ANIMAL SCIENCE

Effects of Aspergillus oryzae on ruminal fermentation of an alfalfa hay:concentrate diet using the rumen simulation technique (Rusitec)


Abstract

Direct-fed microbial products have been shown to modify ruminal fermentation parameters and to have beneficial effects on ruminant performance. The aim of this study was to evaluate the effect of Aspergillus oryzae on ruminal fermentation of a 65:35 alfalfa hay:concentrate diet in continuous fermentation system Rusitec. Four fermenters corresponded to the control and four received 50 mg of A. oryzae lyophilized culture which was mixed with feed. Treatment with A. oryzae increase (p < 0.001 to p = 0.039) acetate, total short chain fatty acids (SCFA), minor SCFA production and acetate:propionate (Ac:Pr) ratio. A. oryzae addition decreased (p < 0.001) pH values and increased (p < 0.001) ammonia-N concentration. There were no differences among treatments in methane production (p = 0.230). The inclusion of A. oryzae did not affect (p = 0.386 to p = 0.865) the dry matter and fiber disappearance. Rumen fluid from A. oryzae fermenters did not affect (p=0.465 to p=0.938) gas production neither (p = 0.131 to p = 0.942) total SCFA from pure substrates. The increase of acetate, minor SCFA and total SCFA production indicate that A. oryzae strain stimulated rumen fermentation of a 65:35 alfalfa hay:concentrate diet in continuous fermentation system Rusitec.

Keywords: 

continuous fermenters; direct-fed microbial; fiber degradability; volatile fatty acids.

 


The use of direct-fed microbial products as feed additives is a strategy to optimize the production efficiency of ruminants and can be used as alternative to the use of antibiotics as growth promoters (Shen et al. 2018, Mamuad et al. 2019 and Sklyar and Gerun 2020). Among the microbial species that are used for this purpose is the fungus Aspergillus oryzae. This microorganism enhanced the number of cellulolytic bacteria, total viable bacteria and fungal populations (Beharka and Nagaraja 1998 and Sun et al. 2014). Stimulation of these ruminal populations leads to an increase in the concentration of SCFA and the synthesis of microbial proteins (Seo et al. 2010 and Sun et al. 2017). In dairy cattle, an improvement of productive indicators was demonstrated with the inclusion of A. oryzae in the diet (Sucu et al. 2018 and Sallam et al. 2019).

Most research to evaluate the effect of this microbial additive is made in vivo conditions or using batch cultures of rumen microorganisms, as in vitro system. Few studies evaluate the effect of A. oryzae in continuous fermentation systems (Frumholtz et al. 1989 and Newbold et al. 1991), which is an option that generates short term, useful information to determine the efficiency of the organism under study (Martínez et al. 2009 and Wagner et al. 2018).

In addition, most of these experiments have been conducted with commercial products based on A. oryzae fermentation extract dried on insoluble base of wheat bran (Yohe et al. 2015). Limited data involve the application of live culture of this microorganism and its potential as ruminal fermentation modifier has received much less attention. Furthermore, in tropical countries the systems of animal feeding, specifically for the dairy cattle, are based on grasses and forages of low nutritive value that don’t cover the requirements of these animals. Microbial additive products in the international market have a high price that makes it impossible to import for Latin American developing countries, so it is essential to obtain own additives to respond to the situations generated in animal production.

As strategy to improving the use of available resources to increase the productive efficiency of ruminants, the objective of this study was to evaluate the effect of A. oryzae live culture as activator of rumen fermentation in the continuous fermentation system Rusitec fed with a mixture of alfalfa hay and concentrate.

The experimental protocol was approved by the León University Institutional Animal Care and Use Committee (Project AIB2010NZ-00190). Sheep were cared and handled by trained personnel in accordance with the Spanish guidelines for experimental animal protection (Royal Decree 53/2013 of February 1st on the protection of animals used for experimentation or other scientific purposes).

One 10-d incubation trial was carried out using eight Rusitec fermenters with an effective volume of 600 mL each in a completely randomized design. Four fermenters corresponded to the control and four received 50 mg of A. oryzae culture (strain H/6.28.1 from the collection of the Cuban Institute of Research of Sugarcane Derivatives, ICIDCA). The culture was obtained by growth in Malt Extract Broth (Fluka) for seven days. Dose selection was based on the results of Sosa et al. (2010).

The general incubation procedure was as described by Czerkawski and Breckenridge (1977). On the first day of the experiment, each fermenter was inoculated with 250 mL of strained rumen fluid, 250 mL of artificial saliva (pH 8.4) (McDougall 1948) and 80 g of solid rumen content supplied into a nylon bag (100 µm pore size). Ruminal content was obtained from four rumen-cannulated Merino sheep fed the same diet administered to the fermenters. Ruminal contents of each sheep were obtained immediately before the morning feeding. Solid and liquid fractions were collected in separated flask. The content was mixed and strained through four layers of cheesecloth. Both fractions were transferred to the in vitro system within 30 min as previously described by Carro et al. (1992).

Each fermenter received 20 g of substrate dry matter daily, which were placed into nylon bags. The substrate consisted on 13 g of alfalfa hay (65%) and 7 g of concentrate (35%). Ingredients and chemical composition of the substrate are shown in table 1. Alfalfa hay was chopped (approximately 0.5 cm pieces), and the concentrate was ground through a 4 mm sieve. Both feed components were weighed independently and carefully mixed before applying the experimental treatments. The four bags corresponding to the A. oryzae treatment received 50 mg of microorganism which was mixed with the substrate. The flow through fermenters was maintained by continuous infusion of McDougall (1948) artificial saliva (pH 8.4) at a rate of 610 mL/d (dilution rate of 4.24 %/h).

Table 1. 

Ingredient composition and chemical analysis of experimental diets fed to donor sheep and used as substrates for the Rusitec fermenters

Ingredientsg/kg of dry matter
Alfalfa hay650.0
Barley75.0
Gluten feed71.0
Wheat middlings70.0
Soybean meal47.0
Palmkern meal40.0
Wheat18.0
Corn11.0
Mineral-vitamin premix118.0
Chemical composition
Organic matter928.0
Neutral detergent fiber507.0
Acid detergent fiber248.0
Crude protein131.0

1 Declared composition (g/kg mineral/vitamin premix): Vitamin A, 600,000 IU; Vitamin D3, 120,000 IU; Vitamin E, 1 g; Vitamin Bl, 33 mg; Niacine, 1.5 g; S, 5 g; IK, 300 mg; SO4Fe, 1 g; ZnO, 4 g; MnO, 2 g; CoSO4, 60 mg; Na2SeO3, 30 mg; Ethoxyquin, 30 mg.

On the second day the nylon bag with solid rumen content was removed, and a new bag with substrate was supplied. On subsequent days and until the end of the experiment, the bag that had spent 2 d in the fermenters was removed, and a new bag with feed was introduced to achieve an incubation time of 48 h.

Sampling, analytical procedures and statistical analyses. In each fermenter the pH was measured daily before the feeding. Every day liquid effluent was collected in a flask containing 20 mL of sulfuric acid solution (20%; vol:vol) to maintain pH values below 2. After 7 d of adaptation, on days 8, 9 and 10, samples for gas, SCFA and ammonia-N determination were collected following the procedures described by Martínez et al. (2009). The nylon bag collected from each fermenter was washed twice with 40 mL of fermenter’s fluid, and then washed with cold water for 20 minutes in a washing machine. The dry matter apparent disappearance after 48 h incubation was calculated from the loss in weight after oven drying at 60ºC for 48 h, and the residues were analyzed for neutral detergent fiber and acid detergent fiber content, according to van Soest et al. (1991), in an ANKOM220 fiber analyzer (Ankom Technology Corporation, Fairport, NY, USA) to estimate neutral detergent fiber and acid detergent fiber disappearance.

Effluent samples were analyzed for individual SCFA by gas chromatography, as indicated by Carro et al. (1992) and ammonia-N by the method of Weatherburn (1967). Gas production (L/d) was measured with a drum-type gas meter (model TG1; Ritter Apparatebau GmbH, Bochum, Germany). The amount of methane produced (mmol/d) was calculated by multiplying the gas produced by the methane concentration which was determined by gas chromatography as described by Carro et al. (1992).

Adaptive changes in the microbial population of fermenters to A. oryzae treatment were studied using the fluid from each fermenter as inoculum for batch cultures and measuring the response in final pH, gas production and SCFA. The fermentative activity of the fluid was tested against three pure substrates (Sigma-Aldrich Química SA, Madrid, Spain): starch (mixture of 40% corn, 40% wheat and 20% potato starch), oat spelt xylan and cellulose. On the last day of Rusitec trial 300 mL of fluid from two pairs of fermenters of each treatment were mixed, obtaining two inocula for control and two for A. oryzae treatment. Six hundred mL of each inoculum were mixed with 150 mL of artificial saliva enriched with N (1 L of artificial saliva containing 472 mg of NH4Cl and 791 mg of trypticase), and 40 mL of the final mixture were anaerobically (under continuous flushing with CO2) dispensed into 120-mL serum bottles containing 400 mg of one of the substrates described above. Twelve bottles (three bottles for each substrate and three bottles without substrate) were incubated per each inoculum. The bottles were capped and incubated at 39°C for 9 h for cellulose and for 6 h for the rest of substrates. The amount of gas produced was measured, the bottles were opened the pH was immediately measured and samples of 0.8 mL were added to 0.5 mL of a deproteinizing solution (20 g of metaphosphoric acid and 0.6 g of crotonic acid per liter) for the analysis of SCFA.

Data were analyzed using the PROC MIXED procedure of SAS (version 9.4) (SAS, 2013), for a completely randomized design. Effects included in the model were the treatment, the incubation day, and the interaction between treatments and incubation day, and fermenter as a random effect.

Effect of A. oryzae on fermentation parameters in Rusitec fermenters is shown in table 2. In the present study there were observed increases of acetate and total SCFA production (p=0.022 and p=0.039, respectively), with the inclusion of the fungus, which is consistent with that reported by other authors (Wiedmeier et al. 1987, Frumholtz et al. 1989, Fondevila et al. 1990, Newbold et al. 1991 and Sun et al. 2017), as the increase (p < 0.001) in the acetate:propionate ratio (Wiedmeier et al. 1987 and Frumholtz et al. 1989). The SCFA represent the main supply of metabolizable energy for ruminants, and therefore an increase in their production would be nutritionally favorable for the host animal. Increase (p < 0.001 to p = 0.038) in minor SCFA production was also observed after inclusion of the additive. Specifically, the production of the branched SCFA is due to deamination and decarboxylation of branched chain amino acids. A. oryzae is highly proteolytic (Kumura et al. 2011 and Su et al. 2011) and it could be the proteolytic activity of the fungus that contributes to the formation of these compounds. The increase of these isoacids is a relevant aspect because there are growth factors for fibrolytic rumen bacteria as Ruminococcus albus and Fibrobacter succinogenes (Hardy 1987).

Table 2. 

Effect of A. oryzae on SCFA production (mmol/d), acetate:propionate ratio (Ac:Pr, mol/mol), pH, ammonia-N concentration (mg/d) and methane production (mmol/d)

SCFAControlA. oryzaeSEMp value
Total SCFA58.865.92.230.039
Acetate31.435.71.210.022
Propionate9.7610.30.3900.348
Butyrate9.8210.50.3700.238
Isobutyrate0.540.690.022<0.001
Isovalerate1.802.090.0600.003
Valerate3.453.870.1320.038
Caproate2.092.780.094<0.001
Ac:Pr3.223.470.033<0.001
pH6.776.690.014<0.001
Ammonia-N1461936.0<0.001
Methane20.922.30.770.230

With A. oryzae addition pH values decreased (p<0.001) but remained close to neutrality. This decrease in pH could be attributable to the increase in total SCFA production. The increase (p<0.001) in ammonia-N concentration coincides with the results of Frumholtz et al. (1989) who observed 30% increases in this issue. Several authors found that A. oryzae inclusion stimulates ammonia-N production by rumen microorganisms (Arambel et al. 1987, Frumholtz et al. 1989 and Martin and Nisbet 1990), suggesting that microbial additives favor in vitro proteolysis.

With the addition of A. oryzae no difference on methane production (p = 0.230) was observed (table 2). It has been reported that microbial additives are able to reduce rumen methanogenesis (Sharma 2005). Frumholtz et al. (1989) reported a decrease on methane production by adding an A. oryzae fermentation extract in Rusitec fermenters which was consistent with the increased production of reduced products such as butyrate and valerate. These authors used higher doses of A. oryzae fermentation extract (250 mg in fermenter with effective volume of 850 mL). In the present study increase in the acetate:propionate ratio was observed and consequently the reduction in methane is not expected. The formation of methane in rumen fermentation is thus closely associated to the profile of SCFA formed, propionate competes with methane as a hydrogen sink in rumen fermentation whereas acetate formation release hydrogen that can be utilized by methanogens to reduce CO2 to methane (Ungerfeld 2020). The difference with other studies could be due to the strain and doses used. Newbold and Rode (2006) affirm that responses of yeast cultures in Rusitec fermenters were highly variable and depended on the strain used which may be related to differences in metabolic activity of the strains. The influence of strain and dose was also demonstrated by Jiao et al. (2018) in studies with yeast in batch culture of rumen microorganisms.

Results of A. oryzae effect on diet disappearance are shown in table 3. Fungus inclusion did not affect (p = 0.386 to p = 0.865) the dry matter and fiber disappearance. Among the beneficial effects of this additive is its ability to stimulate fiber degradability, which was demonstrated in in vitro (Arambel et al. 1987) and in vivo (Wiedmeier et al. 1987) research. In previous studies, Newbold et al. (1991) observed that A. oryzae stimulated dry matter disappearance within 24 hours of fermentation, but not at 48 hours. This probably occurred by an improved rate rather than extent of digestion (Fondevila et al. 1990). In the present study feed bags were removed after 48 hours and this could explain the lack of effect observed in the dry matter and fiber disappearance. On the other hand, the increase in the total SCFA production at 24 hours is consistent with the hypothesis that A. oryzae improved the rate of digestion when added to the feed in Rusitec fermenters.

Table 3. 

Effect of A. oryzae on diet disappearance

Diet dissapearance (g/kg)ControlA. oryzaeSEMp value
Dry matter5725700.60.865
Neutral detergent fiber2752701.20.756
Acid detergent fiber1851711.10.386

The effect of inoculum from Rusitec fermenters in fermentation of pure substrates is shown in table 4. For all substrates there were no differences (p = 0.824, p = 0.938 and p = 0.465 for starch, xylan and cellulose, respectively) between control fermenters and those with A. oryzae in gas production.

Table 4. 

Effect of inoculum from fermenters Rusitec on pH, gas (mL) and SCFA production (mmol) and the Ac:Pr ratio (mmol/mmol) in fermentation of pure substrates1

Sustrate and itemControlA. oryzaeSEMp value
Starch
Gas production26.726.41.090.824
pH6.846.920.0170.007
Total SCFA3.913.910.0590.942
Acetate2.062.130.0330.187
Propionate0.630.550.0130.002
Butyrate0.730.680.0100.007
Isobutyrate0.030.040.001<0.001
Isovalerate0.120.130.0020.005
Valerate0.220.210.0030.029
Caproate0.120.170.006<0.001
Ac:Pr3.283.850.045<0.001
Xylan
Gas production14.414.50.540.938
pH7.167.170.0230.761
Total SCFA3.753.800.0790.682
Acetate2.082.170.0440.190
Propionate0.620.550.0160.018
Butyrate0.590.560.0150.274
Isobutyrate0.030.040.0010.002
Isovalerate0.110.120.0020.010
Valerate0.210.200.0040.163
Caproate0.120.160.006<0.001
Ac:Pr3.373.930.066<0.001
Cellulose
Gas production15.215.80.5470.465
pH7.267.260.0141.000
Total SCFA3.263.430.0740.131
Acetate1.701.860.0380.012
Propionate0.550.510.0170.152
Butyrate0.560.550.0150.546
Isobutyrate0.030.040.001<0.001
Isovalerate0.100.120.0020.003
Valerate0.200.200.0040.783
Caproate0.110.150.006<0.001
Ac:Pr3.073.640.060<0.001

1 Starch and xylan were incubated for 6 h and cellulose for 9 h

In the case of starch, it was observed that the ruminal fluid containing A. oryzae increased (p=0.007) pH, confirming the stabilizing effect on ruminal pH of this organism in high concentrate diets. Several studies reported that A. oryzae enhances lactate utilization by ruminal bacteria capable of fermenting lactate (Megasphaera elsdenii and Selenomonas ruminantium) (Beharka and Nagaraja 1998). Waldrip and Martin (1993) demonstrated that the fungus provides growth factors (i.e., sugars, amino acids, vitamins) that are required by these bacteria.

Batch cultures inoculated with ruminal fluid from fermenters fed A. oryzae produced greater (p<0.001 to p=0.010) amounts of branched SCFA and increased (p<0.001) caproate production and the ratio Ac:Pr with all pure substrates than those inoculated with fluid from control fermenters (Table 4). For starch and xylan substrate it was shown a decrease (p=0.002 and p=0.018, respectively) in propionic acid production with rumen fluid corresponding to A. oryzae. In the case of cellulose this treatment caused an increase (p=0.012) of acetic acid.

The lack of effect of inoculum from Rusitec fermenters in fermentation of pure substrates seems to indicate that the strain of A. oryzae or the dose used in the current study are unable to induce the adaptive changes in the microbial population in fermenters with A. oryzae. These results suggest that the microorganism must be supplied daily to maintain its effect on the ruminal ecosystem.

The increase of acetate, minor volatile fatty acids and total volatile fatty acids production indicate that A. oryzae strain stimulated rumen fermentation of a 65:35 alfalfa hay:concentrate diet in continuous fermentation system Rusitec. The results obtained support the development of in vivo further research.

Acknowledgments

The authors wish to acknowledge the financial support received from the MCYT of Spain (project AGL2008-04707-C02-02) and from the MAE-AECID (Project PCI-Iberoamérica A/4951/06). A. Sosa and A. Diaz gratefully acknowledge the receipt of scholarships from the MAEC-AECID.

 

References

Arambel, M.J., Wiedmeier, R.D. & Walters, J.L. 1987. "Influence of donor animal adaptation to added yeast culture and/or Aspergillus oryzae fermentation extract on in vitro rumen fermentation". Nutrition Reports International, 35(3): 433-436, ISSN: ‎0029-6635, Available: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7473530.

Beharka, A.A. & Nagaraja, T.G. 1998. "Effect of Aspergillus oryzae extract alone or in combination with antimicrobial compounds on ruminal bacteria". Journal of Dairy Science, 81(6): 1591-1598, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.S0022-0302(98)75725-X.

Carro, M.D., Lebzien, P. & Rohr, K. 1992. "Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates". Animal Feed Science and Technology, 37(3-4): 209-220, ISSN: 0377-8401, DOI: https://doi.org/10.1016/0377-8401(92)90005-Q.

Czerkawski, J.W. & Breckenridge, G. 1977. "Design and development of a long-term rumen simulation technique (Rusitec) ". British Journal of Nutrition, 38(3): 371-384, ISSN: 0007-1145, DOI: https://doi.org/10.1079/BJN19770102

Fondevila, M., Newbold, C.J., Hotten, P.M. & Orskov, E.R. 1990. "A note on the effect of Aspergillus oryzae fermentation extract on the rumen fermentation of sheep given straw". Animal Science, 51(2): 422-425, ISSN: 1357-7298, DOI: https://doi.org/10.1017/S0003356100005584.

Frumholtz, P.P., Newbold, C.J. & Wallace, R.J. 1989. "Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec) ". The Journal of Agricultural Science, 113(2): 169-172, ISSN: 0021-8596, DOI: https://doi.org/10.1017/S002185960008672X.

Giraldo, L.A., Ranilla, M.J., Tejido, M.L. & Carro, M.D. 2007. "Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters". British Journal of Nutrition, 98(4): 753-761, ISSN: 0007-1145, DOI: https://doi.org/10.1017/S0007114507744446.

Hardy, C. 1987. Los microorganismos del rumen y su actividad. In: Bioquímica nutricional: Fisiología digestiva y metabolismo intermediario en animales de granja. Ruiz, R. et al (Eds.). Ed. EDICA, Instituto de Ciencia Animal, Mayabeque, Cuba, p. 115-142.

Jiao, P.X., He, Z.X., Ding, S., Walker, N.D., Cong, Y.Y., Liu, F.Z., Beauchemin, K.A. & Yang, W.Z. 2018. "Impact of strain and dose of live yeast and yeast derivatives on in vitro ruminal fermentation of a high-grain diet at two pH levels". Canadian Journal of Animal Science, 98(3): 477-487, ISSN: 1357-7298, DOI: https://doi.org/10.1139/cjas-2017-0079.

Kumura, H., Ishido, T. & Shimazaki, K. 2011. "Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source". Journal of Dairy Science, 94(2): 657-667, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2010-3587.

Mamuad, L.L., Lee, S.S. & Lee, S.S. 2019. "Recent insight and future techniques to enhance rumen fermentation in dairy goats". Asian-Australasian Journal of Animal Science, 32(8): 1321-1330, ISSN: 1976-5517, DOI: https://doi.org/10.5713/ajas.19.0323.

Martin, S.A. & Nisbet, D.J. 1990. "Effects of Aspergillus oryzae fermentation extract on fementation of amino acids, bermudagrass and starch by mixed ruminal microorganism in vitro". Journal of Animal Science, 68(7): 2142-2149, ISSN: 0021-8812, DOI: https://doi.org/10.2527/1990.6872142x.

Martínez, M.E., Ranilla, M.J., Ramos, S., Tejido, M.L. & Carro, M.D. 2009. "Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters". Journal of Dairy Science, 92(8): 3930-3938, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2008-1975.

McDougall, E.I. 1948. "Studies on ruminant saliva. 1. The composition and output of sheep's saliva". Biochemical Journal, 43(1): 99-109, ISSN: 1470-8728, DOI: https://doi.org/10.1042/bj0430099.

Newbold, C.J. & Rode, L.M. 2006. "Dietary additives to control methanogenesis in the rumen. International Congress Series, 1293: 138-147, ISSN: 0531-5131, DOI: https://doi.org/10.1016/j.ics.2006.03.047.

Newbold, C.J., Brock, R. & Wallace, R.J. 1991. "Influence of autoclaved or irradiated Aspergillus oryzae fermentation extract on fermentation in the rumen simulation technique (Rusitec)". The Journal of Agricultural Science, 116(1): 159-162, ISSN: 0021-8596, DOI: https://doi.org/10.1017/S0021859600076267.

Sallam, S.M., Abdelmalek, M.L., Kholif, A.E., Zahran, S.M., Ahmed, M.H., Zeweil, H.S., Attia, M.F., Matloup, O.H. & Olafadehan, O.A. 2019. "The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows". Animal Biotechnology, 1-7, ISSN: 1049-5398, DOI: https://doi.org/10.1080/10495398.2019.1625783.

SAS (Statistical Analysis Systems). 2013. SAS Procedures Guide Release, 9.4 Edition. SAS Institute Inc, Cary, North Carolina, USA.

Seo, J.K., Kim, S.W., Kim, M.H., Upadhaya, S.D., Kam, D.K. & Ha, J.K. 2010. "Direct-fed microbials for ruminant animals". Asian-Australasian Journal of Animal Science, 23(12): 1657-1667, ISSN: 1976-5517, DOI: https://doi.org/10.5713/ajas.2010.r.08.

Sharma, R.K. 2005. "Nutritional strategies for reducing methane production by ruminants". Indian Journal of Research, 4(1): 1-12, ISSN: 2250-1991, DOI: https://doi.org/10.36106/paripex.

Shen, Y., Wang, H., Ran, T., Yoon I., Saleem, A.M. & Yang, W. 2018. "Influence of yeast culture and feed antibiotics on ruminal fermentation and site and extent of digestion in beef heifers fed high grain rations". Journal of Animal Science, 96(9): 3916-3927, ISSN: 0021-8812, DOI: https://doi.org/10.1093/jas/sky249.

Sklyar, O.I., & Gerun, I.V. 2020. "Effect of additives and various microorganisms оn fermentation in the rumen". Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97): 175-180, ISSN: 2518-1327, DOI: https://doi.org/10.32718/nvlvet9728.

Sosa, A., Galindo, J., Bocourt, R., Rodríguez, R., Albelo, N. & Oramas, A. 2010. "Effect of Aspergillus oryzae on the rumen fermentation of Pennisetum purpureum cv. Cuba CT-115 through the in vitro gas technique". Cuban Journal of Agricultural Science, 44(1): 151-155, ISSN: 2079-3480.

Su, G., Ren, J., Yang, B., Cui, C. & Zhao, M. 2011. "Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases". Food Chemistry, 126(3): 1306-131, ISSN: 0308-8146, DOI: https://doi.org/10.1016/j.foodchem.2010.11.083.

Sucu, E., Moore, C., Van Baale, M.J., Jensen, H., Sanz-Fernandez, M.V. & Baumgard, L. 2018. "Effects of feeding Aspergillus oryzae fermentation product to transition Holstein cows on performance and health". Canadian Journal of Animal Science, 99(2): 237-243, ISSN: 0008-3984, DOI: https://doi.org/10.1139/cjas-2018-0037.

Sun, H., Wu, Y.M., Wang, Y.M., Liu, J.X. & Myung, K.H. 2014. "Effects of Aspergillus oryzae culture and 2-hydroxy-4-(methylthio)-butanoic acid on in vitro rumen fermentation and microbial populations between different roughage sources". Asian-Australasian Journal of Animal Sciences, 27(9): 1285-1292, ISSN: 1011-2367, DOI: http://dx.doi.org/10.5713/ajas.2013.13742.

Sun, H., Wu, Y., Wang, Y., Wang, C. & Liu, J. 2017. "Effects of addition of Aspergillus oryzae culture and 2‐hydroxyl‐4‐(methylthio) butanoic acid on milk performance and rumen fermentation of dairy cows". Animal Science Journal, 88(4): 602-609, ISSN: 0021-8812, DOI: https://doi.org/10.1111/asj.12646.

Ungerfeld, E.M. 2020. "Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions". Frontiers in Microbiology, 1: 589, ISSN: 1664-302X, DOI: https://doi.org/10.3389/fmicb.2020.00589.

Van Soest, P.J., Robertson, J.B. & Lewis, B.A. 1991. "Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition". Journal of Dairy Science, 74(10): 3583-3597, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

Wagner, B.K., Wenner, B.A., Plank, J.E., Poppy, G.D. & Firkins, J.L. 2018. "Investigation of ammonium lactate supplementation on fermentation end products and bacterial assimilation of nitrogen in dual-flow continuous culture". Journal of Dairy Science, 101(9): 8032-8045, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.2017-14358.

Waldrip, H.M. & Martin, S.A. 1993. "Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii". Journal of Animal Science, 71(10): 2770-2776, ISSN: 0021-8812, DOI: https://doi.org/10.2527/1993.71102770x.

Weatherburn, M.W. 1967. "Phenol hypoclorite reaction for determination of ammonia". Analytical Chemistry, 39(8): 971-974, ISSN: 0003-2700, DOI: https://doi.org/10.1021/ac60252a045.

Wiedmeier, R.D., Arambel, M.J. & Walters, J.L. 1987. "Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility". Journal of Dairy Science, 70(10): 2063-2068, ISSN: 0022-0302, DOI: https://doi.org/10.3168/jds.S0022-0302(87)80254-0.

Yohe, T.T., O’Diam, K.M. & Daniels, K.M. 2015. "Growth, ruminal measurements, and health characteristics of Holstein bull calves fed an Aspergillus oryzae fermentation extract". Journal of Dairy Science, 98(9): 6163-6175, ISSN: 0022-0302, DOI: http://dx.doi.org/10.3168/jds.2015-9313.

 

 

 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution License

 

CIENCIA ANIMAL

 

Efecto de Aspergillus oryzae en la fermentación ruminal de una dieta de heno de alfalfa:concentrado con la utilización de la técnica de simulación de rumen (Rusitec)


Resumen

Se ha demostrado que los productos microbianos de alimentación directa modifican los indicadores de fermentación ruminal y tienen efectos beneficiosos en el comportamiento de los rumiantes. El objetivo de este estudio fue evaluar el efecto de Aspergillus oryzae en la fermentación ruminal de una dieta de heno de alfalfa:concentrado (65:35) con el sistema de fermentación continua Rusitec. Cuatro fermentadores correspondieron al control y cuatro recibieron 50 mg de cultivo liofilizado de A. oryzae que se mezcló con alimento. El tratamiento con A. oryzae (p <0.001 a p=0.039) aumentó el acetato, los ácidos grasos de cadena corta totales (AGCC), la producción de AGCC menores y la proporción acetato:propionato (Ac:Pr). La adición de A. oryzae disminuyó (p <0.001) los valores de pH y aumentó (p<0.001) la concentración de amoníaco-N. No hubo diferencias entre los tratamientos en la producción de metano (p=0.230). La inclusión de A. oryzae no afectó (de p=0.386 a p=0.865) la materia seca y la desaparición de fibras. El fluido ruminal de los fermentadores de A. oryzae no afectó (de p=0.465 a p=0.938) la producción de gas (de p=0.131 a p=0.942) ni los AGCC totales de sustratos puros. El aumento de acetato, AGCC menores y la producción de AGCC totales indican que la cepa A. oryzae estimuló la fermentación ruminal de una dieta de heno de alfalfa:concentrado (65:35) con el sistema de fermentación continua Rusitec.

Palabras clave: 

fermentadores continuos; productos microbianos de alimentación directa; degradabilidad de la fibra; ácidos grasos volátiles.


El uso de productos microbianos de alimentación directa como aditivos para piensos es una estrategia para optimizar la eficiencia de producción de rumiantes y puede utilizarse como alternativa al uso de antibióticos como promotores del crecimiento (Shen et al. 2018, Mamuad et al. 2019 y Sklyar y Gerun 2020). Entre las especies microbianas que se utilizan para este propósito se encuentra el hongo Aspergillus oryzae. Este microorganismo aumentó la cantidad de bacterias celulolíticas, bacterias viables totales y poblaciones de hongos (Beharka y Nagaraja 1998 y Sun et al. 2014). La estimulación de estas poblaciones ruminales conduce al aumento de la concentración de AGCC y la síntesis de proteínas microbianas (Seo et al. 2010 y Sun et al. 2017). En el ganado lechero, se demostró mejora de los indicadores productivos con la inclusión de A. oryzae en la dieta (Sucu et al. 2018 y Sallam et al. 2019).

La mayoría de las investigaciones para evaluar el efecto de este aditivo microbiano se realizan en condiciones in vivo o utilizando cultivos de microorganismos ruminales, como sistema in vitro. Pocos estudios evalúan el efecto de A. oryzae en sistemas de fermentación continua (Frumholtz et al. 1989 y Newbold et al. 1991), que es una opción que genera información útil a corto plazo para determinar la eficiencia del organismo en estudio (Martínez et al. 2009 y Wagner et al. 2018).

Además, la mayor parte de estos experimentos se han realizado con productos comerciales basados en extracto de fermentación de A. oryzae secado en una base insoluble de salvado de trigo (Yohe et al. 2015). Existe información limitada acerca de la aplicación de cultivos vivos de este microorganismo y su potencial como modificador de la fermentación ruminal ha recibido mucho menos atención. Además, en los países tropicales, los sistemas de alimentación animal, específicamente para el ganado lechero, se basan en pastos y forrajes de bajo valor nutritivo que no cubren los requerimientos de estos animales. Los productos de aditivos microbianos en el mercado internacional tienen alto precio que hace que sea imposible importarlos para los países en desarrollo de América Latina, por lo que es esencial obtener aditivos propios para responder a situaciones generadas en la producción animal.

Como estrategia para mejorar el uso de los recursos disponibles para aumentar la eficiencia productiva de los rumiantes, el objetivo de este estudio fue evaluar el efecto del cultivo vivo de A. oryzae como activador de la fermentación ruminal en el sistema de fermentación continua Rusitec, alimentado con una mezcla de heno de alfalfa y concentrado.

El protocolo experimental se aprobó por el Comité Institucional de Cuidado y Uso de Animales de la Universidad de León (Proyecto AIB2010NZ-00190). Se utilizó personal capacitado para el cuidado y manejo de las ovejas, de acuerdo con las pautas españolas para la protección de animales experimentales (Decreto Real 53/2013 del 1 de febrero, sobre la protección de los animales utilizados para experimentación u otros fines científicos).

Se realizó un ensayo de incubación de 10 días, con la utilización de ocho fermentadores Rusitec, con un volumen efectivo de 600 mL cada uno, con un diseño completamente al azar. Cuatro fermentadores correspondieron al control y cuatro recibieron 50 mg de cultivo de A. oryzae (cepa H/6.28.1 de la colección del Instituto Cubano de Investigación de Derivados de la Caña de Azúcar, ICIDCA). El cultivo se obtuvo por crecimiento en caldo de extracto de malta (Fluka) durante siete días. La selección de la dosis se basó en los resultados de Sosa et al. (2010).

El procedimiento de incubación general fue el descrito por Czerkawski y Breckenridge (1977). El primer día del experimento cada fermentador se inoculó con 250 mL de líquido ruminal filtrado, 250 mL de saliva artificial (pH 8.4) (McDougall 1948) y 80 g de contenido de rumen sólido suministrado en una bolsa de nailon (tamaño de poro de 100 µm). El contenido ruminal se obtuvo de cuatro ovejas Merino canuladas en rumen, alimentadas con la misma dieta administrada a los fermentadores. Los contenidos ruminales de cada oveja se obtuvieron inmediatamente antes de la alimentación de la mañana. Las fracciones sólidas y líquidas se recogieron en recipientes separados. El contenido se mezcló y se filtró a través de cuatro capas de gasa. Ambas fracciones se transfirieron al sistema in vitro en 30 minutos, tal como lo describieron Carro et al. (1992).

Cada fermentador recibió 20 g de sustrato de materia seca al día, que se colocaron en bolsas de nailon. El sustrato estaba compuesto por 13 g de heno de alfalfa (65%) y 7 g de concentrado (35%). Los ingredientes y la composición química del sustrato se muestran en la tabla 1. Se cortó el heno de alfalfa (piezas de aproximadamente 0.5 cm), y el concentrado se molió a través de un tamiz de 4 mm. Ambos componentes del alimento se pesaron de forma independiente y se mezclaron cuidadosamente antes de aplicar los tratamientos experimentales. Las cuatro bolsas correspondientes a los tratamientos con A. oryzae recibieron 50 mg de microorganismo que se mezcló con el sustrato. El flujo a través de los fermentadores se mantuvo mediante infusión continua de saliva artificial (pH 8.4) de McDougall (1948) a una proporción de 610 mL/d (escala de dilución del 4.24% / h).

Table 1. 

Ingredient composition and chemical analysis of experimental diets fed to donor sheep and used as substrates for the Rusitec fermenters

Ingredientsg/kg of dry matter
Alfalfa hay650
Barley75,0
Gluten feed71,0
Wheat middlings70,0
Soybean meal47,0
Palmkern meal40,0
Wheat18,0
Corn11,0
Mineral-vitamin premix118,0
Chemical composition
Organic matter928
Neutral detergent fiber507
Acid detergent fiber248
Crude protein131

1 Declared composition (g/kg mineral/vitamin premix): Vitamin A, 600,000 IU; Vitamin D3, 120,000 IU; Vitamin E, 1 g; Vitamin Bl, 33 mg; Niacine, 1.5 g; S, 5 g; IK, 300 mg; SO4Fe, 1 g; ZnO, 4 g; MnO, 2 g; CoSO4, 60 mg; Na2SeO3, 30 mg; Ethoxyquin, 30 mg.

El segundo día se retiró la bolsa de nailon con contenido de rumen sólido y se suministró una nueva bolsa con sustrato. En los días siguientes y hasta el final del experimento, se retiró la bolsa que había pasado 2 días en los fermentadores y se introdujo una nueva bolsa con alimentación para lograr un tiempo de incubación de 48 h.

Muestreo, procedimientos analíticos y análisis estadísticos. En cada fermentador se midió el pH diariamente antes de la alimentación. Todos los días se recogió el efluente líquido en un recipiente que contenía 20 mL de solución de ácido sulfúrico (20%; vol:vol) para mantener los valores de pH por debajo de 2. Después de 7 días de adaptación, se recogieron muestras de gas, AGCC y la determinación de amoniaco-N en los días 8, 9 y 10, siguiendo los procedimientos descritos por Martínez et al. (2009) La bolsa de nailon recogida de cada fermentador se lavó dos veces con 40 mL de fluido del fermentador y luego se lavó con agua fría durante 20 minutos en una lavadora. La desaparición aparente de la materia seca después de 48 h de incubación se calculó a partir de la pérdida de peso después del secado en la estufa a 60 ºC durante 48 h y los residuos se analizaron para determinar el contenido de fibra detergente neutra y de fibra detergente ácida, según Van Soest et al. (1991), en un analizador de fibra ANKOM220 (Ankom Technology Corporation, Fairport, NY, EE. UU.), para estimar la desaparición de la fibra detergente neutra y de la fibra detergente ácida.

Las muestras de efluentes se analizaron para AGCC individuales por cromatografía de gases, según lo indicado por Carro et al. (1992) y amoniaco-N por el método de Weatherburn (1967). La producción de gas (L/d) se midió con un medidor de gas de tipo tambor (modelo TG1; Ritter Apparatebau GmbH, Bochum, Alemania). La cantidad de metano producido (mmol/d) se calculó multiplicando el gas producido por la concentración de metano que se determinó por cromatografía de gases como describen Carro et al. (1992).

Se estudiaron los cambios adaptativos en la población microbiana de fermentadores para el tratamiento con A. oryzae a través del fluido de cada fermentador como inóculo para cultivos discontinuos y de la medición de la respuesta en pH final, producción de gas y AGCC. La actividad fermentativa del fluido se probó con tres sustratos puros (Sigma-Aldrich Química SA, Madrid, España): almidón (mezcla de 40% de maíz, 40% de trigo y 20% de almidón de papa), celulosa y xilano de avena. El último día de la prueba Rusitec se mezclaron 300 mL de líquido de dos pares de fermentadores de cada tratamiento, con la obtención de dos inóculos para el control y dos para el tratamiento con A. oryzae. Se mezclaron 600 mL de cada inóculo con 150 mL de saliva artificial enriquecida con N (1 L de saliva artificial que contenía 472 mg de NH4Cl y 791 mg de tripticasa), y 40 mL de la mezcla final fueron dispensados anaeróbicamente (con lavado continuo con CO2) en frascos de suero de 120 mL que contienen 400 mg de uno de los sustratos descritos anteriormente. Se incubaron 12 botellas (tres botellas para cada sustrato y tres botellas sin sustrato) por cada inóculo. Los frascos se taparon e incubaron a 39 °C por 9 h para celulosa y durante 6 h para el resto de sustratos. Se midió la cantidad de gas producido, se abrieron las botellas, se midió inmediatamente el pH y muestras de 0.8 mL se añadieron a 0.5 mL de una solución desproteinizante (20 g de ácido metafosfórico y 0.6 g de ácido crotónico por litro) para el análisis de AGCC.

Los datos se analizaron utilizando el procedimiento PROC MIXED de SAS (versión 9.4) (SAS 2013), para un diseño completamente al azar. Los efectos incluidos en el modelo fueron tratamiento, día de incubación y la interacción entre los tratamientos y el día de incubación, y el fermentador como un efecto aleatorio.

El efecto de A. oryzae en los indicadores de la fermentación en los fermentadores Rusitec se muestra en la tabla 2. En el presente estudio se observaron aumentos de la producción de acetato y AGCC totales (p=0.022 y p=0.039, respectivamente), con la inclusión del hongo, lo cual es consistente con lo informado por otros autores (Wiedmeier et al. 1987, Frumholtz et al. 1989, Fondevila et al. 1990, Newbold et al. 1991 y Sun et al. 2017), así como el aumento (p <0.001) en la relación acetato:propionato (Wiedmeier et al. 1987 y Frumholtz et al. 1989). Los AGCC representan el principal suministro de energía metabolizable para rumiantes y, por lo tanto, un aumento en su producción sería nutricionalmente favorable para el animal huésped. También se observó aumento (p <0.001 a p = 0.038) en la producción de AGCC menores después de la inclusión del aditivo. Específicamente, la producción de los AGCC ramificados se debe a la desaminación y descarboxilación de aminoácidos de cadena ramificada. A. oryzae es altamente proteolítico (Kumura et al. 2011 y Su et al. 2011) y podría ser la actividad proteolítica del hongo lo que contribuye a la formación de estos compuestos. El aumento de estos isoácidos es un aspecto relevante porque hay factores de crecimiento para las bacterias fibrolíticas del rumen como Ruminococcus albus y Fibrobacter succinogenes (Hardy 1987).

Table 2. 

Effect of A. oryzae on SCFA production (mmol/d), acetate:propionate ratio (Ac:Pr, mol/mol), pH, ammonia-N concentration (mg/d) and methane production (mmol/d)

SCFAControlA. oryzaeSEMp value
Total SCFA58.865.92.230.039
Acetate31.435.71.210.022
Propionate9.7610.30.3900.348
Butyrate9.8210.50.3700.238
Isobutyrate0.540.690.022<0.001
Isovalerate1.802.090.0600.003
Valerate3.453.870.1320.038
Caproate2.092.780.094<0.001
Ac:Pr3.223.470.033<0.001
pH6.776.690.014<0.001
Ammonia-N1461936.0<0.001
Methane20.922.30.770.230

Con la adición de A. oryzae, los valores de pH disminuyeron (p <0.001) pero permanecieron cerca de la neutralidad. Esta disminución en el pH podría atribuirse al aumento en la producción de AGCC totales. El aumento (p<0.001) en la concentración de amoníaco-N coincide con los resultados de Frumholtz et al. (1989), quienes observaron aumentos del 30% en este tema. Varios autores encontraron que la inclusión de A. oryzae estimula la producción de amoníaco-N por microorganismos del rumen (Arambel et al. 1987, Frumholtz et al. 1989 y Martin y Nisbet 1990), lo que sugiere que los aditivos microbianos favorecen la proteólisis in vitro.

Al añadir A. oryzae no se observó diferencia en la producción de metano (p = 0.230) (tabla 2). Se ha informado que los aditivos microbianos pueden reducir la metanogénesis ruminal (Sharma 2005). Frumholtz et al. (1989) informaron una disminución en la producción de metano al agregar un extracto de fermentación de A. oryzae en los fermentadores Rusitec que fue consistente con el aumento de la producción de productos reducidos como el butirato y el valerato. Estos autores utilizaron dosis más altas de extracto de fermentación de A. oryzae (250 mg en fermentador con un volumen efectivo de 850 mL). En el presente estudio se observó un aumento en la relación acetato:propionato y, en consecuencia, no se espera una reducción en el metano. Por lo tanto, la formación de metano en la fermentación ruminal está estrechamente asociada con el perfil de AGCC formados, el propionato compite con el metano como sumidero de hidrógeno en la fermentación ruminal, mientras que la formación de acetato libera hidrógeno que puede ser utilizado por los metanógenos para convertir CO2 en metano (Ungerfeld 2020). La diferencia con otros estudios podría deberse a la cepa y las dosis utilizadas. Newbold y Rode (2006) afirman que las respuestas de los cultivos de levadura en los fermentadores Rusitec fueron muy variables y dependieron de la cepa utilizada, lo que puede estar relacionado con diferencias en la actividad metabólica de las cepas. Jiao et al. (2018) también demostraron la influencia de la cepa y la dosis en estudios con levadura en cultivo discontinuo de microorganismos ruminales.

Los resultados del efecto de A. oryzae en la desaparición de la dieta se muestran en la tabla 3. La inclusión de hongos no afectó (de p=0.386 a p=0.865) la materia seca ni la desaparición de fibra. Entre los efectos beneficiosos de este aditivo está su capacidad para estimular la degradabilidad de la fibra, que se demostró en investigaciones in vitro (Arambel et al. 1987) e in vivo (Wiedmeier et al. 1987). En estudios anteriores, Newbold et al. (1991) observaron que A. oryzae estimuló la desaparición de la materia seca en las 24 horas de fermentación, pero no a las 48 horas. Esto probablemente ocurrió por una tasa mejorada en lugar de la extensión de la digestión (Fondevila et al. 1990). En el presente estudio, se retiraron las bolsas de alimentación después de 48 horas y esto podría explicar la falta de efecto observado en la materia seca y la desaparición de la fibra. Por otro lado, el aumento en la producción de SCFA totales a las 24 horas coincide con la hipótesis de que A. oryzae mejoró la tasa de digestión cuando se agregó al alimento en los fermentadores Rusitec.

Table 3. 

Effect of A. oryzae on diet disappearance

Diet dissapearance (g/kg)ControlA. oryzaeSEMp value
Dry matter5725700.60.865
Neutral detergent fiber2752701.20.756
Acid detergent fiber1851711.10.386

La tabla 4 muestra el efecto del inóculo de los fermentadores Rusitec en la fermentación de sustratos puros. Para todos los sustratos no hubo diferencias en la producción de gas (p=0.824, p=0.938 y p=0.465 para almidón, xilano y celulosa, respectivamente) entre los fermentadores de control y aquellos con A. oryzae.

Table 4. 

Effect of inoculum from fermenters Rusitec on pH, gas (mL) and SCFA production (mmol) and the Ac:Pr ratio (mmol/mmol) in fermentation of pure substrates1

Sustrate and itemControlA. oryzaeSEMp value
Starch
Gas production26.726.41.090.824
pH6.846.920.0170.007
Total SCFA3.913.910.0590.942
Acetate2.062.130.0330.187
Propionate0.630.550.0130.002
Butyrate0.730.680.0100.007
Isobutyrate0.030.040.001<0.001
Isovalerate0.120.130.0020.005
Valerate0.220.210.0030.029
Caproate0.120.170.006<0.001
Ac:Pr3.283.850.045<0.001
Xylan
Gas production14.414.50.540.938
pH7.167.170.0230.761
Total SCFA3.753.800.0790.682
Acetate2.082.170.0440.190
Propionate0.620.550.0160.018
Butyrate0.590.560.0150.274
Isobutyrate0.030.040.0010.002
Isovalerate0.110.120.0020.010
Valerate0.210.200.0040.163
Caproate0.120.160.006<0.001
Ac:Pr3.373.930.066<0.001
Cellulose
Gas production15.215.80.5470.465
pH7.267.260.0141.000
Total SCFA3.263.430.0740.131
Acetate1.701.860.0380.012
Propionate0.550.510.0170.152
Butyrate0.560.550.0150.546
Isobutyrate0.030.040.001<0.001
Isovalerate0.100.120.0020.003
Valerate0.200.200.0040.783
Caproate0.110.150.006<0.001
Ac:Pr3.073.640.060<0.001

1 Starch and xylan were incubated for 6 h and cellulose for 9 h

En el caso del almidón, se observó que el fluido ruminal que contiene A. oryzae aumentó el pH (p=0.007), lo que confirmó el efecto estabilizador de este organismo en el pH ruminal en dietas con alto contenido de concentrado. Varios estudios informaron que A. oryzae mejora la utilización de lactato por bacterias ruminales capaces de fermentar lactato (Megasphaera elsdenii y Selenomonas ruminantium) (Beharka y Nagaraja 1998). Waldrip y Martin (1993) demostraron que el hongo proporciona factores de crecimiento (es decir, azúcares, aminoácidos y vitaminas) que requieren estas bacterias.

Los cultivos discontinuos inoculados con fluido ruminal de fermentadores alimentados con A. oryzae produjeron cantidades mayores (de p<0.001 a p=0.010) de AGCC ramificados y aumentaron (p <0.001) la producción de caproato y la relación Ac: Pr con todos los sustratos puros que los inoculados con fluido de los fermentadores control (tabla 4). Para el sustrato de almidón y xilano, hubo disminución (p=0.002 y p=0.018, respectivamente) en la producción de ácido propiónico con el fluido ruminal correspondiente a A. oryzae. En el caso de la celulosa, este tratamiento causó un aumento (p=0.012) de ácido acético.

La falta de efecto del inóculo de los fermentadores Rusitec en la fermentación de sustratos puros parece indicar que la cepa de A. oryzae o la dosis utilizada en el presente estudio no pueden inducir los cambios adaptativos en la población microbiana en fermentadores con A. oryzae. Estos resultados sugieren que el microorganismo se debe suministrar diariamente para mantener su efecto en el ecosistema ruminal.

El aumento de acetato, ácidos grasos volátiles menores y la producción de ácidos grasos volátiles totales indican que la cepa de A. oryzae estimuló la fermentación ruminal de una dieta con heno de alfalfa:concentrado (65:35) en el sistema de fermentación continua Rusitec. Los resultados apoyan el desarrollo de futuras investigaciones in vivo.

Agradecimientos

Los autores desean agradecer el apoyo financiero recibido del MCYT de España (proyecto AGL2008-04707-C02-02) y del MAE-AECID (Proyecto PCI-Iberoamérica A/4951/06). A. Sosa y A. Díaz agradecen haber recibido becas del MAEC-AECID.

Refbacks

  • There are currently no refbacks.