ANIMAL SCIENCE

Ruminal degradability of supplements based on three native forages and adapted to the Colombian Amazonian piedmont


Resumen

In order to evaluate the in situ ruminal degradability of different supplements based on native forages and adapted to the Amazonian piedmont, three sheep with ruminal cannula were used. The evaluated treatments were: T1Control, T2 and T3 (0.5 kg concentrate + supplement with 20 and 40 % of Trichantera gigantea inclusion, respectively), T4 and T5 (0.5 kg concentrate + supplement with 20 and 40 % de Piptocoma discolor inclusion) and T6 and T7 (0.5 kg concentrate + supplement with 20 and 40 % Hibiscus rosa-sinensis inclusion). Analysis of variance according to completely random design with factorial arrangement (3x2) was carried out. The treatments with 20% of H. rosa-siensis inclusion reached an in situ ruminal degradability of DM and OM at 72 incubation hours higher than 84.65 and 72.79 %, respectively. The lower ruminal degradability of DM and OM at 72 incubation hours was for the treatment with T. gigantea at 40%, followed by the treatment with P. discolors at 40 %. The treatments with H. rosa-siensis at 20 % and T. gigantea at 20 % showed the highest effective degradation for DM and OM, respectively. The in situ degradability of DM, OM, NDF and ADF showed the highest values in the H. rosa-sinesis and P. discolor species, without differences between them, respect to T. gigantea. The inclusion of 20% of forages in the supplement is a viable option from the nutritional supply point of view in supplementation programs.

Key words: 

Piptocoma discolor; supplementation; Amazonia; Putumayo.

 


In accordance to the Monitoring System of Rainforests and Carbon (MSR and C), for 2016 the deforestation in Colombia reached the 178.597 ha. However, this one had been concentrated in seven nucleus around the country, where the most important is the Amazonia which includes Putumayo, Caquetá, Guaviare and Meta departments with 34 % of the national deforestation rate (Alayón et al. 2018).The main cause of trees cutting in the region is to fit out meadows for cattle livestock, as a way to increase lands value (IDEAM 2017).It is estimate that the 19 % of the sowing meadows in the Colombian Amazonian, after deforestation process, are currently without use (Blanco-Wells and Günther 2019).This region had showed a transformation in the productive activity, which had been passed to the crops sowing from illicit use to the increase in the agricultural world, guiding now mainly to livestock.

If deforestation in Putumayo department is attributed to a complex net of activities, it is possible to identify that the most common stock in the most part of agricultural frontier, begins with the deforestation to establish seasonal cultures for two or three years, and later sowing this areas with grasses which after one or two years are used specially for agricultural production, for being productive systems of extensive livestock (Sotelo et al. 2017).

The variations in the intensity and frequency of rainfalls, El Niño phenomenon and high temperatures, are having important effects on food production from plant and animal origin (Suber et al. 2019). Tropical grasses, due to quality of Amazonian soils are characterized by having low productive yields and low nutritional quality, reasons for which farmers need to find new materials that help to improve the food supply and non conventional raw matters for cattle supplementation (Calderón et al.2017). Considering the problem, it is urgent to restructure livestock to sustainable production systems, in which grass monocultures of foreign varieties were replaced by grasses with less water requirement and perennial plant species and supplementation with native or adapted forages, as well as browsing practices in secondary vegetation (Gómez et al. 2017).

The use of tree forages with high nutritional value can contribute to the mitigation of the climate change (Restrepo et al. 2016), because they increase the degradability for the high protein contents they have and decrease the methane production in rumen(Cardona Iglesias et al. 2016 and Sánchez et al. 2018). The nutritional supplements have acquired great importance, because they allow improving the body condition of the animals, the ovarian activation, the embryonic development and the reproductive indicators (Kubovičová et al. 2013).This inclusion can only reached by knowing the degradability of the food resources that the region have, to optimized the use of alternative food sources in the animal feeding in the Amazonian piedmont (Gutiérrez 2015). The objective of this study was to evaluate the ruminal degradability of supplements with the inclusion of native forages and adapted to the Amazonian piedmont conditions.

Experimental procedure. The study was carried out at Villa Lucero farm, located in Puerto Asís municipality, Santana Corregimiento, at coordinates: 0°35'25.6 "N and 76°32'05.3" W in Putumayo department, located at southwest of Colombia Republic, with 256 m o.s.l., average temperature of 25.3ºC, 85 % relative humidity and 3355 mm of annual precipitation (IDEAM 1997-2017), that corresponds to the tropical humid forest (Holdridge 1982).

The samples of Trichantera gigantea (Tg), Piptocoma discolor (Pd) and Hibiscus rosa-sinensis (H. r-s), were harvested from a forage bank established in the farm, with plants one year of age, to which an agronomic management of cutting, insect and weed control was performed. An establishment cut was made and the plants regrowth at 60 days was used.

A total of seven treatments were formulated in accordance to the NRC (2001) recommendations. Each treatment consisted in a proportion of 20 - 40 % of forages in the supplement, in the following way:

  • [T1 Control]. Commercial supplement

  • [T2]. Commercial supplement with 20 % inclusion of Tg.

  • [T3]. Commercial supplement with 40 % inclusion of Tg.

  • [T4]. Commercial supplement with 20 % inclusion of Pd.

  • [T5]. Commercial supplement with 40 % inclusion of Pd.

  • [T6]. Commercial supplement with 20 % inclusion of H.r-s.

  • [T7]. Commercial supplement with 40 % inclusion of H. r-s.

The collected forages were previously dried for 48 h in a forced air oven at 60 ºC. Later the dried material was homogenized and milled in a hammer mill with 2.5 mm sieve. The supplements were prepared as table 1 show. A total of 200g of sample per treatment were taken for laboratory analysis and other 200g for in situ ruminal degradability studies.

Table 1. 

Ingredients and chemical composition of the evaluated treatments (DM)

IngredientT1T2T3T4T5T6T7
% (DM)
T. gigantea 2040
P. discolor 2040
H. rosa-sinensis 2040
Corn meal11.0035.0335.0043.0030.5011.8040.00
Soybean cake5.800.840.000.200.004.112.40
Corn bran76.7037.1218.0030.3024.0057.0812.10
Palm oil0.501.002.000.500.501.000.50
Molasses5.005.004.005.004.005.004.00
Microminerals a1.001.001.001.001.001.001.00
Nutritional composition (%)
TreatmentsAB
DM, %88.789.0890.2289.8191.5788.8890.6627.99
OM %96.8796.394.0496.295.097.1495.8292.69
Ether extract, %4.966.449.326.987.982.725.651.95
Crude protein , %11.5311.5012.4911.7813.9511.5011.546.33
NDF, %49.0350.5652.5745.8352.1253.9953.98-
ADF, %28.3226.8128.0628.2729.2728.9031.76-
ME, MJ /kg DM11.7911.5011.5011.7611.9811.5111.836.63

a Content of the microminerals mixure: Magnesium 10%, Zinc 10%, Iron 10%, Copper 2%, Iodine 0.12%, Selenium 0.06%, Cobalt 0.02%. AB: Brachiaria decumbens

The treatments were prepared in the laboratory of biotecnología del Centro Agroforestal y Acuícola Arapaima del SENA, Putumayo Regional. Table 1 shows the chemical composition of treatments.

Ruminal degradability. The in situ ruminal degradability studies were carried out with three male Pelibuey sheeps of 40 kg body weight (Campos et al. 2006), cannulated in rumen, and housed in individual cubicles with free access to water and forage. The animals intake fresh forage of Brachiaria decumbens ad libitum and 200g of commercial concentrate for sheep, offered once a day (8:00 am).

The determination of the in situ ruminal degradability of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of the different treatments was carried out according to the nylon bags procedure with an average porosity of 1.200 to 1.600 orifice per cm2, with 12x8 cm size, previously weighed and correctly identified, according to procedure described by Mehrez and Ørskov (1977).

A total of 5g of sample from each supplement per bag were weighed, that were triplicate at a rate of a bag for each animal, which correspond to a replication, for each incubation hours. At 8:00 am, seven bags were placed in the rumen (one for each treatment), in each animal, in a way that at every incubation time (3, 6, 12, 24, 48 and 72 hours) they could be removed. For 0 hour, three bags were leave without incubate to determine the quickly soluble fraction (A), which was obtained by the sample incubation in a water bath at 39 ºC for 30 minutes.

After being extracted from the rumen each bag was manually washed with water until obtaining a clear wash liquid. They were dried in a forced air oven at 65 ºC for 48hours.The bags wastes corresponding to the three repetitions of each incubation time in each animal were milled until reached a 1 mm particle size and an homogeneous sample was constituted to which OM was determined according to AOAC (2016). To determine the degradation of these nutrients in the rumen, the proximate chemical analysis (PCA) were carried out in accordance with the procedures and recommendations established by AOAC (1995) in the following way: humidity content (Method 930.04), crude protein by de Kjeldahl (N*6.25) (method 955.04) method, ashes (calcination method 930.05), ether extract (method 962.09) and NDF and ADF by Goering and Van Soest (1970) method.

Estimation of the degradation. The exponential model proposed by Ørskov and McDonald (1979) was used, assuming that the degradation curves of DM and OM in time fallow a kinetic process of first order, which is describe in the way:

And the degradation curves of NDF and ADF are described according to Dhanoa (1988) by the formula:

Where:

P

- Ruminal degradation. Is the ruminal degradation of the evaluated indicator in the stay time “t “in the rumen

a

- Intercept

b

- Fraction that is degrade in the time t.

c

- Degradation rate of the fraction “b”.

t

- Incubation time.

L

- Latent time or “lag” (hours). Time the rumen microorganisms use to colonize the cell walls of forages and adhere to them.

A

- Quickly soluble fraction

To determine the ruminal Effective Degradability (ED) the McDonald (1981) model was used.

Where:

k

- Fractional rate of ruminal passage . It is assumed k value (0.044 fraction h-1) (NRC 2001)

B

- Insoluble fraction but potentially degradable. B= (a+b) -A (Ørskov 2002)

c

- Degradation rate of the fraction B

Statistical analysis. To determine the effect of the inclusion of forage species on the treatments a completely random design with factorial arrangement (3x2) was used with a control in which the mixture of the levels of the factors forages species and inclusion percentage in each incubation were considered as treatments with three repetitions which corresponded to each bag with the supplement. The results were analyzed by ANOVA thruogh the InfoStat statistical program (Di Rienzo et al. 2012).When there were differences (P<0.05), the treatments means were compared by the Duncan (1955) test.

For the mathematical estimation of the ruminal degradation parameters of DM, OM, NDF and ADF of the evaluated supplements, the NEWAY EXCEL (Chen 2000) program was used.

A supplements degradability analysis was carried out, in different incubation times, with the forages H. rosa-sinensis, T. gigantea and P. discolor, and their inclusion percentage (20 and 40%).There was interaction between the species and the inclusion level (P<0.05) for the DM degradability in the 3, 6, 24 and 72 hours. The treatments that reached the highest in situ ruminal degradability of the DM (P=0.0185), at 72 incubation hours, corresponded to the H. rosa- sinensis at 20% and P. discolor at 20% treatments, with 84.6 and 81.5 %,respectively; the ones did not differ from the treatment with H. rosa-sinensis at 40%, and T. gigantea at 20% (table 2).

Table 2. 

In situ ruminal degradation of DM (%) of supplemnts, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatments.1SE Sign.
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
336.71 a30.36 abc19.36 bc21.02 bc17.42 c20.26 bc33.33 ab±4.20 P=0.0374
639.13 a41.84 a29.96 bc25.20 c22.24 c23.91 c35.01 ab±2.79 P=0.0037
2465.69 ab60.05 b47.82 c45.44 c31.24 d72.38 a41.82 cd±3.66 P=0.0486
7291.84 a76.03 b52.74 d81.58 b67.32 c84.65 ab79.21 b±2.34 P=0.0185

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

When the DM degradability at 12 and 48 incubation hours was analyzed, there was not interaction between the factors (P>0.05). That why, the individual factors of species and inclusion percentage were separately analyzed. When studying the species, it was observed that the H. rosa-sinensis and T. gigantea had similar performance, it differentiated of P. discolor at 48 incubation hours (P=0.0184).While the 40% inclusion had negative effect (P<0.0001) with 49.1% compared to the control (table 3).

Table 3. 

In situ ruminal degradation of DM (%) of supplements at 12 and 48 hours.

HourControlSpeciesSE Sign.
T. gigantea P. discolor H. rosa- sinensis
1246.27 ± 4.8741.6331.0642.81±3.45 P=0.0574
4882.77 a ± 4.4063.10 b52.32 c66.05 b±3.11 P=0.0184
12Control20%40%±2.81 P=0.0341
46.27 a ± 4.8743.17 a33.83 b
4882.77 a ± 4.4071.89 a49.09 b±2.54 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Respect to the OM degradability, there was interaction between the species and the inclusion level (P<0.05) in 3, 6 and 72 hours. The treatments that reached high in situ ruminal degradability of the OM (P=0.0098), at 72 incubation hours, corresponded to the H. rosa-sinensis at 20% and P. discolor at 20% treatments, with 72.8 and 70.1 % respectively, the ones did not differ from the treatment with H. rosa-sinensis at 40%, and T. gigantea at 20% (table 4).

Table 4. 

In situ ruminal degradation of OM (%) of supplements, T. gigantea, P. discolor e H. rosa-sinensis inclusion.

Hour.ControlTreatment1SE Sign
20% Tg40% Tg20% Pd40% Pd20% H. r-s40% H. r-s
331.44a26.11abc16.32c18.08bc15.08c17.42bc28.96ab±3.63 P=0.0308
633.51a35.98a25.25bc21.67c19.26c20.56 c30.42ab±2.40 P=0.0027
7278.65a65.38bc44.46d70.15b58.30c72.79ab68.83b±2.34 P=0.0098

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

When analyzing the OM degradability at 12, 24 and 48 incubation hours, there was not interaction (P>0.05), that is why, the individual factors of species and inclusion percentage were analyzed. The supplement with H. rosa-sinensis obtained the highest value at 48 hours (P=0.0098), fallow by T. gigantea with 57.0 and 53.8%, respectively; without differences between them, which differed of P. discolor. While the inclusion at 40 % had negative effect (P<0.0001) with 42.2% compared to the control (table 5).

Table 5. 

In situ ruminal degradation of OM (%) of supplements at 12, 24 and 48 hours.

HourControlSpeciesSE Sign.
T. gigantea P. discolor H. rosa-s.
1239.63 ± 4.2035.4926.7936.99±2.97 P=0.0606
2456.26 a ±3.1445.97 b33.07 c49.29 ab±2.22 P=0.0003
4870.88 a ±3.7853.83 b45.12 c57.04 b±2.67 P=0.0190
12Control20%40%±2.42 P=0.0336
39.63 a ± 4.2037.12 a29.05 b
2456.26 a ± 3.1450.98 a34.57 b±1.47 P<0.0001
4870.88 a ± 3.7861.82 a42.17 b±2.18 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

The characteristics of the high ruminal degradability showed the high nutritional quality of the evaluated supplements and suggest the feasibility of the use of these for ruminant supplementation. All this observations are also related with the results obtained by Cáceres y González (2015) who obtained ruminal degradability values of 67.2% for OM and 76.2% of DM and 79.3-84.2 % with H. rosa-sinensis hay (Navarro and Roa 2018). However the results of this study were higher. It possible that the inclusion of 20% increased the degradation that ruminal microorganisms made to the carbohydrates presents in the supplement.

When the treatments degradability with 40% of inclusion is analyze, some forage trees in the tropic had showed a possible effect as defaunating in ruminants. This is due to the presence of phenolic substances or other secondary metabolites in their leaves (Saavedra 2017). However, it is known that there is adaptation to these compounds through the degradation, neutralization of the active molecules and tolerance mechanism development, which explain that these observed effects have limited persistence in the degradability in accordance with the inclusion levels in the diet, as had being observed in in vivo studies (Bodas et al. 2012).

The action of the microorganisms face to secondary metabolites content in forages could be a limitation of the OM degradability, which probably happen in the T. gigantea at 40% and P. discolor at 40% treatment, given the high inclusion percentage. To solve it is recommended to rotational supplied in the animals diet, in browsing or incorporate to supplements for adapting the microorganisms to their presence (Patra y Saxena 2010).

In relation to the P. discolor, Castañeda et al. (2017) found 27 % of in vitro DM degradability for the forage. These results were lower to those found in this study, with 81.6 % for DM and 70.2% for OM in the supplement mixture. They were high possibly by the particular conditions of the P. discolor, by their high CP content and energy and the inclusion level of 20%.In addition, this forage could have great amount of soluble compounds available for the animal such as amino acids and peptides; as well as short change fatty acid branched that favors the needed synchronization of nitrogen and energy for the rumen microorganisms, specifically the cellulolytic and ruminal degradation of nutrients and therefore it could showed high degradability values in all the analyzed incubation period (Ducuara and Suárez 2013).The P. discolor as being a tree have higher protein content than the forages normally used in animal feeding and consequently they can be use as diet supplement.

In the same way the use of non conventional species, in in vitro degradability studies, the results found in the H. rosa-sinensis species were higher to those described by Milera, (2013) with OM degradation of 71.3% and Pinto et al. (2009) studies with 70.0%, and lower to those reported by Navarro and Roa (2018) with 87% of DM degradability.

The H. rosa-sinensis forage had the highest degradability of all evaluated treatments, respect to its biological value, without differences with P. discolor. However, as not being a native forage from the Amazonia, is vulnerable to pests, because of their good palatability. In the same way, the nutrients level of the forage were low with respect to T. gigantea and P. discolor (Burgos et al. 2015), which is a disadvantage in supplementation programs in which amount of biomass with optimum levels of protein are looking for (Figueroa 2017).

As regard, in T. gigantea there is a high variability in the nutritive composition, by the genetic conditions and other factors as climate and soil, with a high fermentation because of the carbohydrates concentration (Rosales 1996), which was observed at 24 and 48 hours of this study. The degradation of the soluble fraction was high compared to other forages, additionally could be a good source of bypass protein in rumen (Edwards et al. 2012). However that degradability can be affected by the phenols presence (Galindo et al. 1989) and tannins. Respect to this last secondary compounds, Rodríguez et al. (2016) found higher biological effect of tannins in gas production, degradability of the OM, NDF, ME and NH3 concentration. However, this aspect does not justify the low nutritive value attributed to this species, probably because this could be the result of the effect combined with their high fiber content (Rodríguez et al. 2014).Simultaneously, the mixtures of this forage with conventional raw matter as corn, besides the drying, reduce the toxicity level in particular (McCann and Loor 2017)with synergic effects to digestive level of the mixture components for increasing the diet palatability, to use the degradation in rumen.

When observing the NDF degradability, there was interaction between the species and the inclusion level (P<0.05) at 6 and 72 hours. The treatments with the in situ ruminal degradability of the NDF was high (P=0.0005), at 72 incubation hours, corresponded to the treatment H. rosa- sinensis at 40 % and H. rosa-sinensis at 20%, with 51.3 and 47.5 %, respectively (table 6).

Table 6. 

In situ ruminal degradation of NDF (%) of supplements, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatment1SE Sign
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
624.18 a21.31 a15.26 bc10.88 c12.49 c12.36 c20.42 ab±1.87 P=0.0073
7241.70 c35.51 d28.37 e45.88 b36.21 d47.50 ab51.29 a±1.37 P=0.0005

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

There was not interaction (P>0.05) at 3, 12, 24 and 48 hours, for NDF degradability. For this, the individual factors of the species and the inclusion percentage were analyzed. The H. rosa-sinensis obtained the highest value (P=0.0011) at 48 hours fallow by T. gigantea with 40.0% and 36.1 %, respectively, without differences between them, which differed of P. discolor. While the inclusion at 40% had negative effect (P<0.0001) with 27.3 % compared with the control (table 7).

Table 7. 

In situ ruminal degradation of NDF (%) of supplements at 3, 12, 24 and 48 hours.

HourControlSpeciesSE Sign.
T. giganteaP. discolorH. rosa-s.
318.48 ± 2.3013.169.6114.92±1.62 P=0.0965
1226.90 a ± 2.6020.40 ab16.40 b25.77 a±1.84 P=0.0110
2438.07 a ± 2.0829.62 b20.41 c33.88 ab±1.47 P<0.0001
4840.70 a ± 2.4936.10 a28.30 b39.99 a±1.76 P=0.0011
3Control20%40%±1.33 P=0.6961
18.48 ± 2.3012.1912.94
1226.90 ± 2.6022.9618.76±1.50 P=0.0686
2438.07 a ± 2.0833.51 a22.43 b±0.56 P<0.0001
4840.70 a ±2.4942.33 a27.26 b±1.44 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

It was verified that for the in situ ruminal degradability of ADF there was interaction between the species and the inclusion level (P<0.05) at 3, 24 and 72 hours. The treatments with higher in situ ruminal degradability of ADF (P=0.0098), at 72 incubation hours, corresponded to treatment H. rosa-sinensis at 40% and H. rosa-sinensis at 20%, with 25.3 and 24.6 %, respectively which differed of T. gigantea 40.0% with 14.5 % (table 8).

Table 8. 

In situ ruminal degradation of ADF (%) of supplements, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatment 1SE Sign
20% Tg40% Tg20% Pd40% Pd20% H. r-s40% H. r-s
310.52 a8.24 ab5.51 b5.35 b5.35 b5.76 b10.27 a±1.26 P=0.0374
2420.53 a17.17 b13.59 c12.16 cd9.39 d22.03 a13.20 c±1.09 P=0.0297
7224.35 a19.49 b14.53 c24.62 a17.94 b24.39 a25.31 a±0.73 P=0.0098

1 Tg: T. gigantea. Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters show significant differences for P<0.05

SE: Standard Error

At 3, 12, 24 and 48 incubation hours, there was not interaction (P>0.05), that’s why the individual factors of the species and the inclusion percentage were separately analyzed. The H. rosa-sinensis obtained the highest value (P=0.0024) at 48 hours with 21.1 %, that differed of the other evaluated forages. While the inclusion at 40 % had negative effect (P<0.0001) with 14.4 % compared to the control (table 9).

Table 9. 

In situ ruminal degradation of ADF (%) of supplements at 3, 12 and 48 hours.

HourControlSpeciesSE and Signif.
T. gigantea P. discolor H. rosa-s.
612.19 a ± 0.9712.97 a6.05 c8.65 b±0.69 P<0.0001
1214.22 a ± 1.3611.19 ab8.48 b13.81 a±0.96 P=0.0056
4822.76 a ± 1.3117.84 b15.37 b21.10 a±0.93 P=0.0024
6Control20%40%±0.56 P<0.0001
12.19 a ± 0.977.44 b11.01 a
1214.22 ± 1.3612.359.97±0.79 P=0.0502
4822.76 a ± 1.3121.83 a14.38 b±0.76 P<0.0001

a,b,c,d: different letters show significant differences for P<0.05

SE: Standard Error

The DM and OM degradability is limited by the NDF and ADF concentration of forage and especially by lignin concentration. That’s why the supplement that showed the higher values of ruminal degradability of DM and OM were the treatments with the H. rosa-sinensis and P. discolor inclusion, which differed of the treatment with the inclusion of 20% of T. gigantea, because these species have low content of these compounds (Meza et al. 2014).

With respect to the kinetic parameters of ruminal degradability of the different evaluated treatments (table 10 and table 11), the used model had high goodness of fit, because R2 was high, superior 0.80 for the analyzed fractions, which showed that this model was able to explain a high percentage of the variation of ruminal degradability real data.

Table 10. 

Ruminal kinetic parameters and effective degradability of DM and OM in sheep supplements.

ParameterControlTreatments1
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
DM
A (%)5.23.26.51.32.34.11.6
B (%)94.875.445.798.797.780.398.4
(A+B)(%)10078.652.110010084.4100
C (Fraction h-1)0.0170.0540.0890.0120.0010.0680.001
R20-990.990.990.980.940.980.94
ED (%) k= 0.0271.260.744.658.148.365.560.9
OM
A (%)4.52.85.51.12.03.51.3
B (%)95.564.837.998.998.069.098.7
(A+B) (%)10067.643.410010072.5100
C(Fraction h-1)0.0170.0540.0620.0120.020.0680.001
R20.990.990.800.980.960.980.94
ED (%) k= 0.0261.152.234.550.041.856.352.7

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

A: Soluble fraction. B: Insoluble fraction. A+B (%): Potential degradation. C: Degradation rate ED: Effective degradability. R2: Determination coefficient belonging to the model.

Table 11. 

Ruminal kinetic parameters and effective degradability of NDF and ADF in sheep supplements.

ParameterControlTreatments 1
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
NDF
A (%)2.61.63.40.61.22.20.8
B (%)42.439.925.580.698.846.599.2
(A+B)(%)45.041.528.981.210048.7100
C (Fraction h-1)0.0410.0620.0780.0100.0010.0760.002
L (h)000001.10
R20.990.890.990.980.970.970.94
ED (%) k= 0.0235.432.324.232.326.238.137.6
ADF
A (%)1.50.91.80.40,71.20.5
B (%)26.620.512.455.889.124.199.5
(A+B) (%)28.121.314.256.289.825.3100
C (Fraction h-1)0.0270.0600.1050.0070.0020.0800.001
L (h)000001.30
R20.990.950.980.990.970.970.93
ED (%) k= 0.0220.016.612.317.513.419.919.1

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

A: Soluble fraction. B: Insoluble fraction. A+B (%): Potential degradation. C: Degradation rate. ED: Effective degradability. L: lag phase. R2: Determination coefficient belonging to the model

The ruminal kinetic depend on two critical aspects: the speed to begin the degradation and the degradation rate (parameter c). The combination of these two aspects establish net amount of microorganisms that synthesized the nutrients and later are used and digested in the abomasums and intestine. The results confirmed the superiority of the effective degradability of DM, OM, NDF and ADF of the treatments with 20% of forages inclusion, compared with the control.

The changes occurred in the nutritional contribution of the different mixtures in the treatments could determined the increase or decrease of NDF and ADF, that influence on the supplements degradability. In that context, these changes influenced the fermentative action at ruminal level, accessibility of microorganisms to the cell wall of forages and the stimulation or reduction of the ruminal celluloses and material degradation (Núñez and Rodríguez 2019).

The treatment with H. rosa-sinensis at 20% and T. gigantea at 20% showed effective degradation more high for DM and OM, respectively. In the same way the treatment H. rosa-sinensis at 20% and P. discolor at 20% had similar kinetic for NDF and ADF variables (table 10 and table 11).This performance could be related with the lower fiber content that showed these treatments compared with the rest of the evaluated treatments, so it showed higher proportion of soluble compounds and lower proportion of the structural constituents of the cell wall which favors their higher degradability.

The parameters of the fermentation kinetic described the digestion and characterized intern properties of the food that limits their availability for the ruminant, determine the proportion of intake nutrients that could be use by the animal and depend on the microbial action of the rumen (Hernández et al. 2018).The forage degradability in the rumen is related with the proportion and lignification of the plant cell walls. In this way, the foliage of forage tress with low NDF content (20 -35 %) have normally high degradability (>50 %) and species with high lignin content have low degradability (< 50 %) (Bruni and Chilibroste 2001).

With respect to the “lag phase” or latent period, intimately related with the time that use the microorganisms to colonized the fiber, adhered to cell walls and binging their catabolic action, there were values of 1.1 and 1.3 hours for the treatment with H. rosa-sinensis at 20% (tables 10 and 11), for NDF and ADF, respectively. These could be influenced by fiber content of H. rosa-sinensis contained in the supplement, when the microorganisms requiring more time to colonized the substrate, the degradability level was higher. On the contrary, the other treatments reported “0” values. This performance could be attributed to a supplement with low NDF and ADF content was evaluated, which is consistent with studies performed by Valenciaga et al (2018) in different Tithonia diversifolia varieties.

In the case of the treatments with P. discolor at 20% and at 40%, the NDF effective degradability when comparing with conventional forages as morera were lower (Zach et al. 2017).However, the DM and OM degradability was statistically comparable with H. rosa-sinensis at 20% and at 40%,respectively showed a higher degradability. This is an important indicator of the forage quality of this native tree from the Colombian Amazonian, possibly due to the quantity of NDF, ADF and lignin are not high. Ducuara and Suárez (2013) consider a good quality tree with degradability higher than 50%,with a positive factor in the forage intake or in a supplement (Calle et al. 2012). Since is considered that a forage have high quality when it approximately have 70% of DM degradability, less than 50% of NDF and more than 15% of CP (Cardozo 2013), it should highlighted that the inclusion of P. discolor and T. gigantea at 20% in the supplement are viable alternatives for ruminants feeding.

The ruminal kinetic and in situ ruminal degradability of the AM, OM, ADF and NDF, in the H. rosa-sinesis, P. discolor and T. gigantean species, suggested the high nutritional value of these species in ruminant diets. Supplements with the inclusion of 20 % of the evaluated forages, is a viable option from the point of view of nutritional supply for animals, in supplementations programs for ruminants under the Amazonian piedmont.

Acknowledgments

The authors thank the support in the processing of the statistician data to Lic. Yolaine Medina Mesa, Dra Magaly Herrera, biomathematics group and Dr. Rafael Rodríguez from the Instituto de Ciencia Animal and in field activities to the manager of Villa Lucero farm: Rosa Amelia Quiroz and Leidy Milena Daza (auxiliar de investigación). As well as Servicio Nacional de aprendizaje SENA, Laboratory of wáter, soils and biotechnology project SENNOVA, Regional Putumayo, Colombia.

 

References

Alayón-Gamboa, J.A., Jiménez-Ferrer, G., Piñeiro-Vázquez, Á.T., Canul-Solís, J., Albores-Moreno, S., Villanueva-López, G. & Ku-Vera, J.C. 2018. "Estrategias de mitigación de gases de efecto invernadero en la ganadería". Revista Agroproductividad, 11(2): 9-15, ISNN: 2594-0252.

AOAC (Association of Official Analytical Chemists). 2016. Official Methods of Analysis of AOAC International. 20th Ed.George W. Latimer Jr (Ed). Ed. AOAC International,Rockville MD, USA, ISBN: 9780935584875.

AOAC (Association of Official Analytical Chemists). 1995. Official Methods of Analysis of AOAC International. 16th Ed. Ed. AOAC International, Arlington, Virginia, USA, ISBN: 0935584544.

Blanco-Wells, G. & Günther, M.G. 2019. "De crisis, ecologías y transiciones: reflexiones sobre teoría social latinoamericana frente al cambio ambiental global". Revista Colombiana de Sociología, 42(1): 19-40, ISSN:2256-5485, DOI: https://doi.org/10.15446/rcs.v42n1.73190.

Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F.J. & López, S. 2012. "Manipulation of rumen fermentation and methane production with plant secondary metabolites". Animal Feed Science and Technology, 176: 78-93,ISSN: 0377-8401, DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.010.

Bruni, M. & Chilibroste, P. 2001. "Simulación de la digestión ruminal por el método de la producción de gas". Archivos Latinoamericanos de Producción Animal, 9: 43-51, ISSN: 1022-1301.

Burgos, V., César, J., Goya, C., Quintana, G., Crespo, A., Vallejos, C. & Ledesma, R. 2015. "Comportamiento productivo de tres especies arbustivas forrajeras en la unidad experimental“La María”, Quevedo, Ecuador". REDVET Revista Electrónica de Veterinaria, 16(12): 1-9, ISSN: 1695-7504.

Cáceres, O. & González, E.2015. "Valor nutritivo de árboles, arbustos y otras plantas forrajeras para los rumiantes". Pastos y Forrajes, 25(1): 15-20, ISNN: 2078-8452.

Calle, Z., Murgueitio, E. & Chara. J. 2012. "Integracion de las actividades forestales con la ganaderia extensible sostenible y la restauracipon del paisaje". Unasylva, 63(1): 31-38, ISSN: 2051-1053.

Calderón, P., Fabian, M., Bosa, P., Fernanda, L., Yasnó, C., Diego, J. & Yurany, L. 2017. "Relación nutrición-fertilidad en hembras bovinas en clima tropical". REDVET Revista Electrónica de Veterinaria, 18(9): 1-19, ISNN:1695-7504.

Campos, P.R.S.S., Valadares, S.C., Cecon, P.R., Detmann, E., Leão, M.I., Souza, S.M., Lucchi, B.B. & Valadares, R.F.D. 2006. "Estudio comparativo da cinética de degradação ruminal de forragens tropicais em bovinos e ovinos". Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58(6): 1181-1191, ISNN: 1678-4162, DOI:https://doi.org/10.1590/S0102-09352006000600030.

Cardona-Iglesias, J.L., Mahecha-Ledesma, L. & Angulo-Arizala, J. 2016. "Arbustivas forrajeras y ácidos grasos: estrategias para disminuir la producción de metano entérico en bovinos". Agronomía Mesoamericana, 28(1): 273-288, ISSN: 2215-3608, DOI: https://doi.org/10.15517/am.v28i1.21466.

Cardozo-Vargas, J.V. 2013. El matarraton (Gliricidia sepium) en la alimentacion de rumiantes. Diploma Thesis. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente,Universidad Nacional Abierta y a Distancia, Bogotá, Colombia.

Castañeda, N., Álvarez, Arango, F., Chanchy, J., García, L., Felipe, G., Sánchez, V., Solarte, A., Zapata, C. 2017. Especies vegetales útiles para sistemas silvopastoriles del Caquetá, Colombia. Deutsche GesellschaftfürInternationaleZusammenarbeit (GIZ) GmbH, Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, p. 1-84, ISBN: 9789-5869-41631

Chen, X. B. 2000. NEWAY: Curve fittingprogramme software forOrskov’smodel (DOS version). International Feed Resources Unit, Macaulay Land Use Research Institute, Aberdeen, Scotland.

Dhanoa, M.S. 1988. "On the analysis of dacron bag data for low degradability feeds". Grass and Forage Science, 43(4): 441-444, ISSN: 1365-2494, DOI:https://doi.org/10.1111/j.1365-2494.1988.tb01901.x.

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. & Robledo, C.W. 2012. InfoStat version 2012 [Windows]. Grupo InfoStat, Universidad Nacional de Córdoba, Argentina. Available: http://www.infostat.com.ar.

Ducuara, E.A.H. & Suárez, Á.G. 2013. "Potencial de uso de piptocoma discolor (kunth) pruski en sistemas silvopastoriles". Ingenierías & Amazonia, 6(1): 23-30, ISBN: 1692-7389.

Duncan, D.B. 1955. "Multiple range and multiple F test. Biometrics", 11(1): 1-42, ISSN: 0006-341X, DOI: https://doi.org/10.2307/3001478.

Edwards, A., Mlambo, V., Lallo, C.H.O., Garcia, G.W., Diptee, M. 2012. "In vitro ruminal protein degradability of leaves from three tree species harvested at two cutting intervals". Online Journal of Animaland Feed Research, 2(3): 224-230, ISSN: 2228-7701.

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2017. http://www.ideam.gov.co.

Galindo, W.F., Rosales, M., Murgueitio, E. & Larrahondo, J. 1989. "Sustancias antinutricionales en las hojas de guamo, nacedero y matarratón". Livestock Research for Rural Development, 1(1): 36, ISSN: 0121-3784, Available: http://www.fao.org/ag/aGa/agap/FRG/lrrd/lrrd1/1/mauricio.htm.

Gómez-Fuentes-Galindo, T., González-Rebeles, C., López-Ortiz, S., Ku-Vera, J.C., Albor-Pinto, C., & Sangines-García, J.R. 2017. "Dominancia, composición química-nutritiva de especies forrajearas y fitomasa potencial en una selva secundaria".Revista Agricultura, Sociedad y Desarrollo, 14(4): 617-634, ISSN: 1870-5472.

Goering, H.K. & Van Soest, P.J. 1970. Forage fiber analyses: Apparatus, reagent, procedures and some applications. In: Agriculture Handbook No. 379. Ed. U.S.D.A. Agricultural Research Service, Department of Agriculture, United States of America, p. 20.

Gutierrez, O. 2015. "La fisiología digestiva del rumiante, objeto de investigación en el Instituto de Ciencia Animal durante cincuenta años". Cuban Journal of Agricultural Science, 49(2): 179-188, ISNN: 2079-3480.

Hernández, J., Sánchez, P., Torres, N., Herrera, J., Rojas, A.R., Reyes, I. & Mendoza, M.A. 2018. "Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México". Revista Mexicana de Ciencias Pecuarias, 9(1): 105-120, ISSN:2448-6698, DOI: https://doi.org/10.22319/rmcp.v9i1.4332.

Holdridge, L.R. 1996. Ecología basada en las zonas de vida. 5th Ed. Ed. Instituto Interamericano de Cooperación Para la Agricultura. AGRIS. San José de Costa Rica, Costa Rica,p. 216, ISBN: 92-9039-1316.

Kubovičová, E., Makarevič, A., Stádnik, L., Holásek, R. & Hegedušová, Z. 2013. "Effect of body condition and season on the yield and quality of cattle embryos". Journal of Microbiology, Biotechnology and Food Sciencies, 2(Especial Issue1): 1426-1435, ISSN: 1338-5178.

McCann, J.C. & Loor, J.J. 2017. "Rumen Microbiome, Probiotics, and Fermentation Additives". Veterinary Clinics of North America: Food Animal Practice, 33(3): 539-553, ISSN:07490720, DOI: https://doi.org/10.1016/j.cvfa.2017.06.009.

McDonald, I. 1981. "A revised model for the estimation of protein degradability in the rumen". The Journal of Agricultural Science, 96(1): 251-252, ISSN: 1469-5146, DOI: https://doi.org/10.1017/S0021859600032081.

Mehrez, A.Z. & Orskov, E.R. 1977. "A study of the artificial bag technique for determining the digestibility of feeds in the rumen". The Journal of Agricultural Science, 88: 645-650, ISSN: 1469-5146, DOI:https://doi.org/10.1017/S0021859600037321.

Meza, G.A., Loor, N.J., Sánchez, A.R., Avellaneda, J.H., Meza, C.J., Vera, D.F. & Cabanilla, M.G. 2014. "Inclusión de harinas de follajes arbóreos y arbustivos tropicales (Morus alba, Erythrina poeppigiana, Tithonia diversifolia e Hibiscus rosa-sinensis) en la alimentació de cuyes (Cavia porcellus linnaeus)". Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 61(3): 258-269, ISSN: 2357-3813, DOI: https://doi.org/10.15446/rfmvz.v61n3.46874.

Milera, M. 2013. "Contribución de los sistemas silvopastoriles en la producción y el medio ambiente". Avances en Investigación Agropecuaria, 17(3): 7-24, ISSN: 2683-1716.

Navarro-Ortiz, C.A., & Roa-Vega, M.L. 2018. "Comparación de la digestibilidad de tres especies forrajeras estimada mediante diferentes técnicas". RevistaOrinoquia, 22(1): 15-33, ISSN: 0121-3709, DOI:http://dx.doi.org/10.22579/20112629.476.

NRC (NationalResearch Council). 2001.Nutrient Requirements of Dairy Cattle. 7th Rev. Ed. Ed. The National Academies, Washington, DC, USA, p. 405, ISBN: 978-0-309-06997-7, DOI: https://doi.org/10.17226/9825.

Núñez-Torres, P.O. & Rodríguez-Barros, M.A. 2019. "Subproductos agrícolas, una alternativa en la alimentación de rumiantes ante el cambio climático". Journal of the Selva Andina Animal Science,6(1): 24-37, ISSN:2311-3766

Ørskov, E.R. 2002. Trails and trials in livestock research. Macaulay Land Use Research Institute, Abeerden, Scotland, p.204.

Ørskov, E.R. & McDonald, I. 1979. "The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage". The Journal of Agricultural Science, 92(2): 499-503,ISSN: 0021-8596, DOI: https://doi.org/10.1017/S0021859600063048.

Patra, A. & Saxena, J. 2011. "Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition". Journal of the Science of Food and Agriculture, 91: 24-37, ISSN: 0022-5142, DOI:https://doi.org/10.1002/jsfa.4152.

Pinto, R., David, H., Luis, R., Sandoval, C., Peralta, M. & Gómez, H. 2009. "Taninos y fenoles en la fermentación in vitro de leñosas forrajeras tropicales". Agronomía Mesoamericana, 20(1): 81-89, ISSN: 2215-3608.

Restrepo, E.M., Rosales, R.B., Xochilt, M., Estrada, F., David, J., Orozco, C. & Rivera, E. 2016. "Es posible enfrentar el cambio climático y producir más leche y carne con sistemas silvopastorilesintensivos".Ceiba, 54(1): 23-30,ISSN: 0008-8692, DOI: https://doi.org/10.5377/ceiba.v54i1.2774.

Rodríguez, R., González, N., Alonso, J., Domínguez, M. & Sarduy, L. 2014. "Nutritional value of foliage meal from four species of tropical trees for feeding ruminants". Cuban Journal of Agricultural Science, 48(4): 371-378, ISSN: 2079-3480.

Rodríguez, R.,González, N., Alonso, J., Hernández, Y. & Medina, Y. 2016."Biological effect of tannins from four tropical tree species on in vitro ruminal fermentation indicators". Cuban Journal of Agricultural Science, 50(1): 89-97, ISSN: 2079-3480.

Rosales, M. 1996. In vitro assessement of the nutritive value of mixtures of leaves from tropical fodder trees. PhD Thesis. Facultyof BiologicalSciences, Wolfson College, University of Oxford, UK, p. 241.

Saavedra, F.H. 2017. "Efecto de sobrealimentos abase de tres mezclas alimenticias (industrial y natural), sobre la producción de leche en ganado vacuno (Holstein)". European Scientific Journal, 13(21): 1-6, ISSN:1857-7431, DOI: https://dx.doi.org/10.19044/esj.2017.v13n21p1.

Sánchez-Santillán, P., Torres-Cardona, M.G., Campos-Montiel, R.G., Soriano-Robles, R., Fernández-Luqueño, F., Medina-Pérez, G., Del Razo-Rodríguez, O.E. & Almaraz-Buendía, I. 2018. "Potencial de emisión de gases efecto invernadero de plantas forrajeras por fermentación entérica". Agroproductividad, 11(2): 40-45, ISNN: 2594-0252.

Suber, M., Gutiérrez-Beltrán, N., Torres, C.F., Turriago, J.D., Arango, J., Banegas, N.R., Berndt, A.,Bidó, D.I.M., Burghi, V., Cárdenas, B.D.A., Cañanda, P., Canu, F.A., Chacón, A.R., Chacón-Navarro, M., Chará, J., Diaz, L., Huamán-Fuertes, E., Espinoza-Bran, J.E., Girón-Muñoz, P.R., Guerrero, Y., Gutiérrez-Solís, J.F., Pezo, D., Prieto, G., Román, R.M., Rosales, K.A., Rueda, C., Sepúlveda, L.C.L., Serrano-Basto, G., Solarte, A., Woo, N. 2019. Mitigación con Sistemas Silvopastoriles en Latinoamérica. Aportes para la incorporación en los sistemas de Medición Reporte y Verificación bajo la CMUNCC. Working Paper no. 254. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) . Wageningen, The Netherlands. Available: https://ccafs.cgiar.org/node/56861#.XuCmuuDtbIW.

Sotelo, M., Suárez, J.C., Álvarez , F., Castro, A., Calderón, V.H. & Arango, J. 2017. Sistemas sostenibles de producción ganadera en el contexto amazónico - Sistemas silvopastoriles: ¿una opción viable? Publicación CIAT No. 448. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia. p. 24, ISBN: 978-958-694-171-6, Available: http://hdl.handle.net/10568/89088.

Valenciaga, D., López, J.R., Galindo, J., Ruiz, T. & Monteagudo, F. 2018. "Cinética de degradación ruminal de materiales vegetales de Tithoniadiversifolia recolectados en la región oriental de Cuba". Livestock Research for Rural Development, 30(11), ISSN: 0121-3784, Available:http://www.lrrd.org/lrrd30/11/daiky30186.html.

Zach, A., Trulls, H.E., Ortíz, M.L., Brem, J.J. & Brem, J.C. 2017. "Degradación ruminal de materia seca de Morussp en caprinos en diferentes estaciones del año". Revista Veterinaria, 28(2): 141-144, ISSN: 1669-6840, DOI:http://dx.doi.org/10.30972/vet.2822541.

 

 

 

 

This is an open-access article distributed under the terms of the Creative Commons Attribution License

 

CIENCIA ANIMAL

 

Degradabilidad ruminal de suplementos a base de tres forrajeras nativas y adaptadas al pie de monte amazónico colombiano


Resumen

Con el objetivo de evaluar la degradabilidad ruminal in situ de diferentes suplementos basado en forrajeras nativas y adaptadas al pie de monte amazónico, se utilizaron tres ovinos con cánula ruminal. Los tratamientos evaluados fueron: T1 Control, T2 y T3 (0.5 kg concentrado + suplemento con 20 y 40 % de inclusión de Trichantera gigantea, respectivamente), T4 y T5 (0.5 kg concentrado + suplemento con 20 y 40 % de inclusión de Piptocoma discolor) y T6 y T7 (0.5 kg concentrado + suplemento con 20 y 40 % de inclusión de Hibiscus rosa-sinensis). Se realizó análisis de varianza según diseño completamente aleatorizado con arreglo factorial (3x2). Los tratamientos con inclusión del 20% de H. rosa-siensis, alcanzaron degradabilidad ruminal in situ de la MS y MO, a las 72 horas de incubación, superior al 84.65 y 72.79 %, respectivamente. Se encontró la menor degradabilidad ruminal de la MS y MO a las 72 horas de incubación para el tratamiento con T. gigantea al 40%, seguido por el tratamiento con P. discolor al 40%. Los tratamientos con H. rosa-siensis al 20 % y T. gigantea al 20 % mostraron degradación efectiva más alta para MS y MO, respectivamente. La degradabilidad in situ de la MS, MO, FDN y FDA mostraron los valores más altos en las especies H. rosa-sinesis y P. discolor, sin diferencia entre ellas, respecto a la T. gigantea. La inclusión de 20% de las forrajeras en el suplemento son una opción viable desde el punto de vista de oferta nutricional en programas de suplementación.

Palabras clave: 

Piptocoma discolor; suplementación; Amazonia; Putumayo.


De acuerdo con el Sistema de Monitoreo de Bosques y Carbono (SMB y C), para el año 2016 la deforestación en Colombia alcanzó 178.597 ha. Sin embargo, esta se ha concentrado en siete núcleos alrededor del país, donde el principal es la amazonia que comprende los departamentos de Putumayo, Caquetá, Guaviare y Meta con 34% de la tasa de deforestación nacional (Alayón et al. 2018). La causa principal de tala de árboles en la región es habilitar praderas para la ganadería bovina, como una forma de incrementar la valorización de las tierras (IDEAM 2017). Se estima que el 19% de las praderas sembradas en la amazonia colombiana, después de procesos de deforestación, se encuentran actualmente sin uso (Blanco-Wells y Günther 2019). Esta región ha evidenciado una transformación en la actividad productiva, que ha pasado de la siembra de cultivos de uso ilícito a la ampliación de la frontera agrícola, ahora encauzada principalmente hacia la ganadería.

Si bien la deforestación en el departamento de Putumayo es atribuida a una red compleja de actividades, es posible identificar que el patrón más común en la mayor parte de las zonas de frontera agropecuaria, comienza con la tala de los bosques para establecer cultivos temporales por dos o tres años, para luego sembrar estas áreas con pastos en los que al cabo de uno a dos años se utiliza para producción agrícola en especial, para dar lugar a sistemas productivos de ganadería extensiva (Sotelo et al. 2017)

Las variaciones en la intensidad y frecuencia de precipitaciones, el fenómeno del Niño y temperaturas altas, están teniendo efectos importantes en la producción de alimentos de origen vegetal como animal (Suber et al. 2019). Las pasturas tropicales, debido a la calidad de los suelos amazónicos, se caracterizan por presentar bajos rendimientos productivos y baja calidad nutricional, razones por las que los ganaderos se ven en la necesidad de encontrar nuevos materiales que ayuden a mejorar la oferta alimenticia y materias primas no convencionales para la suplementación del ganado (Calderón et al.2017). Ante esta problemática, es urgente la reconversión ganadera hacia sistemas de producción sostenibles, donde se reemplacen los monocultivos de gramíneas de variedades foráneas por pastos con menor requerimiento hídrico, especies vegetales perennes y suplementación con forrajeras nativas o adaptadas, así como prácticas de ramoneo en vegetación secundaria (Gómez et al. 2017).

La utilización de forrajeras arbóreas con alto valor nutricional puede contribuir a la mitigación del cambio climático (Restrepo et al. 2016), pues incrementan la degradabilidad por los altos contenidos de proteína que poseen y disminuyen la producción de metano en rumen (Cardona Iglesias et al. 2016 y Sánchez et al. 2018). Los suplementos nutricionales han adquirido gran importancia, pues permiten mejorar la condición corporal de los animales, la activación ovárica, el desarrollo embrionario y los indicadores reproductivos (Kubovičová et al. 2013). Esta inclusión sólo se puede lograr mediante el conocimiento de la degradabilidad de los recursos alimentarios que dispone la región, para optimizar el uso de fuentes alimentarias alternativas en la alimentación animal en el pie de monte amazónico (Gutiérrez 2015). Al respecto, el objetivo de este trabajo fue evaluar la degradabilidad ruminal de suplementos con inclusión de forrajeras nativas y adaptadas a condiciones del pie de monte amazónico.

Procedimiento experimental. El trabajo se llevó a cabo en la finca Villa Lucero, ubicada en el municipio de Puerto Asís, Corregimiento de Santana, en las coordenadas: 0°35'25.6"N y 76°32'05.3"W del departamento del Putumayo, ubicado al suroccidente de la República de Colombia, con altitud de 256 msnm, temperatura promedio de 25,3ºC, humedad relativa de 85% y precipitación anual de 3355 mm (IDEAM 2017), que se corresponde con la zona de vida bosque húmedo tropical (Holdridge 1982).

Las muestras de Trichantera gigantea (Tg), Piptocoma discolor (Pd) y Hibiscus rosa-sinensis (H. r-s), se cosecharon de un banco forrajero establecido en la finca, con plantas de un año de edad, a las que se les realizó un manejo agronómico de podas, control de insectos y arvenses. Se hizo un corte de establecimiento y se usó el rebrote de las plantas a los 60 días.

Se formularon siete tratamientos de acuerdo con las recomendaciones del NRC (2001). Cada tratamiento consistió en una proporción de 20 - 40 % de forrajeras en el suplemento, de la siguiente forma:

  • [T1 Control]. Suplemento comercial

  • [T2]. Suplemento comercial con 20 % de inclusión de Tg.

  • [T3]. Suplemento comercial con 40 % de inclusión de Tg.

  • [T4]. Suplemento comercial con 20 % de inclusión de Pd.

  • [T5]. Suplemento comercial con 40 % de inclusión de Pd.

  • [T6]. Suplemento comercial con 20 % de inclusión de H.r-s.

  • [T7]. Suplemento comercial con 40 % de inclusión de H. r-s.

Las forrajeras recolectadas se secaron previamente durante 48 h en estufa de aire forzado a 60 ºC. Posteriormente, el material seco se homogenizó y se molió utilizando un molino de martillos con criba de 2.5 mm. Los suplementos se prepararon según se muestra en la tabla 1. Se tomaron 200 g de muestra por tratamiento para análisis de laboratorio y otros 200 g para estudios de degradabilidad ruminal in situ.

Los tratamientos se prepararon en el laboratorio de biotecnología del Centro Agroforestal y Acuícola Arapaima del SENA, Regional Putumayo. En la tabla 1 se muestra la composición química de los tratamientos.

Degradabilidad ruminal. Los estudios de degradabilidad ruminal in situ se realizaron con tres ovinos machos Pelibuey de 40 kg de peso corporal (Campos et al. 2006), cánulados en rumen, alojados en cubículos individuales con libre acceso a agua potable y forraje. Los animales consumieron forraje fresco de Brachiaria decumbens a voluntad y 200 g de concentrado comercial para ovinos, ofrecidos una vez al día (8:00 am).

La determinación de la degradabilidad ruminal in situ de la materia seca (MS), materia orgánica (MO), fibra detergente neutra (FDN) y ácida (FDA) de los diferentes tratamientos se realizó según el procedimiento de las bolsas de nailon con una porosidad promedio de 1.200 a 1.600 orificios por cm2, con un tamaño de 12x8 cm, previamente taradas y debidamente identificadas, según procedimiento descrito por Mehrez y Ørskov (1977).

Se pesaron 5 g de muestra de cada suplemento por bolsa, que se triplicaron a razón de una bolsa para cada animal, lo cual corresponde a una réplica, para cada horario de incubación. En el horario de las 8:00 am, se introdujeron en el rumen siete bolsas (una para cada tratamiento), en cada animal, de forma que se pudiera extraer en cada tiempo de incubación (3, 6, 12, 24, 48 y 72 horas). Para la hora 0, se dejaron tres bolsas sin incubar para determinar la fracción rápidamente soluble (A), que se obtuvo mediante la incubación de la muestra en un baño de agua a 39 ºC durante 30 minutos.

Table 1. 

Ingredients and chemical composition of the evaluated treatments (DM)

IngredientT1T2T3T4T5T6T7
% (DM)
T. gigantea 2040
P. discolor 2040
H. rosa-sinensis 2040
Corn meal11.0035.0335.0043.0030.5011.8040.00
Soybean cake5.800.840.000.200.004.112.40
Corn bran76.7037.1218.0030.3024.0057.0812.10
Palm oil0.501.002.000.500.501.000.50
Molasses5.005.004.005.004.005.004.00
Microminerals a1.001.001.001.001.001.001.00
Nutritional composition (%)
TreatmentsAB
DM, %88.789.0890.2289.8191.5788.8890.6627.99
OM %96.8796.394.0496.295.097.1495.8292.69
Ether extract, %4.966.449.326.987.982.725.651.95
Crude protein , %11.5311.5012.4911.7813.9511.5011.546.33
NDF, %49.0350.5652.5745.8352.1253.9953.98-
ADF, %28.3226.8128.0628.2729.2728.9031.76-
ME, MJ /kg DM11.7911.5011.5011.7611.9811.5111.836.63

a Content of the microminerals mixure: Magnesium 10%, Zinc 10%, Iron 10%, Copper 2%, Iodine 0.12%, Selenium 0.06%, Cobalt 0.02%. AB: Brachiaria decumbens

Después de extraídas del rumen, cada bolsa se lavó con agua corriente de forma manual hasta obtener un líquido de enjuague claro. Se secaron durante 48 horas en estufa de aire forzado a 65 ºC. Los residuos de las bolsas correspondientes a las tres repeticiones de cada tiempo de incubación en cada animal se molieron hasta tamaño de partícula de 1 mm y se conformó una muestra homogénea a la que se le determinó la MO según AOAC (2016). Para determinar la degradación de estos nutrientes en el rumen, los análisis químicos proximales (AQP) se realizaron de acuerdo con los procedimientos y recomendaciones establecidas por AOAC (1995) de la siguiente manera: contenido de humedad (Método 930.04), proteína bruta por el método de Kjeldahl (N*6.25) (método 955.04), cenizas (calcinación, método 930.05), extracto etéreo (método 962.09) y FDN y FDA por el método de Goering y Van Soest (1970).

Estimación de la degradación. Se utilizó el modelo exponencial propuesto por Ørskov y McDonald (1979), asumiendo que las curvas de degradación de la MS y de la MO en el tiempo siguen un proceso cinético de primer orden, que se describe por la forma:

Y las curvas de degradación de la FDN y FDA se describieron según Dhanoa (1988) por la fórmula:

Donde:

P

- Degradación ruminal. Es la degradación ruminal del indicador evaluado en el tiempo “t “de permanencia en el rumen.

a

- Intercepto

b

- Fracción que se degrada en el tiempo t.

c

- Tasa de degradación de la fracción “b”.

t

- Tiempo de incubación.

L

- Tiempo de latencia o “lag” (horas). Tiempo que emplean los microorganismos del rumen para colonizar las paredes celulares de los forrajes y adherirse a ellas.

A

- Fracción rápidamente soluble.

Para la determinación de la Degradabilidad Efectiva ruminal (DE) se empleó el modelo de McDonald (1981).

Donde:

k

- Tasa fraccional de pasaje ruminal. Se asume valor de k (0.044 fracciónh-1) (NRC 2001)

B

- Fracción insoluble pero potencialmente degradable. B= (a+b)-A (Ørskov 2002)

c

- Tasa de degradación de la fracción B

Análisis estadístico. Para determinar el efecto de la inclusión de las especies forrajeras en los tratamientos se utilizó un diseño completamente aleatorizado con arreglo factorial (3x2) con un control en el que se consideraron como tratamientos la combinación de los niveles de los factores especies de forrajeras y porcentaje de inclusión en cada hora de incubación, con tres repeticiones lo cual correspondió a cada bolsa con el suplemento. Los resultados se analizaron por ANOVA mediante el paquete estadístico InfoStat (Di Rienzo et al. 2012). Cuando se encontraron diferencias (P<0.05), las medias de los tratamientos se compararon por la dócima de rangos múltiple de Duncan (1955).

Para la estimación matemática de los parámetros de degradación ruminal de la MS, MO, FDN y FDA de los suplementos evaluados, se empleó el programa NEWAY EXCEL (Chen 2000).

Se realizó un análisis de degradabilidad de los suplementos, en diferentes horarios de incubación, con las forrajeras H. rosa-sinensis, T. gigantea y P. discolor, y su porcentaje de inclusión (20 y 40%). Se encontró interacción entre la especie y el nivel de inclusión (P<0.05) para la degradabilidad de la MS en los horarios 3, 6, 24 y 72 horas. Los tratamientos que alcanzaron la mayor degradabilidad ruminal in situ de la MS (P=0.0185), a las 72 horas de incubación, correspondió a los tratamientos de H. rosa- sinensis al 20% y P. discolor al 20%, con 84.6 y 81.5 %, respectivamente; los cuales no difirieron del tratamiento con H. rosa-sinensis al 40%, y T. gigantea al 20% (tabla 2).

Table 2. 

In situ ruminal degradation of DM (%) of supplemnts, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatments.1SE Sign.
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
336.71 a30.36 abc19.36 bc21.02 bc17.42 c20.26 bc33.33 ab±4.20 P=0.0374
639.13 a41.84 a29.96 bc25.20 c22.24 c23.91 c35.01 ab±2.79 P=0.0037
2465.69 ab60.05 b47.82 c45.44 c31.24 d72.38 a41.82 cd±3.66 P=0.0486
7291.84 a76.03 b52.74 d81.58 b67.32 c84.65 ab79.21 b±2.34 P=0.0185

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Cuando se analiza la degradabilidad de la MS a las 12 y 48 horas de incubación, se encontró que no hubo interacción entre los factores (P>0.05). Por ello, se analizaron los factores individuales de especie y porcentaje de inclusión por separado. Al estudiar la especie, se observó que H. rosa-sinensis y T. gigantea tuvieron comportamiento similar, se diferenció del P. discolor en las 48 horas de incubación (P=0.0184). Mientras que la inclusión de 40 % tuvo efecto negativo (P<0.0001) con 49.1% comparado con el control (tabla 3).

Table 3. 

In situ ruminal degradation of DM (%) of supplements at 12 and 48 hours.

HourControlSpeciesSE Sign.
T. gigantea P. discolor H. rosa- sinensis
1246.27 ± 4.8741.6331.0642.81±3.45 P=0.0574
4882.77 a ± 4.4063.10 b52.32 c66.05 b±3.11 P=0.0184
12Control20%40%±2.81 P=0.0341
46.27 a ± 4.8743.17 a33.83 b
4882.77 a ± 4.4071.89 a49.09 b±2.54 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Respecto a la degradabilidad de la MO, se encontró interacción entre la especie y el nivel de inclusión (P<0.05) en los horarios 3, 6 y 72 horas. Los tratamientos que alcanzaron mayor degradabilidad ruminal in situ de la MO (P=0.0098), a las 72 horas de incubación, correspondieron a los tratamientos H. rosa-sinensis al 20% y P. discolor al 20%, con 72.8 y 70.1 %, respectivamente los cuales no difirieron del tratamiento con H. rosa-sinensis al 40% y T. gigantea al 20% (tabla 4).

Al analizar la degradabilidad de la MO a las 12, 24 y 48 horas de incubación, se encontró que no hubo interacción (P>0.05), por ello se analizaron los factores individuales de especie y porcentaje de inclusión. Se encontró que el suplemento con H. rosa-sinensis obtuvo el mayor valor a las 48 horas (P=0.0098), seguido por T. gigantea con 57.0 y 53.8%, respectivamente; sin diferencias entre ellas, las cuales difirieron del P. discolor. Mientras que la inclusión al 40 % tuvo efecto negativo (P<0.0001) con 42.2% comparado con el control (tabla 5).

Table 4. 

In situ ruminal degradation of OM (%) of supplements, T. gigantea, P. discolor e H. rosa-sinensis inclusion.

Hour.ControlTreatment1SE Sign
20% Tg40% Tg20% Pd40% Pd20% H. r-s40% H. r-s
331.44a26.11abc16.32c18.08bc15.08c17.42bc28.96ab±3.63 P=0.0308
633.51a35.98a25.25bc21.67c19.26c20.56 c30.42ab±2.40 P=0.0027
7278.65a65.38bc44.46d70.15b58.30c72.79ab68.83b±2.34 P=0.0098

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Las características de la degradabilidad ruminal alta demuestran la elevada calidad nutricional de los suplementos evaluados y sugiere la viabilidad del uso de estos para la suplementación de rumiantes. Todas estas observaciones se relacionan también con los resultados obtenidos por Cáceres y González (2015) quienes obtuvieron valores de degradabilidad ruminal de 67.2% para MO y 76.2% de MS y 79.3-84.2 % con heno de H. rosa-sinensis (Navarro y Roa 2018). Sin embargo, los resultados del presente estudio fueron mayores. Es posible que la inclusión del 20% potenciara la degradación que efectúan los microorganismos ruminales a los carbohidratos presentes en el suplemento.

Table 5. 

In situ ruminal degradation of OM (%) of supplements at 12, 24 and 48 hours.

HourControlSpeciesSE Sign.
T. giganteaP. discolorH. rosa-s.
1239.63 ± 4.2035.4926.7936.99±2.97 P=0.0606
2456.26 a ±3.1445.97 b33.07 c49.29 ab±2.22 P=0.0003
4870.88 a ±3.7853.83 b45.12 c57.04 b±2.67 P=0.0190
12Control20%40%±2.42 P=0.0336
39.63 a ± 4.2037.12 a29.05 b
2456.26 a ± 3.1450.98 a34.57 b±1.47 P<0.0001
4870.88 a ± 3.7861.82 a42.17 b±2.18 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Cuando se analiza la degradabilidad de los tratamientos con la inclusión de 40 %, algunos árboles forrajeros en el trópico han evidenciado un posible efecto como defaunadores en rumiantes. Esto se debe a la presencia de sustancias fenólicas u otros metabolitos secundarios en sus hojas (Saavedra 2017). Sin embargo, se conoce que hay adaptación a estos compuestos mediada por la degradación, neutralización de las moléculas activas y desarrollo de mecanismos de tolerancia, lo que explica que estos efectos observados tienen una persistencia limitada en la degradabilidad de acuerdo con los niveles de inclusión en las dietas, como se ha observado en estudios in vivo (Bodas et al. 2012).

La acción de los microorganismos frente a los contenidos de metabolitos secundarios en las forrajeras, podría ser una limitante de la degradabilidad de la MO, lo que probablemente ocurrió en el tratamiento T. gigantea al 40% y P. discolor al 40%, dado el alto porcentaje de inclusión. Para solucionarlo se recomienda suministrarlos rotacionalmente en la dieta de los animales, ya sea en ramoneo o incorporado a suplementos para adaptar a los microorganismos a su presencia (Patra y Saxena 2010).

En relación con P. discolor, Castañeda et al. (2017) encontraron 27% de degradabilidad in vitro de la MS para la forrajera sola. Estos resultados fueron inferiores a los encontrados en este estudio, con 81.6% para MS y 70.2% para MO en la mezcla del suplemento. Fueron altos posiblemente por las condiciones particulares de P. discolor, por su alto contenido PB y energía, y el nivel de inclusión de 20 %. Además, esta forrajera pudiera presentar mayor cantidad de compuestos solubles disponibles para el animal tales como aminoácidos y péptidos; así como ácidos grasos de cadena corta ramificados que favorecen la necesaria sincronización del nitrógeno y la energía para los microorganismos del rumen, específicamente los celulíticos y la degradación ruminal de los nutrientes y por ello pudo mostrar los valores altos de degradabilidad en todo el período de incubación analizado (Ducuara y Suárez 2013). La especie P. discolor al ser un árbol presenta mayor contenido proteico que las forrajeras normalmente utilizadas en alimentación animal y consecuentemente se pueden utilizar como suplemento de la dieta

De la misma manera el uso de especies no convencionales, en estudios de degradabilidad in vitro, los resultados encontrados en la especie H. rosa-sinensis fueron superiores a los descritos por Milera (2013) con degradación de la MO de 71.3% y estudios de Pinto et al. (2009) con 70.0%, e inferiores a los reportados por Navarro y Roa (2018) con 87% de degradabilidad de la MS.

La forrajera H. rosa-sinensis tuvo la mayor degradabilidad de todos los tratamientos evaluados, respecto a su valor biológico, sin diferencias con el P. discolor. Sin embargo, por no ser una forrajera nativa de la Amazonia, es vulnerable a plagas, por su buena palatibilidad. De la misma manera, los niveles de nutrientes de la forrajera sola fueron bajos respecto a T. gigantea y P. discolor (Burgos et al. 2015), lo cual es una desventaja en programas de suplementación en los cuales se busca cantidad de biomasa con óptimos niveles de proteína (Figueroa 2017).

En cuanto a T. gigantea hay alta variabilidad en la composición nutritiva, por las condiciones genéticas y otros factores como clima y suelo, con alta fermentación por la concentración de carbohidratos (Rosales 1996), lo cual se observó a las 24 y 48 horas en este estudio. La degradación de la fracción soluble fue alta comparada con otras forrajeras, adicionalmente puede ser una buena fuente de proteína se sobrepaso en rumen (Edwards et al. 2012). Sin embargo, esa degradabilidad se puede afectar por la presencia de fenoles (Galindo et al. 1989) y taninos. Respecto a estos últimos compuestos secundarios, Rodríguez et al. (2016) encontraron mayor efecto biológico de los taninos en la producción de gas, degradabilidad de la MO, FND, EM y concentración de NH3. Sin embargo, este aspecto no justifica el bajo valor nutritivo atribuido a esta especie, probablemente porque este sea el resultado del efecto combinado con su alto contenido de fibra (Rodríguez et al. 2014). Simultáneamente, las mezclas de esta forrajera con materias primas convencionales como maíz, además del secado, reduce el nivel de toxicidad en particular (McCann y Loor 2017) con efectos sinérgicos a nivel digestivo de los componentes de la mezcla para el incremento de la palatabilidad de la dieta, para aprovechar la degradación en rumen.

Al observar la degradabilidad de la FDN, se encontró interacción entre la especie y el nivel de inclusión (P<0.05) en los horarios 6 y 72 horas. Los tratamientos con la degradabilidad ruminal in situ de la FDN mayor (P=0.0005), a las 72 horas de incubación, correspondieron al tratamiento H. rosa- sinensis al 40% y H. rosa-sinensis al 20%, con 51.3 y 47.5 %, respectivamente (tabla 6).

No hubo interacción (P>0.05) a las 3, 12, 24 y 48 horas, para la degradabilidad de FDN. Por ello, se analizaron los factores individuales de la especie y porcentaje de inclusión. Se encontró que H. rosa-sinensis obtuvo el mayor valor (P=0.0011) a las 48 horas seguido por T. gigantea con 40.0% y 36.1 %, respectivamente, sin diferencias entre ellas, las cuales difirieron del P. discolor. Mientras que la inclusión al 40 % tuvo efecto negativo (P<0.0001) con 27.3 % comparado con el control (tabla 7).

Table 6. 

In situ ruminal degradation of NDF (%) of supplements, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatment1SE Sign
20% Tg40% Tg20% Pd40% Pd20% H. r-s40% H. r-s
624.18 a21.31 a15.26 bc10.88 c12.49 c12.36 c20.42 ab±1.87 P=0.0073
7241.70 c35.51 d28.37 e45.88 b36.21 d47.50 ab51.29 a±1.37 P=0.0005

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Table 7. 

In situ ruminal degradation of NDF (%) of supplements at 3, 12, 24 and 48 hours.

HourControlSpeciesSE Sign.
T. giganteaP. discolorH. rosa-s.
318.48 ± 2.3013.169.6114.92±1.62 P=0.0965
1226.90 a ± 2.6020.40 ab16.40 b25.77 a±1.84 P=0.0110
2438.07 a ± 2.0829.62 b20.41 c33.88 ab±1.47 P<0.0001
4840.70 a ± 2.4936.10 a28.30 b39.99 a±1.76 P=0.0011
3Control20%40%±1.33 P=0.6961
18.48 ± 2.3012.1912.94
1226.90 ± 2.6022.9618.76±1.50 P=0.0686
2438.07 a ± 2.0833.51 a22.43 b±0.56 P<0.0001
4840.70 a ±2.4942.33 a27.26 b±1.44 P<0.0001

a,b,c,d: different letters per row show significant differences for P<0.05

SE: Standard Error

Por su parte, se verificó que para la degradabilidad ruminal in situ de la FDA hubo interacción entre la especie y el nivel de inclusión (P<0.05) en los horarios 3, 24 y 72 horas. Los tratamientos con mayor degradabilidad ruminal in situ de la FDA (P=0.0098), a las 72 horas de incubación, correspondieron al tratamiento H. rosa-sinensis al 40% y H. rosa-sinensis al 20%, con 25.3 y 24.6 %, respectivamente los cuales difirieron de T. gigantea 40.0% con 14.5 % (tabla 8).

A las 3, 12, 24 y 48 horas de incubación, se encontró que no hubo interacción (P>0.05), por ello se analizaron los factores individuales de la especie y el porcentaje de inclusión por separado. Se encontró que la H. rosa-sinensis obtuvo el mayor valor (P=0.0024) a las 48 horas con 21.1 %, que difirió de las otras forrajeras evaluadas. Mientras que la inclusión al 40 % tuvo efecto negativo (P<0.0001) con 14.4 % comparado con el control (tabla 9).

La degradabilidad de la MS y MO está limitada por la concentración de FDN y FDA del forraje y especialmente por la concentración de lignina. Es por ello que el suplemento que exhibió los mayores valores de degradabilidad ruminal de MS y MO fueron los tratamientos con la inclusión de H. rosa-sinensis y P. discolor, los cuales difirieron del tratamiento con la inclusión del 20% de T. gigantea, ya que estas especies contienen bajos contenidos de estos componentes (Meza et al. 2014).

Table 8. 

In situ ruminal degradation of ADF (%) of supplements, with T. gigantea, P. discolor and H. rosa-sinensis inclusion.

Hour.ControlTreatment 1SE Sign
20% Tg40% Tg20% Pd40% Pd20% H. r-s40% H. r-s
310.52 a8.24 ab5.51 b5.35 b5.35 b5.76 b10.27 a±1.26 P=0.0374
2420.53 a17.17 b13.59 c12.16 cd9.39 d22.03 a13.20 c±1.09 P=0.0297
7224.35 a19.49 b14.53 c24.62 a17.94 b24.39 a25.31 a±0.73 P=0.0098

1 Tg: T. gigantea. Pd: P. discolor. H. r-s: H rosa-siensis

a,b,c,d: different letters show significant differences for P<0.05

SE: Standard Error

Table 9. 

In situ ruminal degradation of ADF (%) of supplements at 3, 12 and 48 hours.

HourControlSpeciesSE and Signif.
T. gigantea P. discolor H. rosa-s.
612.19 a ± 0.9712.97 a6.05 c8.65 b±0.69 P<0.0001
1214.22 a ± 1.3611.19 ab8.48 b13.81 a±0.96 P=0.0056
4822.76 a ± 1.3117.84 b15.37 b21.10 a±0.93 P=0.0024
6Control20%40%±0.56 P<0.0001
12.19 a ± 0.977.44 b11.01 a
1214.22 ± 1.3612.359.97±0.79 P=0.0502
4822.76 a ± 1.3121.83 a14.38 b±0.76 P<0.0001

a,b,c,d: different letters show significant differences for P<0.05

SE: Standard Error

Con respecto a los parámetros de la cinética de degradación ruminal de los diferentes tratamientos evaluados (tabla 10 y tabla 11); el modelo utilizado tuvo alta bondad de ajuste, ya que R2 fue alto, superiores a 0.80 para las fracciones analizadas, lo que indicó que este modelo fue capaz de explicar un porcentaje alto de la variación de los datos reales de degradabilidad ruminal.

La cinética ruminal depende de dos aspectos críticos: la velocidad para iniciar la degradación y la tasa de degradación (parámetro c). La combinación de estos dos aspectos establece la cantidad neta de microorganismos que sintetizan los nutrientes y que después son aprovechados y digeridos en el abomaso y el intestino. Los resultados confirmaron la superioridad de la degradabilidad efectiva de la MS, MO, FDN y FDA de los tratamientos con 20% de inclusión de las forrajeras, comparados con el tratamiento testigo.

Los cambios ocurridos en el aporte nutricional de las diferentes mezclas en los tratamientos pudieron determinar el aumento o reducción de FDN y FDA, que influye en la degradabilidad de los suplementos. En ese contexto, esos cambios influenciaron la acción fermentativa a nivel ruminal, accesibilidad de los microorganismos a la pared celular de los forrajes y con ello la estimulación o reducción de la celulosis ruminal y degradación del material (Núñez y Rodríguez 2019).

El tratamiento con H. rosa-sinensis al 20% y T. gigantea al 20% mostró degradación efectiva más alta para MS y MO, respectivamente. De la misma forma, el tratamiento H. rosa-sinensis al 20% y P. discolor al 20% tuvieron similar cinética para las variables FDN y FDA (tabla 10 y tabla 11). Este comportamiento pudiera estar relacionado con el menor contenido de fibra que mostraron estos tratamientos en comparación con el resto de los tratamientos evaluados, por lo que presentó mayor proporción de compuestos solubles y menor proporción de los constituyentes estructurales de la pared celular que favorecen su mayor degradabilidad.

Los parámetros de la cinética de fermentación describen la digestión y caracterizan propiedades internas del alimento que limitan su disponibilidad para el rumiante, determinan la proporción de nutrientes consumidos que pueden ser aprovechados por el animal y dependen de la acción microbiana del rumen (Hernández et al. 2018). La degradabilidad de los forrajes en el rumen está relacionada con la proporción y lignificación de las paredes celulares de la planta. De esta manera, el follaje de árboles forrajeros con bajo contenido de FDN (20 -35 %) tienen normalmente alta degradabilidad (>50 %) y especies con alto contenido de lignina tienen baja degradabilidad (< 50 %) (Bruni y Chilibroste 2001).

Table 10. 

Ruminal kinetic parameters and effective degradability of DM and OM in sheep supplements.

ParameterControlTreatments1
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
DM
A (%)5.23.26.51.32.34.11.6
B (%)94.875.445.798.797.780.398.4
(A+B)(%)10078.652.110010084.4100
C (Fraction h-1)0.0170.0540.0890.0120.0010.0680.001
R20-990.990.990.980.940.980.94
ED (%) k= 0.0271.260.744.658.148.365.560.9
OM
A (%)4.52.85.51.12.03.51.3
B (%)95.564.837.998.998.069.098.7
(A+B) (%)10067.643.410010072.5100
C(Fraction h-1)0.0170.0540.0620.0120.020.0680.001
R20.990.990.800.980.960.980.94
ED (%) k= 0.0261.152.234.550.041.856.352.7

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

A: Soluble fraction. B: Insoluble fraction. A+B (%): Potential degradation. C: Degradation rate ED: Effective degradability. R2: Determination coefficient belonging to the model.

Table 11. 

Ruminal kinetic parameters and effective degradability of NDF and ADF in sheep supplements.

ParameterControlTreatments 1
20% Tg 40% Tg 20% Pd 40% Pd 20% H. r-s 40% H. r-s
NDF
A (%)2.61.63.40.61.22.20.8
B (%)42.439.925.580.698.846.599.2
(A+B)(%)45.041.528.981.210048.7100
C (Fraction h-1)0.0410.0620.0780.0100.0010.0760.002
L (h)000001.10
R20.990.890.990.980.970.970.94
ED (%) k= 0.0235.432.324.232.326.238.137.6
ADF
A (%)1.50.91.80.40,71.20.5
B (%)26.620.512.455.889.124.199.5
(A+B) (%)28.121.314.256.289.825.3100
C (Fraction h-1)0.0270.0600.1050.0070.0020.0800.001
L (h)000001.30
R20.990.950.980.990.970.970.93
ED (%) k= 0.0220.016.612.317.513.419.919.1

1 Tg: T. gigantea, Pd: P. discolor. H. r-s: H rosa-siensis

A: Soluble fraction. B: Insoluble fraction. A+B (%): Potential degradation. C: Degradation rate. ED: Effective degradability. L: lag phase. R2: Determination coefficient belonging to the model

Con respecto a la “fase lag” o período de latencia, íntimamente relacionado con el tiempo que utilizan los microorganismos para colonizar la fibra, adherirse a las paredes celulares y comenzar su acción catabólica, se encontraron valores de 1.1 y 1.3 horas para el tratamiento con H. rosa-sinensis al 20% (tablas 10 y 11), tanto para la FDN como para la FDA. Esto pudo estar influenciado por el contenido de fibra de la H. rosa-sinensis contenida en el suplemento, al requerir más tiempo los microorganismos para colonizar el sustrato, mayor fue el nivel de degradabilidad. Al contrario, los otros tratamientos reportan valores de “0”. Este comportamiento se pudiera atribuir a que se evaluó un suplemento con bajos contenidos de FDN y FDA, lo cual es consistente con estudios realizados por Valenciaga et al (2018) en diferentes variedades de Tithonia diversifolia.

En el caso de los tratamientos con P. discolor al 20% y al 40%, la degradabilidad efectiva de la FDN al ser comparado con forrajeras convencionales como morera fueron menores (Zach et al. 2017). Sin embargo, la degradabilidad de la MS y MO estadísticamente fue comparable con H. rosa-sinensis al 20% y a 40%, respectivamente que mostraron una mayor degradabilidad. Este es un indicador importante de la calidad de la forrajera de este árbol nativo de la amazonia colombiana, posiblemente debido a que la cantidad de FDN, FDA y lignina no son altas. Ducuara y Suárez (2013) lo consideran un árbol de buena calidad con una degradabilidad superior al 50%, con un factor positivo en la ingesta de la forrajera sola o en suplemento (Calle et al. 2012). Puesto que se considera que un forraje tiene alta calidad cuando tiene aproximadamente 70% de degradabilidad de la MS, menos de 50% de FDN y más de 15% de PB (Cardozo 2013), se debe subrayar que la inclusión de P. discolor y T. gigantea al 20% en el suplemento son alternativas viables para la alimentación de rumiantes.

La cinetica ruminal y degradabilidad ruminal in situ de la MS, MO, FDA y FDA, en las especies H. rosa-sinesis, P. discolor y T. gigantea, sugieren el alto valor nutricional de estas especies en dietas para bovinos. Suplementos con la inclusión de 20% de las forrajeras evaluadas, es una opción viable desde el punto de vista de oferta nutricional para los animales, en programas de suplementación para bovinos bajo las condiciones del pie de monte amazónico

Agradecimientos

Los autores agradecen el apoyo en el procesamiento de los datos estadísticos a la Lic. Yolaine Medina Mesa, Dra Magaly Herrera, grupo de biomatematica y al Dr. Rafael Rodríguez del Instituto de Ciencia Animal y en las labores de campo a la administradora de la Finca Villa Lucero: Rosa Amelia Quiroz y Leidy Milena Daza (auxiliar de investigación). Así como al del Servicio Nacional de aprendizaje SENA, laboratorio de agua, suelos y biotecnología proyecto SENNOVA, Regional Putumayo, Colombia.

Refbacks

  • There are currently no refbacks.