-7706. https://doi.org/10.1094/MPMI -21-6-07. se demostró que la PGPR-HT Bacillus subtilis redujo la absorción de Na+ en raíces de Arabidopsis thaliana mediante la inhibición del HKT1 en condiciones afectadas por la sal. Asimismo, Yasmin et al. (2020)Yasmin, H., Naeem, S., Bakhtawar, M., Jabeen, Z., Nosheen, A., Naz, R., Keyani, R., Mumtaz, S. & Hassan, M.N. 2020. “Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress”. PLoS ONE, 15(4), ISSN: 1932-6203 https://doi.org/10.1371/journal.pone.0231348e0231348. informaron que la inoculación de plantas de soya en estrés salino con Pseudomonas pseudoalcaligenes disparó la síntesis de enzimas principales de defensa, que redujeron la concentración de Na+ en raíces y follaje. Al mismo tiempo, se balanceó la condición celular al incrementar los niveles de K+ intracelular.

Atouei et al. (2019)Atouei, M.T., Pourbabaee, A.A. & Shorafa, M. 2019. “Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria”. Iranian Journal of Science and Technology, Transactions A: Science, 43: 2725-2733, ISSN: 1028-6276. https://doi.org/10.1007/s40995-019-00753-x. informaron que la PGPR-HT Bacillus subtilis subsp. inaquosorum, que produce exopolisacáridos, así como Marinobacter lipolyticus SM19, redujeron los efectos adversos de la salinidad y la sequía en trigo.

Ullah y Bano (2015)Ullah, S. & Bano, A. 2015. “Isolation of PGPRs from rhizospheric soil of halophytes and its impact on maize (Zea mays L.) under induced soil salinity”. Canadian Journal of Microbiology, 61: 307-313, ISSN: 0008-4166. https://doi.org/10.1139/cjm-2014-0668. inocularon cepas de Bacillus sp. y Arthrobacter pascens, capaces de solubilizar fósforo y producir sideróforos en plantas de maíz inducidas a estrés por salinidad, y observaron que la co-inoculación mejoró significativamente la producción de biomasa, aumentó la acumulación de prolina e incrementó la respuesta de las enzimas antioxidantes, como superóxido dismutasa, catalasa y ascorbato peroxidasa.

Rajput et al. (2018)Rajput, L., Imran, A., Mubeen, F. & Hafeez, F.Y. 2018. “Wheat (Triticum aestivum L.) growth promotion by halo-tolerant PGPR-consortium”. Soil and Environment, 37(2): 178-189, ISSN: 2075-1141. https://doi.org/10.25252/SE/18/61522. comprobaron que un consorcio de cepas halotolerantes de Aeromonas spp., con producción de ácido indolacético (AIA), actividad de ACC-desaminasa y habilidad para solubilizar P-/Zn, al aplicarse a trigo con una dosis reducida de NPK, resultó superior a cepas no halotolerantes de Azospirillum sp. y Pseudomonas sp., en cuanto a crecimiento vegetal, producción de biomasa y rendimiento de grano. Este consorcio mostró un potencial significativo, al promover el crecimiento del trigo en la germinación, estado vegetativo y madurez en las condiciones normales, salinidad inducida y salinidad natural.

López et al. (2011)López, R. C., Samson, R., Vandamme, P., Bettina, Eichler-Löbermann & Gómez, E. 2011. “Respuesta de combinaciones Rhizobium- Clitoria ternatea en condiciones de estrés salino en el Valle del Cauto en Cuba”. Revista Mexicana de Ciencias Pecuarias, 2(2): 199-207., al inocular la leguminosa forrajera Clitoria ternatea con una cepa de Rhizobium sp., previamente aislada en suelos afectados por la salinidad, observaron que el índice de efectividad de la inoculación sobre la base de la masa seca aérea fue superior, cuando las compararon con cepas comerciales.

Gupka y Pandey (2019)Gupta, S. & Pandey, S. 2019. “ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) Plants”. Frontiers in Microbiology, 10: 1506, ISSN: 1664-302X. https://doi.org/10.3389/fmicb.2019.01506. , al inocular frijol (Phaseolus vulgaris L.) con cepas de Aneurinibacillus aneurinilyticus y Paenibacillus sp., altamente productoras de ACC-desaminasa, comprobaron su efecto significativamente superior al control en condiciones simuladas de salinidad.

En una investigación que realizaron Hidri et al. (2019)Hidri, R., Metoui-Ben Mahmoud, O., Debez, A., Abdelly, C., Barea, J.-M. & Azcon, R. 2019. “Modulation of C: N: P stoichiometry is involved in the eff ectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances”. Applied Soil Ecology, 143: 161-172, ISSN: 0929-1393. https://doi.org/10.1016/j.apsoil.2019.06.014. con la leguminosa Sulla carnosa, que es un recurso forrajero importante para la alimentación de animales en zonas afectadas por la salinidad, las plantas recibieron un efecto positivo de la inoculación con Bacillus subtilis, de forma simple como combinado con el hongo actinomicorrízico Rhizophagus intraradices. Estos autores sugieren que la eficiencia de B. subtilis se debió a la alta producción de AIA, en condiciones de estrés por salinidad.

Uso de las pgpr para combatir el estrés hídrico y el estrés salino en el futuro

 

La agricultura se considera el sector más vulnerable al cambio climático. Al explotar los beneficios de la interacción planta-microbio, se realiza un enfoque relevante para incrementar la producción de alimentos para una población creciente en el escenario actual del cambio climático. De acuerdo con Kaushal y Wani (2015)Kaushal, M. & Wani, S. P. 2016. “Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands”. Annals of Microbiology, 66: 35-42, ISSN: 1590-4261. https://doi.org/10.1007/s13213-015-1112-3. , las investigaciones futuras deben buscar una formulación microbiana eficiente para estimular el rendimiento de las plantas sometidas a estrés por sequía, de modo que reduzca sustancialmente el uso de fertilizantes químicos y pesticidas.

El aislamiento de PGPR en zonas que se encuentran sometidas a estrés ambiental es crucial para la formulación de bioinoculantes que se apliquen a cultivos que se desarrollen en ecosistemas estresantes. Los resultados de Marasco et al. (2013), Mapelli et al. (2013Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonchi, D. & Borin, S. 2013. “Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils”. BioMed Research International, Article ID 248078. https://doi.org/10.1155/2013/248078. ), Bécquer et al. (2017bBécquer, C. J., Ávila, U., Puentes, A., Nápoles, J.A., Cancio, T., Medinilla, F., Muir, I. & Madrigal, Y. 2017b. “Respuesta de Cenchrus ciliaris L. (Buffel cv. Formidable), inoculado con Bradyrhizobium sp. y Trichoderma harzianum, bajo estrés de sequía”. Cuban Journal of Agricultural Science, 51(2): 1-10, ISSN: 2079-3480., 2018Bécquer, C. J., Nápoles, J. A., Ávila, U., Yaldreisy Galdo; María Hernández; Ivón Muir; Orquidia Álvarez & F. Medinilla. 2018. “Productividad de bermuda Tifton 85, inoculada con Bradyrhizobium sp. y Trichoderma harzianum, sometida a estrés de sequía agrícola”. Pastos y Forrajes, 41 (3): 196-201, ISSN: 2078-8452., 2019aBécquer, C. J., González, P. J., Ávila, U., Nápoles, J. A., Galdo, Y., Muir, I., Hernández, M., Quintana, M. & Medinilla, F. 2019a. “Efecto de la inoculación de microorganismos benéficos y Quitomax® en Cenchrus ciliaris L., en condiciones de sequía agrícola”. Pastos y Forrajes, 42(1): 52-60, ISSN: 2078-8452. , 2019bBécquer, C. J., Reyes, R., Fernández, D., González, P.J. & Medinilla, F. 2019b. “Rendimiento de pasto Mulato II inoculado con Bradyrhizobium sp. y Glomus cubense, en condiciones de sequía agrícola”. Cuban Journal of Agricultural Science, 53(3): 1-12, ISSN: 2079-3480.), entre otros autores, corroboran esta hipótesis.

Barea (2015)Barea, J. M. 2015. “Future challenges and perspectives for applying microbial biotechnology in sustainable agricultura base don a better understanding of plant-microbiome interactions”. Journal of Soil Science and Plant Nutrition, 15: 261-282, ISSN: 0718-9516. http://dx.doi.org/10.4067/S0718-95162015005000021. asegura que muchos de los mecanismos subyacentes a las interacciones planta-microbio en la rizosfera, se explican de forma pobre aún. Según este autor, las dificultades están, principalmente, en describir el amplio rango de procesos implicados en las comunidades microbianas. El entendimiento de este intercambio de señales es fundamental para optimizar los mecanismos de adaptación de las plantas y para mejorar la habilidad de los microorganismos del suelo, de modo que se pueda aliviar el estrés en los cultivos.

Aunque aún se encuentran en una fase incipiente, las investigaciones actuales demuestran que la aplicación de PGPR-HT representa una solución efectiva y sostenible para el rescate de los suelos salinos. Con el progreso de metodologías y técnicas, un amplio rango de metabolitos y genes de los PGPR, que responden al estrés salino, se han identificado. Sin embargo, son necesarios nuevos conocimientos en la metabolómica de los PGPR-HT durante su interacción con plantas que se encuentren en ambientes normales y de estrés (Meena et al. 2017Meena, K.K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K. & Minhas, P. S. 2017. “Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies”. Frontiers in Plant Science, 8:172, ISSN: 1664-462X. https://doi.org/10.3389/fpls.2017.00172.). Según Kumar Arora et al. (2020)Kumar Arora, N., Tahmish, F., Mishra, J., Mishra, I., Verma, S., Verma, R., Vermad, M., Bhattacharya, A., Verma, P., Mishra, P. & Bharti, Ch. 2020. “Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils”. Journal of Advanced Research, 26: 69-82. https://doi.org/10.1016/j.jare.2020.07.003 , novedosas bioformulaciones se pueden desarrollar al utilizar diversos PGPR-HT o sus metabolitos para mejorar la productividad y calidad de los suelos salinos.

Conclusiones

 

El estrés hídrico, provocado por la sequía, así como el estrés por exceso de sales, limitan el crecimiento y la productividad de las plantas. No obstante, existen diversas formas de combatir estos tipos de estrés ambiental, y entre las más novedosas se encuentra la utilización de inoculantes microbianos.

Varios pueden ser los mecanismos de acción de las bacterias para inducir tolerancia al estrés, entre los que se encuentra la acción de la enzima ACC, la actividad de la catalasa, la producción de AIA, giberelinas y citoquininas, así como de otras sustancias útiles. Existen resultados probados con la aplicación de bioinoculantes basados en rizobacterias y otros microorganismos benéficos, que han demostrado su utilidad al incrementar la productividad de diferentes cultivos en condiciones de estrés ambiental. Muchas de las PGPR, que han resultado efectivas al transferirle IST a las plantas, se aislaron en ecosistemas que se encuentran afectados por diferentes tipos de estrés.

Son necesarias investigaciones futuras para desarrollar y aplicar en la agricultura bioinoculantes novedosos que neutralicen las amenazas de la sequía y de la salinidad. Este objetivo se puede lograr medinte el estudio aplicado de las interacciones planta-microorganismo, en condiciones de estrés ambiental. No se debe obviar el hecho de que varios de los mecanismos de defensa que existen en las PGPR, y para transferir tolerancia al estrés a las plantas, son comunes indistintamente para contrarrestar las secuelas de la sequía o la salinidad.