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In order to improve the ruminant feed evaluation techniques through a statistical method permitting the comparison of treatments in 
experiments of in vitro gas production, based on regression curves, data were collected from an experiment of in vitro gas production. 
The Gompertz function was fitted and the Monte Carlo simulation method was used, with the aim of analyzing the sensibility of 
four homogeneity tests of non-linear regression models. Thirteen new treatments were obtained, with 300 repetitions each and 
280 points simulated per each repetition. The homogeneity tests were: extra sum of squares, Bayesian information criterion (BIC), 
Akaike information criterion (AIC), and Akaike information criterion corrected (AICC). The comparison criteria were assessed with 
modifications to the parameters, on the order of 1, 3, 5, and 10 %. The methodology for the comparison of the curves was based on 
the definition of the complete and the reduced models. The sensibility of each method was established according to the probability 
of fulfillment of the null hypothesis. The AICC showed higher sensibility, followed by the test of extra sum of squares. The AIC 
and the BIC were the least sensible. The parameter that affected the most the differences between treatments was the asymptotic 
coefficient (A).
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In vitro gas production techniques in ruminant feed 
evaluation are of great interest to animal nutrition 
research, due to their low cost and because they 
are invasive. Besides, they admit large amount of 
experimental units (Rodríguez 2010). The development 
of statistical software has permitted the incorporation 
of non-linear models in the analysis of the results 
(López et al. 2007). These models permit the theoretical 
interpretation of the physiological process by means 
of the relationship of the mathematical equations 
with the experimental data. At the same time, they 
manage to quantify the influence of the parameters 
that characterize the degradability of the feed in the 
rumen. 

Among the potentials for the use of modeling, 
there is the statistical comparison of the treatments 
with the corresponding experimental designs, taking 
as criterion of comparison the dynamics of feed 
degradation described by the regression curve. 
However, despite the advances in this branch of 
statistics, no deep research has been conducted 
about the homogeneity tests of the regression curves 
applicable to the experiments. 

It is of interest the obtainment of a correct statistical 
method for these comparisons, because it would permit 
the conduction of new researches to find out new forms 
of profitable and sustainable management in ruminant 
feeding. As a result, the available resources would be 
better used, with the consequent increase in milk and 
meat yields.

The object of this research was to assess the 

sensibility of four homogeneity tests of models of non-
linear regression through the simulation of in vitro gas 
production curves, with the application of the Monte 
Carlo method modifying the values of the parameters. 
Also, it was analyzed the influence of each parameter on 
the performance of the curve and on the determination 
of the significant differences between the treatments. 

Materials and Methods

The original data came from an experiment of in 
vitro gas production, performed by the Physiology 
Department in the Institute of Animal Science in Cuba 
and the Laboratories of Molecular Microbiology and 
Chemistry of the Program of Animal Physiology and 
Nutrition of the Colombian Corporation of Agricultural 
Research (Marrero  2005). 

The gas measurements were performed for 24 h, 
at intervals of 20.4 min, with four repetitions and 70 
measurements per repetition. Also, it was considered, 
that at the start of the measurements (t=0), the gas 
production (GP) was null, for a total of 284 experimental 
points. The model of Thornley and France (2007) was 
considered for the non-linear regression (figure 1). Thus, 
the substrate was a compartment with two fractions, 
one degradable and the other non-degradable. The other 
compartment was the gas produced, at a production rate 
inversely proportional to the gas produced previously.

The graphic was represented mathematically through 
the differential equation:
dPG = -µ (t) PG                      (1):
  dt

whose solution was the function of Gompertz: 



16 Cuban Journal of Agricultural Science, Volume 46, Number 1, 2012.

 Substrate 

Degradable, (S) Non-degradable, (U) 

produced gas, (PG) 

μ(t) 

Figure 1. Bicompartimental layout of gas production 

PG = A exp (-be-ct)                (2)
Where,
GP: gas production
A, ═ Asymptotic parameter, characterizes the 

maximum gas amount produced in the experiment. 
b and c ═ Parameters related to the curve of the 

model. They characterize the speed of gas production 
and thus, the degradation of the substrate. 

t  ═ Time.
For the verification of the model adequacy, the 

significance of the regression and of the parameters, the 
coefficient of determination, and the value of the residual 
mean square were considered.

The simulation was performed according to 
Rubinstein and Kroese (2008):  

1. The non-linear regression of the experimental 
data was fitted to obtain the estimators of the parameters 
and the original residues.

2. Simulated functions were constructed with the 
same original regression equation. It varied the value of 
a parameter and the rest was left constant.

3. The simulated function was assessed in each 
point of the variable, regardless the original function, 
and the value of a residue of the original regression was 
added through random selection.

4. With these simulated points the regression was 
adjusted again to obtain the simulated curve.

The order of the variation of the simulation 
parameters (1, 3, 5, and 10 %) was performed 
according to the results of Calabro et al. (2005) and 
García-Rodríguez et al. (2005), where the interval 
of confidence of the estimation of the parameters of 
regression was between 1 and 10 %  of the absolute 
value of the parameter for experiments of in vitro gas 
production. These parameters were established in a 
way that, for the first four simulations, the value of the 
parameter A varied, on the order of 1, 3, 5, and 10 %. 
The rest of the parameters was left constant. For the 

following four, the parameter b was varied on the same 
order, and in the last four the value of the parameter c 
was modified on the same order.

The function for the simulation with the variations 
in the parameters was:

PG*k,i = A*k exp (-b*k e
-ckti) + ε*k,i,               (3)

Where,
k = Amount of simulated treatments (k=1, 2,…,12)
i = Amount of points per curve (i=1, 2,…, 84)
GP*k,i = i-th point of the k-th simulation.  
ti = Time corresponding to the i-th observation in the 

original experiment.  
ε*k,i = i-th component of the vector of simulated 

residues, obtained from a random selection with 
replacement of the original residues. 

A*k, b*k, c*k: k = -th parameters of simulation, which 
were modifications of the originals, as shown in table 
1. 

The comparisons were performed between the 
treatment zero and the rest. Three hundred repetitions were 
conducted for each comparison between treatments.

For the comparison, the method of the complete 
and the reduced models was used, as described 
by Schabenberger et al. (1999) and Motulski and 
Christopoulos (2003). 

Being the function of the regression model for the 
treatment k, Fk and for h, Fh, the hypothesis test would 
be as follows:

H0: Fk = Fh      , k ≠ h                (5)
H1: Fk ≠ Fh
The reduced model was declared for the fulfillment 

of the null hypothesis, considering that all the points 
belong to only one curve:

MReduced = f (A0,b0,c0,t) + ε               (6)
The other expression, corresponding to the fulfillment 

of the alternative hypothesis, was denominated complete 
model. In it, the points were adjusted, as belonging to 
different curves for each treatment. A compound function 

SP
Treatments

0 1 2 3 4 5 6 7 8 9 10 11 12
A* A 1.01A 1.03A 1.05A 1.1A A A A A A A A A
b* b b b b b 1.01b 1.03b 1.05b 1.1b b b b b
c* c c c c c c c c c 1.01c 1.03c 1.05c 1.1c

Table 1: Layout of calulation of the simulation parameters per treatment  

S.P. simulation parameters

{
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was obtained as a result.

MComplete=   f(Ak,bk,ck,t) + ε Treatment k             (7)                  F(Ah, bh, ch, t) +ε Treatment i
The goodness of fit of the complete and the reduced 

models constituted a measurement of the fulfillment of 
one hypothesis or the other. There are statistical tests 
that permit the researcher to reject the null hypothesis 
or not.

Homogeneity tests of the curves: 
1. Test of the extra sum of squares (Schabenberger et 

al. 1999), performed through the F-test, as follows:

F =
 SCReduced – SCComplete / dfReduced - dfComplete

       
(8)               SCComplete / dfReduced

Where,
SC = Sum of residual squares of the regression of the 
complete and reduced models. 
df = Degrees of freedom of the corresponding sums of 
residual squares.
The calculated F was compared with the test of Fisher, 
with the degrees of freedom in the numerator and in the 
denominator dfReduced-dfComplete and dfComplete, 
respectively.
2. The Bayesian information criterion (BIC) (Konishi et 
al. 2004), was expressed as:
BIC = Nln (SC) + K ln (N)                (11)
                    N
Where,
N = Number of data 
K = Number of parameters of the equation of fit to the 
regression plus one 
SQ = Sum of squares of the residues 
3. The Akaike information criterion (AIC), given by 
Motulsky and Christopoulos (2003), was defined by 
the expression:
AIC = Nln (SC) + 2 K                    (9)
                    N
4. The Akaike information criterion corrected (AICC), 
with the correction of Hurvish and Tsai (1989), proposed 
originally for situations with few experimental points 
for the comparison of the models included the number 
of points in the correction:
AICC + AIC + 2K (K+1)                 (10)
                         N - K - 1
The difference between the values of the information 
criteria, corresponding to the complete and the reduced 
models, was denoted by the Greek letter Δ:
Δ= information  criterion of the complete model – 
information criterion of the reduced model (12)
The probability of fulfillment of the null hypothesis was 
established by the equation:

                         

(13)

The value of  Δ and P were calculated in all the 
information criteria.

The theoretical decision criterion for the rejection of H0 
was given by:

The correspondence was analyzed between the border 
of the theoretical decision of each homogeneity test 
and that estimated through the simulation. 
Sensibility test. 
The sensibility of the homogeneity test of the regression curves 
was defined as the capacity of detecting significant differences  
(P < 0.05) in comparisons between treatments with values 
closed to the parameters. Thus, the comparison was made 
between the simulated curves of the treatment 0 (with the 
parameters of simulation A0, b0, c0) and the rest. 
It was considered that the method was efficacious 
in the comparison, when there were significant 
differences in more than 285 instances in the 300 
repetitions. All the statistical analyses were conducted 
with the software SPSS 15.0 (2006) and Microsoft 
Excel 2007 (2008).

Results and Discussion

According to Calabro et al. (2005) and López et al. 
(2007), the Gompertz function, applied to in vitro gas 
production experiments, generally, brings about good 
criteria of fit. This was corroborated in this experiment, 
where the regression was significant, at a level of  
P < 0.01. The residual mean square had value of 0.715, 
with 280 degrees of freedom. The value of the coefficient 
of determination (R2) was of 0.970. The estimated 
parameters were also significant and are shown in table 
2. 
Table 3 shows the parameters used in the modeling 
(4):
F-test of the extra sum of squares. Table 4 reports the 
performance of the test of the extra sum of squares for 
each of the comparisons.
With this test, there were significant differences in more 
than 285 instances, when the simulation parameters 
A and c varied in 5 % or more (A vs 1.05A and A vs 
1.10A; c vs 1.05c and c vs 1.10c). For the parameter 
b, there were significant differences in more than 285 
cases, only when the parameter varied in 10 % (b vs 
1.10b). In these comparisons, the varied parameter 
was higher than the upper limit of estimation of the 
original parameters. 
An interesting case occured in the comparison, where 
the parameter A varied on the order of 3 %. The 
calculated F-test was next to the decision border (2.62 
and 2.15 respectively), but not enough. This was in 
correspondence with the number of differences detected, 
which represented 93.3 % of the total, not permitting in 
this comparison to reject the null hypothesis. 
Figure 2 shows the performance of the value of the F-test, 
in respect to the increase in the differences between the 

(14)
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Parameter Estimation S. E.(±)
Interval of confidence 95%

Lower limit Upper limit
A 17.970 0.414 17.155 18.786
b 3.212 0.088 3.038 3.386
c 0.130 0.005 0.119 0.140

S.P.
Treatments

0 1 2 3 4 5 6 7 8 9 10 11 12
A* 17.97 18.15 18.51 18.87 19.77 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97
b* 3.21 3.21 3.21 3.21 3.21 3.24 3.31 3.37 3.53 3.21 3.21 3.21 3.21
c* 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13     0.131     0.134    0.137    0.143

Parameter of simulation 
that varies 

Variation of the 
parameter

Number of significant  
differences (P < 0.05)

A 1.01 71
1.03 280
1.05 300*
1.10 300*

b 1.01 13
1.03 96
1.05 184
1.10 300*

c 1.01 36
1.03 169
1.05 299*
1.10 300*

Table 2. Estimations of the parameters of the original regression

Table 3. Values of the parameters for the simulation.

S.P. Simulation parameters 

Table 4. Performance of the test of extra sum of squares for the simulations 

*Indicates the efficacy of the test (P < 0.05).

Figure 2. Values of the F-test and their tendency for each comparison.

Exponential (A)
Exponential (B)
Exponential (C)

Parameter variation (%)
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compared treatments, given in percentage of variation 
of the simulation parameter. This had, approximately, 
an exponential behavior. For the parameter A, the rate 
of variation of the F-test was much higher than that of 
b and c, which was in relation to the significance of the 
parameter in the regression function. As the difference 
between the parameters of the regression function was 
increased, it increased the dispersion of the values of 
the test. 
Table 5 shows the results corresponding to the BIC.
For the parameter A, the test was able of finding 
significant differences in more than 285 cases, starting 
from the variation of the 5 % of the comparison 
parameter (A vs 1.05A). For the parameters b and 
c, it only reached this value for variations starting 
from 10 % (b vs 1.10b and c vs 1.10c). When the 
comparison was performed between treatments, with 
values next to the simulation parameters, the method 
did not detect almost any significant difference. This 
performance was more evident for the parameter b, 

Parameter of simulation 
that varies 

Variation of the 
parameter

No. of significant 
differences (P<0.05)

A 1.01 1
1.03 76
1.05 292*
1.10 300*

b 1.01 1
1.03 1
1.05 6
1.10 295*

c 1.01 1
1.03 9
1.05 194
1.10 300*

 

Table 5. Performance of the BIC for the parameters variations 

*Indicates the efficacy of the test (P < 0.05).

Figure 3. Values of ΔBIC and their trend for each comparison

for which it was fully inefficacious in the first three 
comparisons.
The dependence of the values of Δ, in respect to 
the variation of the parameters, was around that 
of a polynomial of second order (figure 3). In this 
instance, as for F, the dispersion of the values was 
increased as the difference between the parameters 
was incremented.
For differences up to 1 % in the estimations of A, up to 3 
% in b, and up to 5 % in c, there were values of Δ lower 
than zero. According to the relationship expressed in 10, 
the value of Δ was lower than zero, when the inequality 
was fulfilled:
(SCRreduced )

N < (SCRcomplete )
NNk                          (15)

When the values of the sums of squares of the complete 
and the reduced models were next one to the other, the 
difference between the BIC was negative. 
These results showed that the sensibility of the Bayesian 
information criterion was inferior to the test of the extra 
sum of squares.

Exponential (A)
Exponential (B)
Exponential (C)

Polynominal (A)
Polynominal (B)
Polynominal (C)

% Parameter variation
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Table 6 provides simultaneously the performance of 
the AIC and AICC. The two criteria were shown at 
once due to their similarity as to their mathematical 
nature, with emphasis on the correction by the number 
of experimental points.
The measurements of the Δ corresponding to the AIC and 
the AICC in each comparison were higher than the BIC, 
due to the factor accompanying the logarithm of the sum 
of residual squares was numerically higher. Nevertheless, 
there were negative values of Δ, corresponding to the 
fulfillment of the inequality derived from the equation 
(10):
Ln (SCR complete ) < 2k                  (16)
       SCR reduced        N
The ΔAIC detected significant differences in more 
than 285 instances, comparisons in which the 
variation in the parameter A was of 5 % or higher, 
for variations of 10% of the parameter b, and of 5 % 

Parameters Differences. (%) Variation of
 the parameter

No. of significant differences 
(P<0.05)

CIA CIAC
A 1 1.01 17 104

3 1.03 238 294*
5 1.05 300* 300*

10 1.10 300* 300*
b 1 1.01 3 30

3 1.03 29 144
5 1.05 98 214

10 1.10 300* 300*
c 1 1.01 11 64

3 1.03 107 225
5 1.05 293* 299*

10 1.10 300* 300*

Table 6. Performance of the criteria of information of Akaike and Akaike corrected for the 
variations  of the parameters 

*Indicates the efficacy of the test (P < 0.05).

Figure 4. Values of ΔAIC and their trend for each comparison.

of the parameter c. 
Significant differences were detected for variations in 
the simulation parameters, similar to those of the test 
of extra sum of squares. Therefore, it can not be stated 
that the sensibility of this test was higher. 
The performance of the dependence of the values of 
ΔAIC in respect to the variation of the parameters was 
approximately that of polynomial of second order, just as 
in the ΔBIC. There was also, for this criterion, a higher 
dispersion of the values as the difference between the 
parameters of the simulation was increased, as shown 
in figure 4.
The number of differences found by the ΔAICC was 
higher than 285, as compared with the treatments  where 
the simulation parameter A varied in 3 % or more, in 
respect to the variation of 10 % of the parameter b, and 
of 5% of the c. Likewise, the values of the means of 
Δ were slightly superior to the value of the theoretical 

Polynominal (A)
Polynominal (B)
Polynominal (C)

% Parameter variation
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decision border, even where the number of significant 
differences superior to 285 was not attained. This was 
due to the inclusion of the correction term (Hu 2007).
The performance of this criterion showed that the 
correction term was important in the comparison of the 
models, even when the number of experimental points 
was relatively large (Burham and Anderson 2004).  
In all the comparisons, the number of detections of 
the AICC was higher than that of the F-test, the BIC, 
and the AIC. The test performance in respect to the 
variations in the treatments was quadratic, similar to the 
rest of the information criteria. The variation rate was 
higher, as a consequence from being the test of higher 
sensibility. Also, the dispersion was the lowest of all the 
information criteria, as the difference between treatments 
was increased.
The parameter A was the one affecting the most the 
sensibility, which represented the curve asymptote 
and showed the total amount of gas produced in the 
experiment as a result from the linear dependence 
of the gas production with this parameter. The other 
parameter of greatest influence was the c, indicator of 
the gas production rate, also as a consequence from the 
position occupied by this parameter in the Gompertz 
function. The case of the b, was the one with the lowest 
influence on the sensibility, because in respect to this 
parameter, the dependence of the gas production was 
logarithmical.
Considering the results, it was concluded that the most 
sensible test for the comparison of the treatments was 
the AICC, followed by the F-test of the extra sum of 
squares, and the AIC. 
Although according to Schabenberger and Pierce (2002), 
the test of the extra sum of squares should have the same 
sensibility as to the information criteria, the fact of not 
being the most sensible can be  explained due to the 
high dependence of the test on the strict fulfillment of 
the assumptions in the regression. As the experimental 
data got farther from the ideal distribution, the F-test 

Figure 5. Values of ΔAICC and their trend for each comparison 

may lose sensibility (Seber and Wild 2003).  
It was concluded that the Akaike information criterion 
corrected is an efficacious tool for the comparison of 
treatments, taking as basis the in vitro gas production 
curves. This method constitutes a powerful tool to be 
applied in the different experimental designs used in 
research on this branch of science. 
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